Supplementary Materials: ## **Materials and Methods** Animals. Male C57BL/6J at 8-12 weeks of age were housed in light-tight boxes and entrained to LD12:12 conditions. After a minimum of 7 days, animals were transferred to constant darkness (DD) conditions. Thirty-six hours after DD, liver samples (N=3-6 mice) were collected every 4 hrs. All animal experiments were in accordance with guidelines of the UT Southwestern Medical Center Animal Care and Use Committee. Antibodies. Antibodies against PER1, PER2, CLOCK, and BMAL1 were made as described previously (7). CRY1 antibody was made as described (63). CRY2 (epitope: residues 514-592) and p300 (epitope; residues 60-242 of human p300) antibodies were generated using guinea pigs (Cocalico Biological) and serum was affinity purified using the same protein used to raise antibody. NPAS2 antibody (64) was a kind gift from Dr. Steven McKnight (UT Southwestern Medical Center). BMAL1, CLOCK, NPAS2, PER1, PER2, CRY1, CRY2, p300 and CBP antibodies were validated by western blot analysis of liver nuclei from wild-type mice. In addition, the BMAL1, PER2, and CRY2 antibodies were validated using either liver or cerebellum tissue lysates including the appropriate knockout mouse control. The PER1 antibody was validated using mouse embryonic fibroblast (MEF) extracts derived from wild-type and Per1 knockout mice. The CLOCK antibody was also validated using MEFs isolated from wildtype, Bmall knockout and Clock knockout mice. P300 antibody was validated by in vitro translated protein with a full-length p300 cDNA-pcDNA3.1 or empty pcDNA3.1. RNAPII-8WG16 (MMS-126R) antibody (50) was purchased from Covance. RNAPII-Ser5P (clone 3E8, 04-1572) antibody (51) was purchased from Millipore and RNAPII-Ser5P (ab5131) antibody (*57*) was purchased from Abcam. H3K4me1 (ab8895), H3K4me3 (ab1012), H3K9ac (ab4441), H3K27ac (ab4729), H3K36me3 (ab9050) and H3K79me2 (ab3594) antibodies were purchased from Abcam. CBP antibody was monoclonal AC238 culture supernatant (*65*). Chromatin Immunoprecipitation Sequencing (ChIP-seq). Livers from mice (C57BL/6J) were immediately homogenized in 4 ml per liver of 1X PBS containing 1% formaldehyde. The homogenate was kept for 8 min at room temperature, 250 µl of 2.5 M glycine was added to stop the reaction on ice. For dual crosslinking (66, 67), livers were homogenized in 4 ml per liver of 1X PBS containing 2 mM EGS, kept for 20 min at room temperature, formaldehyde was added (final conc. 1%) for 8 min at room temperature and 250 µl of 2.5 M glycine was added to stop the reaction on ice. The homogenate was resuspended in 10 ml of ice-cold 2.3 M sucrose contacting 150 mM glycine, 10 mM HEPES pH 7.6, 15 mM KCl, 2 mM EDTA, 0.15 mM spermine, 0.5 mM spermidine, 0.5 mM DTT and 0.5 mM PMSF, and layered on top of a 3 ml cushion of 1.85 M sucrose (containing the same ingredients and including 10% glycerol) and centrifuged for 1 hr at 24,000 rpm at 4°C in a Beckman SW32.1 rotor. The nuclei were resuspended in 1 ml of 10 mM Tris pH 7.5, 150 mM NaCl, 2 mM EDTA, transferred to a 1.5 ml microfuge tube, centrifuged for 3 min at 3000 rpm at 4°C, washed again and stored at -80°C until use. The nuclei from two livers were pooled before sonication. For BMAL1 and 8WG16 antibodies, the formaldehyde-crosslinked nuclei were resuspended in 0.8 ml per liver of lysis buffer (50 mM Tris pH 7.5, 10 mM EDTA, 1% SDS, 1 mM PMSF and Roche complete EDTA free protease inhibitor cocktail) and sonicated 10 times for 30 sec at 4°C using a Covaris S2 ultrasonicator. For CLOCK and NPAS2 antibodies, the dual crosslinked nuclei were resuspended in 0.8 ml per liver of Sarkosyl lysis buffer (50 mM Tris pH 7.5, 10 mM EDTA, 0.5% N-lauroylsarcosine, 1 mM PMSF and Roche complete EDTA free protease inhibitor cocktail) and sonicated 6 times for 30 sec at 4°C using a Covaris S2 ultrasonicator. The fragmented chromatin was then diluted tenfold with IP buffer (10 mM Tris pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 1 mM PMSF, protease inhibitor cocktail). For PER1, PER2, CRY1, CRY2, CBP and p300 antibodies, the dualcrosslinked nuclei were resuspended in 3 ml per liver of IP buffer and sonicated 48 times for 5 sec on ice using a Misonix S-4000 sonicator. For RNAPII-Ser5P antibody, the formaldehydecrosslinked nuclei were resuspended in 0.8 ml per liver of Sarkosyl lysis buffer, sonicated 6 times for 30 sec at 4°C using a Covaris S2 ultrasonicator, and diluted 10-fold with IP buffer. For H3K4me1, H3K4me3, H3K9ac, H3K27ac, H3K36me3 and H3K79me2 antibodies, the formaldehyde-crosslinked nuclei were resuspended in 0.7 ml per liver of 10mM Tris pH 7.5 and 100 mM NaCl, sonicated 5 times for 30 sec at 4°C using a Covaris S2 ultrasonicator, incubated for 40 min at 37°C with 200 kunitz units of Micrococcal Nuclease and 2 mM CaCl₂, and then stopped with 10 mM EGTA and 1% SDS. The digested chromatin was then diluted 10-fold with IP buffer. Approximately 120 μg (for transcription factors) or 80 μg (for histones) of fragmented chromatin was pre-cleared by incubating with 40 µl of protein A-agarose (Sigma) for 2 hr at 4°C on a rotating wheel. Pre-cleared chromatin was then incubated with antibody overnight at 4°C on a rotating wheel, 10 µl of Protein A/G Plus-agarose was then added and incubated for 1.5 hr at 4°C. Beads were then washed twice with IP buffer, twice with high salt wash buffer (20 mM Tris pH 7.5, 500 mM NaCl, 2 mM EDTA, 1% Triton X-100, 1 mM PMSF), twice with LiCl wash buffer (20 mM Tris pH 7.5, 250 mM LiCl, 2 mM EDTA, 0.5% Igepal CA-630, 1% sodium deoxycholate, 1 mM PMSF), and once with TE. Co-immunoprecipitated DNA fragments were eluted with 100 µl of 20 mM Tris pH 7.5, 5 mM EDTA, 0.5% SDS, then reverse crosslinked at 65°C for overnight, incubated with 10 μg of RNaseA for 30 min at 37°C, with 160μg of proteinase K for 30 min at 55°C, and then purified using a Qiaquick PCR purification Kit (Qiagen). Sequencing library construction was performed as described (68). The immunoprecipitated DNA fragments were repaired by the End-It DNA End Repair Kit (Epicentre Biotechnology) according to the manufacturer's instructions. The end-repaired ChIP DNA fragments were purified by MinElute Reaction Cleanup Kit (Qiagen) and eluted in 20 µl in EB buffer. The resulting DNA fragments were ligated with P1 and P2 adaptors for the Applied Biosystems SOLiD system for 20 min at room temperature using the Quick Ligase Kit (NEB), followed by purification using the MinElute Reaction Cleanup Kit (Qiagen). The purified, adaptor-ligated ChIP DNA fragments were run on 5% native polyacrylamide gel electrophoresis (PAGE) for an in-gel PCR reaction. A gel slice containing 175–200 bp adaptor-ligated ChIP DNA fragments (corresponding to 115-140 bp genomic fragment sizes) was cut and shredded. PCR Platinum Supermix (100 µl, Invitrogen), 50 pmol of PCR primers with barcodes, 0.5 µl Taq DNA polymerase (NEB), and 0.15 µl p.f.u. Turbo DNA polymerase (Stratagene) were added into the shredded gel slice. The adaptor-ligated ChIP DNA fragments were amplified by 14-19 cycles of in-gel PCR. After the PCR reaction, gel pieces were filtered out with a 0.45 µm filter spin column, and the amplified ChIP-seq library was purified by the MinElute PCR purification kit (Qiagen). The library was purified by one more round of 5% PAGE. A gel slice containing 200-230 bp PCR products (110-130 bp fragment size) was cut and shredded, and the amplified library was extracted out of the gel by passive elution in elution buffer (2.5 M ammonium acetate in TE). Gel pieces were removed with a spin column, and the resulting ChIP-seq library was purified using the QIAquick PCR purification kit (Qiagen). SOLiD sequencing of ChIP-seq libraries were performed on an Applied Biosystems SOLiD4 or 5500xl instrument with 35-bp reads according to manufacturer's instructions (Life Technologies) by the UTSW McDermott Next Generation Sequencing Core. Sequence reads were mapped to the mouse genome (NCBI m37/mm9) with Applied Biosystems BioScope v1.3. The mapping algorithm uses a seed and extend mapping scheme using the first 25 bp as the "seed" and allowing a maximum of two mismatches in the seed region for 35 bp reads. Two mapping options (ma.to.bam.output.filter=alignment score, and ma.to.bam.clear.zone = 5) were used to indicate that the mapped reads in the ma file are limited to "unique" reads for output to the bam file. These two parameters indicate that the reads are primary and unique. Uniqueness is determined by the clear zone number. If there are two primary mapping locations for a read, the read is considered unique if the mapping quality of that mapping location is at least 5 greater than the next primary mapping location. If the score is 5 or greater, all other mappings are discarded and the higher quality mapping is kept as the unique read. Otherwise all mappings are discarded. If there is only one mapping location, that location is kept and termed unique. Duplicates were removed using Picard MarkDuplicates (http://picard.sourceforge.net). In order to adjust for differences in sequencing depth among time samples, the sequence reads were "down sampled" to the lowest number of the uniquely mapped reads with duplicates among the six time points for each ChIP factor. In determining how best to compensate for variations in sequence depth among samples during the sequencing runs, we tested four different methods and came to the conclusion that down sampling was the best method. The other three methods involved normalizing either to the "total reads," "total mapped reads with duplicates" or "total mapped reads without duplicates." In each case, we found that some type of bias could be introduced depending on how different the sequencing depth (the number of sequence reads) was among samples. Thus, we determined empirically that it was better to randomly sample the sequence reads in order to equalize the sequencing coverage rather than to numerically
divide the sample reads by one of the three sequence read metrics above. To validate our approach further, we calculated the percentage of the reads in the sample that were localized in the peaks. This analysis shows that less than 1-2% of the signal is usually contained in the peaks. Thus the peak height or number of peaks would account for only a very small fraction of the total, and therefore would only be influenced by the normalization procedure by a few percent. Because of this fact, our procedure is equivalent to normalizing to the "background." % reads mapped in master peak area | | CT0 | CT4 | CT8 | CT12 | CT16 | CT20 | КО | |-------|---------|---------|---------|---------|---------|---------|---------| | BMAL1 | 0.6475% | 0.8673% | 0.9845% | 0.4231% | 0.1512% | 0.1140% | 0.0365% | | CLOCK | 0.2968% | 0.2599% | 0.3647% | 0.2645% | 0.1668% | 0.1715% | 0.0262% | | NPAS2 | 0.1375% | 0.1309% | 0.2316% | 0.1266% | 0.0862% | 0.0404% | | | PER1 | 0.1588% | 0.1342% | 0.0818% | 0.6136% | 0.3148% | 0.3998% | 0.0852% | | PER2 | 0.3617% | 0.1874% | 0.2356% | 0.6044% | 1.0179% | 0.8086% | 0.1962% | | CRY1 | 1.8008% | 1.8779% | 0.7481% | 1.3286% | 0.6321% | 1.4935% | 0.3644% | | CRY2 | 0.4955% | 0.3102% | 0.6556% | 0.7370% | 0.9125% | 0.6339% | 0.2434% | | CBP | 0.2976% | 0.4353% | 0.3634% | 0.1760% | 0.6501% | 0.4021% | | | p300 | 0.0650% | 0.0679% | 0.0865% | 0.0322% | 0.0361% | 0.0424% | | | 8WG16 | 0.2204% | 0.1998% | 0.1948% | 0.5559% | 0.4363% | 0.1291% | | | Ser5P | 2.3970% | 2.1996% | 1.3907% | 0.8423% | 1.2076% | 1.8905% | | The total reads for each sample and the down sampled reads for each factor are shown in Table S1. Results were further analyzed using HOMER (69). Genome browser views were normalized to display uniquely mapped reads per 10 million uniquely mapped reads with duplicates. **ChIP-seq peak finding.** The peaks were identified from uniquely mapped reads without duplicates using MACS with following parameters: genomic size = mm (1.87 Gb), shift = 60 and input chromatin samples as control data (33). A p-value threshold of 10^{-5} (default) and a ratio between the ChIP-Seq tag count and λlocal of 10 (fold_enrichment threshold) was used. The false peaks called by MACS in Table S11 that repeatedly emerged from low complexity sequence were removed from further analysis. The peaks were then subdivided by PeakSplitter (34) with options of –valley 0.7 and –cutoff 7. To construct a master peak list from the six time points, the peaks obtained after PeakSplitter were merged, compared for overlaps and the peak with the highest summit value was chosen if the summit coordinates were within 120 bp. Figure S3 illustrates the master peak process in which MACS peaks are called, then subdivided with PeakSplitter and then compared for overlap and summit height. The ChIP-seq peak overlaps (peak summit +/- 120bp) from the master peak lists were determined using HOMER (69). Chow-Ruskey diagrams (70) were made with R using the Vennerable package. Whole transcriptome sequencing (RNA-seq). RNA was isolated from livers using Trizol reagent according to the manufacturer's instructions (Life Technologies). 10 μg of total RNA pooled from three mice (individual mouse RNA samples with RIN values of 8-9) was depleted of ribosomal RNAs using RiboMinus Eukaryote Kit for RNA-seq according to the manufacturer's instructions (Life Technologies). The removal of ribosomal RNAs was confirmed on a Bioanalyser Pico Chip (Agilent). Sequencing libraries were constructed using SOLiD Total RNA-seq Kit (Life Technologies) with a modification below. A total of 1 μg of rRNA-depleted total RNA was fragmented in the 30 μl of T4 PNK buffer for 18 min at 95°C and placed on ice immediately. Fragmented RNA was phosphorylated by adding 2 μl of T4 PNK and 1 mM ATP for 60 min at 37°C and purified by RiboMinus Concentration module (Life Technologies) prior to the adaptor ligation. SOLiD sequencing of libraries was performed on an ABI SOLiD4 instrument with 50-bp reads according to manufacturer's instructions (Life Technologies) by the UTSW McDermott Next Generation Sequencing Core. Sequence reads were mapped to the mouse genome (NCBI m37/mm9) with Applied Biosystems BioScope v1.3 to create Wig and BigWig files for visualization on the UCSC Genome Browser. In the RNAseq experiments, we did not observe obvious differences in the total amount of RNA at different time points. This is due to the great abundance of ribosomal RNAs in the samples (and this is still the case after ribosomal RNA depletion as assessed by the large number of ribosomal RNA reads in the samples). For these reasons, we used the conventional method of normalization to RPKM which does not appear to introduce bias among the time samples. For analysis with HOMER (69), sequence reads were mapped to the mouse genome (NCBI m37/mm9) with Bowtie (71) and Tophat (72) to create bam/sam/bed input files for HOMER because Bioscope derived bam/sam/bed files contained non-uniquely mapped low complexity sequence reads. To obtain reliable alignments, the reads with mapping quality less than 5 were removed by SAMtools (73). The UCSC canonical gene set (28,661 total; 21,789 with introns) was used for annotation of exons and introns. Among UCSC known canonical genes, we assumed that a gene was expressed if there were >5 reads in the gene body. To find expressed antisense transcripts, a threshold of >8 reads was used. **Quantitative PCR (qPCR).** qPCR was performed with iTaq[™] SYBR® Green Supermix with ROX (BioRad) using an Applied Biosystems PRISM 7900HT Sequence Detector. Primer sequences used for RNA quantification are described (*12*, *74*). Primers used for ChIP DNA quantification were: | Name | Forward | Reverse | |-----------------------|-------------------------|-------------------------| | Dbp -2.4kb (upstream) | TGCCTCCTCTTCCACCCCAGG | CAAAGAGGCTGAGAATGGCCAGG | | Dbp -0.4kb (promoter) | ACACCCGCATCCGATAGC | CCACTTCGGGCCAATGAG | | Dbp +0.8kb (intron 1) | ATGCTCACACGGTGCAGACA | CTGCTCAGGCACATTCCTCAT | | Dbp +2.4kb (intron 2) | TGGGACGCCTGGGTACAC | GGGAATGTGCAGCACTGGTT | | Dbp +4.4kb (exon 4) | AAGAACAATGAAGCAGCCAAGAG | GGCAGCCGCACAGATAT | | Per2 -4.5kb | CCACACGGTACTCAGCGGGC | GGGTCACTGCGAGCCTTGCC | | Per2E2 | GGTTCCGCCCCGCCAGTATGC | CCGTCACTTGGTGCGCTCGGC | | Per1E1 | AGCCAGCCTGCACGTGTTCC | CAGAGACAACCCCGCCCTGC | | Per1E5 | CAGCACCCAAGTCCACGTG | CCGGTTGGCTAAGGATCTCTT | Time Series Analysis for Circadian Cycling. RNA cycling was assessed by three programs, COSOPT (*35*) JTK cycle (*75*) and ARSER (*76*) with expression level cutoffs, >0.05 RPKM for intron, >0.5 RPKM for exon and >0.0625 RPKM for antisense. For COSOPT and JTK cycle analyses, data was detrended by linear regression. A cycling gene was considered if two out of three programs detected cycling with threshold of p<0.05. The period and phase from ARSER were used for further analysis. For ChIP-seq peak analysis, two cycles were concatenated and the cycling was analyzed with ARSER (p<0.05). **Gene Ontology analysis.** WebGestalt (77, 78) was used for KEGG pathway and gene ontology analyses. **Immunoblotting and Immunoprecipitation.** Immunoblotting was performed as described previously (*79*). Immunoprecipitation was performed as described previously (*12*). Briefly tissues were homogenized in EB (20 mM HEPES pH 7.5, 100 mM NaCl, 0.05% TritonX-100, 1 mM EDTA, 20 mM NaF, 1 mM Na₃OV₄, Complete Mini protease inhibitor cocktail, Roche) and centrifuged at maximum speed for 10 min at 4°C. The supernatants were transferred to fresh tubes and incubated with 1.5 µg of antibodies for 2 hr at 4°C. Ten microliters of 50% protein-A slurry (GE Healthcare Life Sciences) was added, and the incubation continued for an additional 1.5 hr. Supernatants were discarded after centrifugation at 3000 rpm at 4°C for 1 min, and protein-A beads were washed three times with 1 ml EB. Pellets were resuspended in 20 µl of 2 X SDS sample buffer and boiled for 3 min. Protein samples were separated by 10% or 6% SDS-PAGE and then transferred to a nitrocellulose membrane (Dupont NEN). ## Supplemental figure legends **Fig. S1.** Rhythmic DNA binding of core clock proteins, RNA polymerase and histone modifications measured by chromatin immunoprecipitation and qPCR (ChIP-qPCR). (**A**) Circadian DNA binding of BMAL1 (a), CLOCK (b), NPAS2 (c), PER1 (d), PER2 (e), CRY1 (f) and CRY2 (g). ChIP-qPCR values are shown relative to input DNA. Rhythmic DNA binding of core clock proteins is seen at E-boxes at the *Dbp* promoter (-0.4 kb), intron 1 (+0.8 kb), intron 2 (+2.4 kb), *Per2* promoter (E2) and *Per1* promoter (E1 and E5). (**B**) Temporal profiles of CBP (a), p300 (b) and RNA polymerase II (c and d). (**C**) Temporal profiles of H3K4me1 (a) H3K4me3 (b), H3K9ac (c), H3K36me3 (d), H3K79me2 (e) and H3K27ac (f) histone modifications in *Dbp*, *Per2* and *Per1* loci. **Fig. S2.** UCSC genome browser view of BMAL1 ChIP-seq for two complete circadian cycles in constant darkness at the *Per1* (**A**), *Dbp* (**B**) and *Nr1d1* (**C**) loci. **Fig. S3.** Illustration of ChIP-seq peak finding and master peak list construction. ChIP-seq peaks at the *Per1* (**A**), *Dbp* (**B**) and *Nr1d1* (**C**) loci. Peaks determined by MACS (*33*) are shown in orange and peaks subdivided by Peaksplitter (*34*) are shown in green. MACS peaks with fold enrichment less than 10 were filtered out. MACS peaks were then subdivided with Peaksplitter and small peaks (peak height <7) were removed. Master peaks indicated in red were chosen from the Peaksplitter peaks by combining all peaks from all 6 time points that had summit locations within 120 bp and then selecting the highest peak for the master peak list. The numbers to the left of the bars under the peaks are the tag counts (not fold enrichment) for MACS peaks (orange) or peak height for Peaksplitter peaks (green) and master peaks (red). **Fig. S4.** (**A**) Genomic annotation of the binding sites for BMAL1, CLOCK, NPAS2, PER1, PER2, CRY1, CRY2, CBP,
p300, RNAPII-8WG16, and RNAPII-Ser5P. The peaks were annotated to promoter-TSS (-1kb to +100bp from TSS), 5'UTR, exon, intron, 3'UTR, TTS (from TTS to +1kb) as indicated. (**B**) Overlap of BMAL1 peaks from Rey et al. (*28*) with this paper. **C**) Overlap of REV-ERBα/β peaks from Cho et al. (*30*) with circadian transcription factors and CBP from this paper. **Fig. S5.** Sequence motifs of the circadian transcriptional regulators, co-activators and RNAPII binding sites in Fig. 1, 3 and 4. De novo sequence motif analysis was carried out with +/- 60 bp DNA sequence from the master peak binding sites by HOMER (69). **Fig. S6.** (**A**) Binding coverage profiles for BMAL1 (blue), CLOCK (green), CRY1 (red), CRY2 (purple), PER1 (orange) and PER2 (brown) from -260 to +260 bp surrounding the 1444 common binding sites. (**B** and **C**) Chow-Ruskey diagrams showing circadian time dependent overlap of activator (**B**) and repressor (**C**) binding sites. MACS derived-peaks from each time point were used to determine if there is more than 1bp overlap in the peak areas. The master peak list for each factor was used to filter out false positive peaks from the MACS peak calls at each time point. **Fig. S7.** Sequence motifs of the 6-way common circadian transcriptional regulators sites or the indicated unique/combination binding sites in Fig. 1D. De novo sequence motif analysis was carried out with +/- 60 bp DNA sequence from the master peak binding sites by HOMER (69). **Fig. S8.** Comparison of temporal RNA expression profiles using qPCR, intron RNA-seq and exon RNA-seq analysis. The intron RNA (red) and exon RNA (green) expression levels are indicated on the left and right Y-axis, respectively. The highest RNA abundance measured by qPCR (blue) is normalized to highest abundance from exon reads. **Fig. S9.** UCSC genome browser views of CRY1 and RNAPII-Ser5P common binding sites at the *Nr1d1* (**A**), *Nfil3* (**B**), *Adck3* (**C**) and *Ppp1r3c* (**D**) loci. Tracks for BMAL1, CLOCK, NPAS2, PER1, PER2, CRY1, CRY2, RNAPII-8WG16, RNAPII-Ser5P, CBP and p300 ChIP-seq as well as RNA-seq data are shown as indicated. In addition, tracks for REV-ERBα (NR1D1) and REV-ERBβ (NR1D2) ChIP-seq at ZT8 are shown in red for comparison (*30*). The intron RNA cycling genes (~300 genes) that peak between CT20 and CT4 are similar to those seen in fig. S7B-D and account for majority of the RNAPII-Ser5P signal that peaks at CT0. **Fig. S10.** (**A**) Heat map view of 24 hr (left) and 12 hr (right) cycling DNA binding sites for CBP. Histograms of the phase of the rhythms in each class are shown below the heat map (mean circular phase is shown in red). (**B**) Heat map view of 24 hr (left) and 12 hr (right) cycling DNA binding sites for CRY1. Histograms of the phase of the rhythms in each class are shown below the heat map (mean circular phase is shown in red). (**C**) Overlap of RNAPII-Ser5P with CRY1 peaks. **Fig. S11.** Temporal variation in RNAPII occupancy and histone modifications. Gene model plots for RNAPII-8WG16, RNAPII-Ser5P, H3K4me1, H3K4me3, H3K9ac, H3K27ac, H3K36me3 and H3K79me2 occupancy. The average signal from ChIP-seq from 12,680 expressed genes (top), 8945 unexpressed genes (middle) and 1371 intron cycling genes (bottom) are shown as indicated. The intron-less genes were filtered out from the analysis. Signal from all genes were normalized to a standard 40 kb gene body length for display in addition to the signal from 10 kb upstream of the TSS to 10 kb downstream of the transcription termination site (TTS) are shown in the gene model. Colors indicate the circadian time (CT) of the sample. **Fig. S12.** Overlap of chromatin marks with RNAPII as a function of the circadian cycle and circadian rhythms in histone modifications at promoter and enhancer sites. (**A**) Chow-Ruskey diagrams showing the overlap of RNAPII binding and histone modifications at six circadian times. The gene body +/- 1 kb was used to determine if the gene was positive for RNAPII-8WG16 occupancy, and/or H3K4me4, H3K9ac or H3K27ac modifications. (**B** and **C**) ChIP-seq binding profiles at promoter and intergenic sites. Average signal from -2 kb to +2 kb of BMAL1 (**B**) or CBP binding sites (**C**) in promoter or intergenic sites are plotted as indicated. Fig. S13. UCSC genome browser views of BMAL1, CLOCK, NPAS2, PER1, PER2, CRY1, CRY2, RNAPII-8WG16, RNAPII-Ser5P, CBP, p300, H3K4me1, H3K4me3, H3K9ac, H3K27ac, H3K36me3 and H3K79me2 ChIP-seq as well as RNA-seq data are shown as indicated at: (A) Nr1d1 (Rev-erbα); (B) Nr1d2 (Rev-erbβ); (C) Dbp; (D) Nfil3 (E4BP4); (E) Per1; (F) Per2; (G) Per3; (H) Cry1; (I) Cry2; (J) Gm129; (K) Hlf; (L) Tef; (M) Bhlhe40 (Dec1); (N) Bhlhe41 (Dec2). ## Supplemental Tables. **Table S1.** Sequence statistics for ChIP-seq and RNA-seq experiments showing the number of runs, the reads per sample and the results of normalization by down sampling. The run listed at the top of each category is the experiment illustrated in this paper. Replicate experiments are shown below. **Table S2.** Master peak lists for ChIP-seq experiments for BMAL1, CLOCK, NPAS2, PER1, PER2, CRY1, CRY2, CBP, p300, RNAPII-8WG16, and RNAPII-Ser5P ranked by the average tag count across all 6 times points. **Table S3.** Gene ontology analysis for BMAL1, CLOCK, NPAS2, PER1, PER2, CRY1, CRY2, CBP, p300 and RNAPII-8WG16 ChIP-seq experiments. **Table S4.** KEGG pathway analysis for BMAL1, CLOCK, NPAS2, PER1, PER2, CRY1, CRY2, CBP, p300 and RNAPII-8WG16 ChIP-seq experiments. **Table S5.** List of the genes with cycling antisense RNA transcripts. **Table S6.** List of cycling intron RNA genes. **Table S7.** List of cycling exon RNA genes. **Table S8.** Gene ontology analysis of the intron or exon cycling genes. **Table S9.** KEGG pathway analysis of the intron or exon cycling genes. **Table S10.** The majority of genes bound by circadian transcriptional regulators (CTR), coactivators and RNAPII are expressed. **Table S11.** List of false positive peaks removed from the ChIP-seq peaks. Fig. S1 Fig. S2 Fig. S3 Fig. S4 RevErbβ(22097) RevErbβ(22097) RevErbβ(22097) | Fig. S5 | | | | | | | | |--|-------------------|-------------------|-------------------------|---------------------------|-----------------|-----------------|-------------------------| | BMAL1 | P-value | % of
Targets | Best Match/Details | PER2 | P-value | % of
Targets | Best Match/Details | | <u>Ş</u> ₽₽₽ CACGTG | 1e-1929 | _ | Mycn | ESCAPOTGAP | 1e-704 | 36.99% | Mycn | | etescavolo
etieigeaae | 1e-265 | 9.49% | bZIP_cEBP-like_subclass | ettecaraas | 1e-563 | 21.05% | bZIP_cEBP-like_subclass | | ETGACCTITE | 1e-172 | 20.82% | Erra(NR) | IATTGACSIA | 1e-325 | 26.98% | Foxa2 | | GRTCAA | 1e-153 | 28.29% | HNF6 | CAAAGGICA | 1e-276 | 20.17% | Erra(NR) | | <u>ÇATGIŞSIŞ</u> | 1e-134 | 7.39% | INO2 | AAATCGAT | 1e-192 | 5.63% | HNF6 | | TGTTTGSTSA | 1e-120 | 14.43% | fkh | ITGGCASS | 1e-188 | 31.62% | NF1-halfsite | | TGCCAS | 1e-87 | 28.44% | NF1-halfsite(CTF) | TAAECI | 1e-166 | 50.69% | Gsc | | AGTCAC | 1e-76 | 14.40% | ARG81 | <u> </u> | 1e-150 | 11.49% | GC-box | | SCTCCCCC | 1e-58 | 8.79% | GC-box | TGGACT | 1e-61 | 11.80% | Hnf4a_2 | | GTTAATÇATT | 1e-46 | 1.44% | HNF1A | AGAGCGTG | 1e-36 | 4.53% | Arnt::Ahr | | ACCTITGACC | 1e-43 | 3.63% | RXR(NR/DR1) | CIGGGTCA | 1e-24 | 4.26% | Nr2f2_2 | | TCAATA | 1e-35 | 9.86% | Zfp105_2 | GASTTGIAGT | 1e-14 | 0.57% | GFY | | GACTTTGGAC | 1e-35 | 1.53% | HNF4a | | | % of | | | IGCACGTTIT | 1e-16 | 0.39% | Mafk_2 | CRY1 | P-value | Targets | Best Match/Details | | CACGC&C&TG | 1e-13 | 0.69% | Arnt::Ahr | GICACGTG | 1e-1159 | 27.86% | USF1(HLH) | | | | | | TTASSAAJA | 1e-943 | 19.97% | CEBPA | | CLOCK | P-value | % of
Targets | Best Match/Details | <u>CAAAGTICA</u> | 1e-903 | 23.09% | Erra(NR) | | | 1e-1024 | _ | MAX | FRICA AFA | 1e-606 | 21.48% | Foxa2(Forkhead) | | ASCACGTG
STIAIGFAAS | 1e-1024
1e-440 | 14.52% | bZIP_cEBP-like_subclass | ITGGCA | 1e-322 | 44.77% | NFIC | | ATTERSTANT STORY | 1e-212 | 21.18% | Erra(NR) | GTIAAIŞATI | 1e-206 | 3.75% | HNF1A | | ISAGTAAACA | 1e-137 | 13.18% | Foxa2(Forkhead) | GGGCGGGG | 1e-185 | 10.86% | GC-box | | GGTCAC | 1e-79 | 22.41% | Nuclear_Receptor_class | GATCAS | 1e-153 | 34.90% | ECM23 | | CTGSCASS | 1e-71 | 20.71% | NF1-halfsite(CTF) | GISATTGACC | 1e-135 | 8.45% | FXR(NR/IR1) | | ZATÇGATT | 1e-59 | 5.18% | HNF6(Homeobox) | AAATOOAT | 1e-130 | 1.85% | Hnf4a_2 | | <mark>₹</mark> \$£CC £ CÇÇ <u>£</u> | 1e-54 | 11.26% | GC-box | AAATCGAT
TTACGC | 1e-104
1e-65 | 1.34%
10.06% | HNF6(Homeobox)
RDR1 | | AATRATTAAC | 1e-54 | 4.18% | HNF1A | TTATCI | 1e-03 | 6.09% | GATA3(Zf) | | SECATTGASS | 1e-49 | 8.24% | FXR(NR/IR1) | AAATAIT <mark>eg</mark> t | 1e-43 | 0.32% | Homeobox_class | | CAGCTGAC | 1e-19
1e-17 | 12.68%
0.43% | SCL
fkh | GGGASAIGTS | 1e-42 | 1.28% | GFY(?) | | GTGTTTGTQC | 16-17 | 0.43% | IKII | CGCICTCT | 1e-20 | 1.46% | Trl | | NPAS2 | P-value | % of | Best Match/Details | | | 0/ - 5 | | | | 1e-447 | Targets 46.63% | TYE7 | CRY2 | P-value | % of
Targets | Best Match/Details | | <u>ISCACGTGAS</u>
TTACAIAA | 1e-272 | | NFIL3 | TATTAGA AA | | 21.61% | CEBPA | | CAAAGGICAS | 1e-115 | 29.39% | Erra(NR) | CAAAGUCAA | 1e-569 | 27.96% | Erra(NR) | | AGTAAAÇA | 1e-72 | 18.93% | FKH2 | SECURE SECURE | 1e-421 | 23.43% | Mycn | | ITGGCA | 1e-49 | 44.52% | NFIC | GGTCAATA | 1e-381 | 32.01% | HCM1 | | SETEAC | 1e-48 | 39.43% | hth | ITGGC | 1e-285 | 47.36% | NFIC | | AATSATTAAC | 1e-36 | 4.07% | HNF1A | ICANTA | 1e-160 | 12.39% | HNF6(Homeobox) | | GCAATC | 1e-22 | 23.04% | Ddit3::Cebpa | ŞŞŞQQQQQ Ş | 1e-154 | 14.64% | GC-box | | CATGCCCTGG | 1e-19 | 5.21% | p53 | AATŞATTA | 1e-49 | 2.30% | HAT5 | | ACAAACACTG | 1e-14 | 3.01% | Forkhead_class | C&GATT&G
GGACAA | 1e-47 | 5.52% |
NFY(CCAAT) | | ATCGATIA | 1e-13 | 2.37% | HNF6(Homeobox) | AGATAA | 1e-39 | 28.25% | Nuclear_Receptor_class | | DED4 | P-value | % of | Best Match/Details | TTTCAC | 1e-36 | 10.07% | GATA3(Zf) | | PER1 | 1e-562 | Targets
50.20% | Arnt | CTAGAGGGCG | 1e-31
1e-22 | 7.94%
1.54% | STE12
btd | | SECAPOTGES
SETTESSEAA | 1e-302
1e-373 | 23.68% | bZIP_cEBP-like_subclass | GGGASTTGTA | 1e-22 | 0.45% | GFY(?) | | CASACGICAS | 1e-205 | 31.31% | Erra(NR) | TGCAATCT | 1e-20 | 0.86% | Ddit3::Cebpa | | ISTOTEONS | 1e-191 | 18.81% | FOXA1 | GAACCCGGG | 1e-18 | 0.23% | PUT3 | | AATCAATA | 1e-182 | 9.03% | HNF6 | TTCCGT | 1e-16 | 6.48% | HAL9 | | TGCCAA | 1e-133 | 42.47% | NFIC | | - | - | | | GTEAC# | 1e-118 | 47.26% | vis | | | | | | GEECCECCE | 1e-74 | 11.69% | Sp1 | | | | | | STSATC | 1e-35 | 28.86% | GLN3 | | | | | | GTTAATAA | 1e-23 | 3.22% | Antp | | | | | | CGSAATGT | 1e-18 | 2.06% | TEC1 | | | | | | GAGCAAAG | 1e-13 | 2.00% | MAC1 | | | | | | | | | | | | | | | | | 0/ 6 | | |--------------------------|----------------|-----------------|------------------------------| | CBP | P-value | % of
Targets | Best Match/Details | | <u>ÇAAAGTTÇA</u> \$ | 1e-663 | 27.58% | Erra(NR) | | ESTISC | 1e-583 | 20.40% | bZIP_cEBP-like_subclass | | TGACGI | 1e-563 | 39.93% | bZIP_CREB/Gbox-like_subclass | | ISAGTAAACA | 1e-270 | 15.70% | FOXA1(forkhead) | | ISATTGGSI | 1e-229 | 17.92% | NFY (CCAAT) | | FGGCCCGCCC | 1e-154 | 16.36% | GC-box | | CTCTCTCTCG | 1e-127 | 7.30% | Trl | | CCGGAAGTS | 1e-99 | 6.12% | GABPA | | IGCCAASIS | 1e-90 | 26.16% | NFIC | | GTTAATIATT | 1e-78 | 2.07% | HNF1B | | GAATSGTAGT | 1e-50 | 1.33% | GFY(?) | | CGIGACGACG | 1e-47 | 0.56% | Pax2 | | FGACGCG | 1e-40 | 3.23% | MBP1 | | GAAGTCCG | 1e-19 | 0.77% | SUT2 | | CAGTTIAAAT | 1e-13 | 0.18% | ct | | ACASTGTGTC | 1e-12 | 0.24% | CUP9 | | AOATIGICIO | | | | | -200 | Divalua | % of | Dook Matab / Dataila | | p300 | P-value | Targets | Best Match/Details | | §T@@\CTITG | 1e-189 | 51.53% | Erra(NR) | | \$TIAIG | 1e-151 | 30.19% | bZIP_cEBP-like_subclass | | TRTTIAGES A | 1e-62 | 18.94% | fkh | | TIEACC | 1e-41 | 40.53% | Hnf4a_1 | | <u>IGATTGGGI</u> | 1e-38 | 12.32% | CCAAT-box | | FGGGIGGEFC | 1e-31 | 20.93% | Klf4 | | GAACAGAG | 1e-18 | 13.90% | AR-halfsite(NR) | | TGECAR | 1e-15 | 53.93% | NF1-halfsite(CTF) | | AASCATIASC | 1e-14 | 1.82% | Mybl1_1 | | | | 0/ 6 | | | 8WG16 | P-value | % of
Targets | Best Match/Details | | TCACTTCCG | 1e-89 | 12.84% | GABPA | | TEACTICOGE | 1e-59 | 4.05% | YY1 | | CCGCCATITT | 1e-34 | 29.06% | CHA4 | | <u>GGGCGGA⊊</u> | 1e-32 | 4.66% | ELK1 | | AITLICCGGC | 1e-30 | 4.43% | NRF1(NRF) | | CGS&SCET | 1e-29 | 28.98% | HAP1 | | TAACCG | 1e-29 | 45.21% | | | ADSESS
STATESSAS | 1e-29 | 1.03% | ovo
GFX | | | 1e-20 | 11.71% | STB5 | | TAAACCCG | 1e-21 | | | | CCCASAATAC
ACCGTTACCT | 1e-20 | 2.34%
8.40% | ZNF143 STAF(Zf) DCE_S_III | | AGCSTIAGGI
TTGTCGGA | 1e-16
1e-17 | | IRC900814 1 | | TTGTCGGA | 1e-17
1e-17 | 12.39% | - | | CGGGGAAAAA | 1e-17
1e-15 | 15.40%
5.21% | EDS1
HAP4 | | IGATTGGC
GTTAATGATT | 1e-15 | 0.61% | HNF1A | | GTTAATGATT
AAAAGGCTCG | 1e-13 | 1.90% | Nkx2-5 | | AA&AGGCTCG
TTCCACTA | 1e-13 | | CEBP(bZIP) | | TIGFACIA | 16-12 | 3.63% | OLDF(DZIF) | Fig. S6 | Fig. S7 | | | | | | | | | | |--|--------------|----------------|------------------|---------------------------------------|--------------------|------------------------|-----------------|-------------------|---------------------| | common bindin | ng sites | P-
value | % of
Targets | Best Match | CRY1 | | P-
value | % of
Targets | Best Match | | CACGTO | AC | 1e-419 | 66.07% | USF1(HLH) | <u>ÇAA</u> | AGGTÇA Ş | 1e-379 | 28.56% | Erra(NR) | | TTASA | | 1e-126 | 23.96% | CEBPA | TŢĢ | SEAATE | 1e-262 | 20.65% | CEBPA | | ETGACO | | 1e-80 | 25.21% | Erra(NR) | | GTG SEE | 1e-196 | 16.76% | Mycn | | GT&AÇ | <u></u> | 1e-60 | 63.71% | Rfx4 | | TACC | 1e-190 | 22.13% | Forkhead_class | | <u>AATÇAA</u> | | 1e-55 | 9.07% | HNF6(Homeobox) | G T\$ | | 1e-103 | 54.75% | Rfx4_2 | | ITGGC4 | | 1e-46 | 46.12% | NF1-halfsite(CTF) | IGC | | 1e-99 | 42.94% | NFIC | | TGTTT | | 1e-42 | 40.24% | Forkhead_class | | GATTIE | 1e-82 | 4.03% | HNF6(Homeobox) | | AGGGCA | | 1e-26 | 4.36% | RXR(NR/DR1) | | CGCCFE | 1e-59 | 10.63% | GC-box | | TGÇAA]
GG <u>&</u> AT 9 | | 1e-17
1e-15 | 24.24%
2.70% | Ddit3::Cebpa TEAD1 | | TCCG | 1e-34 | 3.78% | ELF1(ETS) | | SICC&C | | 1e-15 | 13.02% | GC-box | | CAGTGAC | 1e-25 | 5.05% | FXR(NR/IR1) | | ₹CŲVĄ U | ντ | .0 .0 | 10.0270 | | | GAGCG | 1e-14 | 3.80% | Trl | | | | P- | % of | Best Match | | AASTGTA | 1e-13 | 0.67% | GFY(?) | | BMAL1 | | value | Targets | Bost Water | | AATATTT | 1e-12 | 0.32% | Arid5a 1 | | CACGT | | 1e-251 | 46.39% | Mycn | 문주문 | łyżyżs | | 0.0270 | 741404 | | ĕ ≜TT≜(
CTG⊊S | | 1e-19
1e-17 | 6.68%
20.32% | bZIP_cEBP-like_subclass Hand1::Tcfe2a | CRY2 | | P- | % of | Doot Match | | ZAATC | | 1e-17 | 7.09% | onecut | ξ <mark>ά</mark> Τ | T <mark>ESE</mark> SAA | value
1e-150 | Targets
18.08% | Best Match
CEBPA | | enn 🛂 | NO. | P- | % of | | | &CTTTG | 1e-137 | 32.39% | Erra(NR) | | PER2 | | value | Targets | Best Match | | TGAC | 1e-63 | 30.47% | NFY(CCAAT) | | SATS | Λ T T | 1e-43 | 10.45% | HNF6(Homeobox) | | CGGAGCI | 1e-39 | 10.33% | GC-box | | TTASS | | 1e-40 | 19.12% | bZIP_cEBP-like_subclass | I GT? | TACCTA | 1e-34 | 6.34% | FOXA1(Forkhead) | | | | | | | | GAAGIG | 1e-27 | 6.85% | ELK4 | | AAAGG | | 1e-29 | 26.27% | Nur77(NR) | TAAT | CATT | 1e-26 | 7.46% | ATHB-5 | | Ţ <mark>ġĄĠ</mark> Ţ | | 1e-26 | 10.32% | FOXA1(Forkhead) | | TGGCA | 1e-21 | 10.38% | RIM101 | | CACGT | GCCAG | 1e-19 | 22.70% | ref-1 | CCAC | CTAGSGG | 1e-17 | 1.17% | CTCF | | TAGGG | CAAAG | 1e-14 | 4.13% | HNF4A | IGG 1 | FAGAGCG | 1e-15 | 0.47% | SNT2 | | GIACT | ŢŢĢ | 1e-13 | 6.19% | HNF4a(NR/DR1) | | ACGTCA | 1e-13 | 4.32% | CRE(bZIP) | | ACTGA | SCCAG | 1e-13 | 26.82% | Nr2f2_2 | CAAA | ACACGGT | 1e-13 | 1.31% | fkh | | <u> GGGCG</u> | GGGCÇ | 1e-12 | 9.77% | Sp1(Zf) | | | Б | 0/ - 5 | | | | | | | | CRY1/CRY | Y2 | P-
value | % of
Targets | Best Match | | | | P- | % of | Deed Medels | TIA | PETAAT | 1e-171 | 22.05% | CEBPA | | PER1/PER2/CI | | 2 value | Targets | Best Match | ¿T G | EXCITIO | 1e-161 | 41.92% | Erra(NR) | | §TT <u>£</u> Ç | | 1e-86 | 27.12% | bZIP_cEBP-like_subclass | AGT | AZAAS | 1e-96 | 24.71% | FOXA1(Forkhead) | | 2 AATC
2 EGCA | | 1e-49 | 29.28% | Foxa2 | | | 1e-47 | 6.80% | HNF6(Homeobox) | | GACAC | | 1e-44
1e-31 | 59.70%
15.84% | hlh-26
Erra(NR) | | | | | , | | ŞCA <u>&</u> A <u>©</u>
C <u>©</u> TGCO | | 1e-25 | 24.59% | NF1-halfsite(CTF) | GT S | | 1e-46 | 50.19% | exd | | GCECCE
GCECCE | | 1e-23 | 13.81% | GC-box | ITG | GC <u>A</u> | 1e-44 | 51.88% | NFIC | | GCAAA | | 1e-21 | 27.50% | FKH2 | ŢŢA | ATSATTA | 1e-33 | 6.86% | Hnf1(Homeobox) | | AGGGCA | | 1e-16 | 3.68% | HNF4A | A GC | TCC GCCC | 1e-23 | 7.19% | GC-box | | AGAAAT | | 1e-16 | 2.41% | SPT23 | | TGGGC | 1e-14 | 15.02% | EBF1(EBF) | | CCAATO | | 1e-13 | 3.42% | NFYA | | | | | | | TCACAI | | 1e-12 | 8.75% | INO4 | | CCGGGTC | 1e-13 | 1.58% | YBR239C | | | | | | | ACA | TGGCCTG | 1e-13 | 2.78% | SKN7 | Fig. S8 | | Scale | | | | | 20 kb | | | | | mm9 | | | |----------------------------|--------------------|-----------------------------------|---------------------|--------------------|----------------------------|---------------------------|--|---------------------------------------|--|--
---|---------------------------------|--| | BMAL1_CT0 | chr1: | 182095000 | 18 | 82100000 | 182105000 | | 182110000 | 182115000 | 182120000 | 182125000 | 182130000 | 182135000 | 182140000 | | BMAL1_CT4 | | | | | | | | | | | | | and the second s | | BMAL1_CT8
BMAL1_CT12 | - | | | | | | | | | فاستفريت سيتاري | المتعاد والمسا | | | | BMAL1_CT16 | | | | | | | | | | | | | | | BMAL1_CT20
Bmal1_KO | | | | | | | | | | | | | | | CLOCK_CT0 | | | | | | | | | | | | 7.7 | The second second | | CLOCK_CT4
CLOCK_CT8 | | - | | | 44.1 | 4414 | | وأبد أأبعا | | La | 4 1 | 10 I II | 1 14 1 41 | | CLOCK_CT12 | | | ىد.
دەرىخارد | | | ر آل سماد
دهاد | دادات المادية.
الأناف | سو د
دره درد | ماهم ما
دا شده | المطالب المسايد المساي
المسايد المسايد المساي | | | المنظ المطاعد والأساسا | | CLOCK_CT16
CLOCK_CT20 | | | بقدام | LEU I | | | را بيد بيد | | | ساهيمان بالاسم | Lilia Alam Is | العشاعلات | المراجع المسترات | | Clock_KO | | <u> </u> | | | a sacratic | - A A . | * | | | هنفه بدياتها | بدائدة بدعاهما | 4 4 4 4 | an ann an Mhail An a | | NPAS2_CT0
NPAS2_CT4 | | | 000 | | . + | - 444 4 - | -4 | A | | فتقتصت بأثث | ند بده | ÷ | a di manian i ua | | NPAS2_CT8 | - | | | | | | and a second | | | والقهد المحادث التعداد
الأنظامات الداد والا قالد | امام الساب بالمؤسطة.
مراجع أن المعادلات | | raki i ili kali ili ili ili ili ili ili ili ili ili | | NPAS2_CT12
NPAS2_CT16 | | 2 2 | | <u></u> | 22.2 | A Amin | | | | <u> </u> | a a a | u - u - u - u - u - u - u - u - | | | NPAS2_CT20 | | | | | | <u></u> | | | | طمعقد عدد ساهادد
ساده دما | | | المائد المائد | | PER1_CT0
PER1_CT4 | | • | | | ** | | × | | | | | | | | PER1_CT8 | | | | | + | | | | | استهاد مراسبات
ساخت | | | and the second second | | PER1_CT12
PER1_CT16 | - | - | - | - | | | A | | | والأمامان بالمام | | | La Alba Alla | | PER1_CT20 | ľ | | | | | | | | | ها با مديد د.
د ماها مدا | an an
Lakaran | | ال المساهدة
المساهدة المساول الما | | Per1/2_KO
PER2_CT0 | | | - | - | 2.2 | All as | | - | 2 2 | هاهم بيا الالتان | 40 40 | | المراجعة المالية | | PER2_CT4 | | | - | | | | | | | | rakan menengan dan kecamatan dan kemelah berakan dan kemelah berakan dan kemelah berakan dan berakan berakan d
Berakan berakan beraka | -4 . | e a sa desta de la composición de la c
La composición de la | | PER2_CT8
PER2_CT12 | | | - | - | | | 4 - 2 - 2 - 22 | | - | فيستراث المارا | | | | | PER2_CT16 | | | <u>.</u> | <u> </u> | and and | المستعدد | and the second | | | Autoria de la Maria.
Maraĝis de la la la Maria de la Maria de la | kaku u
Mara u aku | | · | | PER2_CT20
Per2_KO | | | - | 44.4 | 4.4 | 8 May 1 1 | A | 2 2 | A sis a district | اهالا المعالم المعالم
المعالم المعالم المعال | المتعادات الماسية | | عد علاق مقاددات
د قدمها | | CRY1_CT0 | | | | | | - 64
 | | | | | La | | | | CRY1_CT4
CRY1_CT8 | | | | - | | | | | - - | | <u> </u> | | and the second second | | CRY1_CT12
CRY1_CT16 | | | | | | | | | | | Maria III III | | | | CRY1_CT20 | - | | | | | | - | | - | | | - | | | Cry1_KO
CRY2_CT0 | Ī | | | | | | | | | | <u> </u> | | | | CRY2_CT4 | | * | 44 4 4 | 1. | | a de la | | a saa a a a | | الأحداثات المسال | ida karana a
. A | A - AB | and a second sec | | CRY2_CT8
CRY2_CT12 | | | | | | Add to | | | | | A L | The second | المستشيعة الماسا | | CRY2_CT16 | | | . • | | and a second second | المستقدات | A 2 | and an order | | المسلم عداد المدادة | Maria de la companya | | The second of the second | | CRY2_CT20
Cry1/2_KO | | | | | | 07400 | 24 2 | | Till # Il | ala alama | TAC III I | | ande de | | 8WG16_CT0 | | | - | - | | a a a | * | | | الأعطاع بالمداد | Made and a second | | 2 A A A | | 8WG16_CT4
8WG16_CT8 | Į. | | 1227 | | | | | | | | | | | | 8WG16_CT12 | | | | | | | | | | محمد د ددد د | | | | | 8WG16_CT16
8WG16_CT20 | | | | | | | | | | | | | | | Ser5P_CT0 | | | | | | | | | | | | | | | Ser5P_CT4
Ser5P_CT8 | | | | | | | | | | | | 4 - 4 | | | Ser5P_CT12 | | | | | - | | | | | دومه سد ده .
همساد د دیدیدد | | - | | | Ser5P_CT16
Ser5P_CT20 | | | | | | | | | | فيعطب للسلم للماسطان الأ | | - | | | CBP_CT0 | | | | | | د بدیدهد د
مدد د نظام | | | | | الرائد و الرائد المطالحة.
الرائد المدالة والرائد المطالحة | | and a second of the | | CBP_CT4
CBP_CT8 | - | | | AA - 111 - 1 | | | -4 | | سا تملكت دانيم | والمعاطفية للتناه فالأرابية | لتستعلنا عادمها هما | م السلام | المستعم فتتعد والألام | | CBP_CT12 | | | | | | A ALL LA | | | | | | | | | CBP_CT16
CBP_CT20 | | | | | | المستخدان | | | | ويطيعها فالأعدينا | <u> </u> | | المراسات بطيعهم الأدارات | | p300_CT0
p300_CT4 | | | | | | 4 4 1 | | | | | | | | | p300_CT8 | | • | - | • | • | - 4 | | • | * | 17 11 17 17 17 17 17 17 17 17 17 17 17 1 | | | and the second | | p300_CT12
p300_CT16 | | · · · · | | | | - | - | | - | | - | - | | | p300_CT20 | | | | | | 44 A - 1 | | The second second | | ر مطبط سائم یعانی
مانسطان دارد | Andre | | | | RevErbA_ZT8
RevErbB_ZT8 | - | | | | | | | | | | <u>*</u> | | 4 : | | CT0_RNA_pos | | ي دينيم الحد | | | | | | | | | | - | | | CT0_RNA_neg
CT4_RNA_pos | ative | a contract of | distribution of the | ירוו וודווו | | Lean and | | | | | | • | The second second second | | CT4_RNA_neg | ative | به دهاف سیات | Shelled in | HILLIEF . | .11 . | i magazi | | A | | | • | | - | | CT8_RNA_pos
CT8_RNA_neg | | يدر سطامت المصابدة | inger en | ning mana | re in the | y | Application | | | A common p | | | · · | | CT12_RNA_pc | sitive | أجعاؤها سناف | | | | | (10 | n | | | | | | | CT12_RNA_ne
CT16_RNA_po | sitive | | | HILL 797 | L II. | | ' 10 | T C | 1 | | | | | | CT16_RNA_ne | gative | ر موهد المنهوس
- ماديد المنهوس | | THE HEALT | aller dands | · | 4.14 | M | an interest facilities and and | Environmental and | | r | 1 . | | CT20_RNA_pc
CT20_RNA_ne | sitive
gative | يوابر بيبي بيايا | 100 | יייי
ווכח מונוי | in francis a take a sheet | A solitore statistic flas | | and a second advance of | Fare with Ambanham Mar. | أدحافته تانه بطلاسه | • | | | | CT24_RNA_pc | sitive | | A | | a I
rapperent recommend | | e elle
Personal de la companya de la compa | - management opposition of the second | Mars - Mr. s. odninosta Maridianas a . | | | | | | CT24_RNA_ne
CT28_RNA_po | -141 | والمستعلمة المستعلمة المستعلم | PP b | HHIIII., | 1 1 | | 1 | | The second second second | is the state of | | | In. | | CT28_RNA_ne | gative | 1 | 11/4 | THE HALL | . L, L. | . 1 | | | | | | | · · · · · · · · · · · · · · · · · · · | | CT32_RNA_pc
CT32_RNA_ne | gative | يسده فهم حطويين | | HITTO | p 5- p | | | · 100 | | | • | | | | CT36_RNA_pc | sitive | ياداحيو المستواد | | TODAY WAS | Programme and | A 1011 1 100 1 | The second second | inger and more than | Commission and Commission | | | | and the second | | CT36_RNA_ne
CT40_RNA_pc | sitive | والمرافعة والمعارة | | IIIIII M. | 1 1 | , . | े च | I, | •• | • | • | | | | CT40_RNA_ne
CT44_RNA_po | gative | | A to the second | THE THE | .1 | Beden eine die | T# | | काराकृताराहरकाच्या | 10 m 212 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 | | | dia a di a di a di ang | | CT44_RNA_ne | gative | يم ويهجو بدانه إياده. | | THE DESIGNATION OF | -[| -1917 | | 1 1 1 | me - e e me felilite à e de | | • • • • • • • | 211 | | | Cdo | 42bpa -
42bpa - | " | _ | | - ' | | | | | ······································ | | | | | 300 | | Adck3 | ** | | | · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | | ************ | | | | | | Mammal Cons | | | السيا | | | مان السا | | <u>. I</u> | الماليل | <u> </u> | المراجع الماليات المالية | <u>aan laanat a</u> | المراجع | | | - | | | | | | | | | | | | | Fig. S10 Fig. S12 | D | | | | | | | | | | |---|-------------|----------|-------------------|--|--|---
--|-----------------------|----------| | Scale
chr13 | 5305000d | 53055000 | 53080000 | 10 kb | 5307000d | mm9
53075000 | 53080000 | 53085000 | 53090000 | | BMAL1_CT0
BMAL1_CT4
BMAL1_CT8 | | | | | | | | = = = = = | | | BMAL1_CT12
BMAL1_CT16
BMAL1_CT20 | | | | | <u> </u> | | | | | | Bmal1_KO
CLOCK_CT0
CLOCK_CT4 | | | | | | | | | | | CLOCK_CT8
CLOCK_CT12
CLOCK_CT16 | | | | | B B# BE | | | | | | CLOCK_CT20
Clock_KO
NPAS2_CT0 | | | | | | | | | | | NPAS2_CT4
NPAS2_CT8
NPAS2_CT12 | | | | | | | | | | | NPAS2_CT16
NPAS2_CT20
PER1_CT0 | | | | | | | | | | | PER1_CT4 PER1_CT8 PER1_CT12 | | | | | | | | | | | PER1_CT16
PER1_CT20 | | | | | | | | | | | Per1/2_KO
PER2_CT0
PER2_CT4
PER2_CT8 | | - | | | د مداد
استان دانگشاد دادد.
مادد دانگاد کستا | | | | | | PER2_CT12
PER2_CT16 | | | | | | a | | | | | PER2_CT20
Per2_KO
CRY1_CT0 | | | | | | | | _^ | | | CRY1_CT4
CRY1_CT8
CRY1_CT12 | = = | | | | | | | | | | CRY1_CT16
CRY1_CT20
Cry1_KO | | _ | | | | | | | <u>-</u> | | CRY2_CT0
CRY2_CT4
CRY2_CT8 | | | | | | | | | | | CRY2_CT12
CRY2_CT16
CRY2_CT20 | | - | | <u> </u> | | | | | | | Cry1/2_KO
8WG16_CT0
8WG16_CT4 | | | | | | | | <u> </u> | | | 8WG16_CT8
8WG16_CT12
8WG16_CT16 | | | | | | المنظم الما مد
المنطقة المادات
المنطقة للمنطقة | Russian in a | | | | 8WG16_CT20
Ser5P_CT0
Ser5P_CT4 | | | | | | | *** | | | | Ser5P_CT8
Ser5P_CT12
Ser5P_CT16 | | | | | | | | - | | | Ser5P_CT20
CBP_CT0
CBP_CT4 | | | | | | | | | | | CBP_CT8
CBP_CT12
CBP_CT16 | | | | | | New York of the American
New York of the American
New York of the American | | | | | CBP_CT20
p300_CT0
p300_CT4 | | - | 7 F 70 70 | | ALL LAND MAN | | | | | | p300_CT8
p300_CT12
p300_CT16
p300_CT20 | | - | | - | دیکه سفد د
ده ده داد | | | - | | | H3K4me1_CT0
H3K4me1_CT4
H3K4me1_CT8 | | | | | and the second s | | The second of th | | | | H3K4me1_CT12
H3K4me1_CT16
H3K4me1_CT20 | | | | | Asserble and All Asserble and A | | Anathrican a manager | | | | H3K4me3_CT0
H3K4me3_CT4
H3K4me3_CT8 | | | | | | Administra | | | | | H3K4me3_CT12
H3K4me3_CT16
H3K4me3_CT20 | | | | | | | | | | | H3K9ac_CT0
H3K9ac_CT4
H3K9ac_CT8 | | | | | | | | | | | H3K9ac_CT12
H3K9ac_CT16
H3K9ac_CT20 | | | | | | | | | | | H3K27ac_CT0
H3K27ac_CT4
H3K27ac_CT8 | | | | | | | | | | | H3K27ac_CT12
H3K27ac_CT16
H3K27ac_CT20 | | | | | | | | | | | H3K36me3_CT0
H3K36me3_CT4
H3K36me3_CT8 | | | | | | | | | | | H3K36me3_CT12
H3K36me3_CT16
H3K36me3_CT20 | | | | | | | | | | | H3K79me2_CT0
H3K79me2_CT4
H3K79me2_CT8 | | | | | na makika ali sa sama
Na makana maka | | ***** | | | | H3K79me2_CT12
H3K79me2_CT16
H3K79me2_CT20 | | | | The same of sa | Control of the second | | | | | | RevErbA_ZT8
RevErbB_ZT8
CT0_RNA_positive | | | | | | | | | | | CT0_RNA_negative
CT4_RNA_positive
CT4_RNA_negative | | | | and the second s | orania a sabayari
Orania | | | | | | CT8_RNA_positive
CT8_RNA_negative
CT12_RNA_positive | | | | प्रमाणकारण प्रमाणकार्थः । | | 1 17519 87 71 15 | | | | | CT12_RNA_negative
CT16_RNA_positive
CT16_RNA_negative | | | | स्वक्षित्रकारम् । १ - १ - १ - १
- अस्ति स्थान | e e e e produce de la composición de l
La composición de la | consideration of the section | | | | | CT20_RNA_positive
CT20_RNA_negative
CT24_RNA_positive | | - | The second second | The second secon | | - variance spanning g - | | | | | CT24_RNA_negative
CT28_RNA_positive
CT28_RNA_negative | | | | | | Tanana (in personal)
Tanàna (in personal) | | - | • | | CT32_RNA_positive
CT32_RNA_negative
CT36_RNA_positive | • | | | epanetri parppira | | Annual Company | <u>.</u> | | | | CT36_RNA_negative
CT40_RNA_positive
CT40_RNA_negative | | | | - Indiana | on the second | en e | | | | | CT44_RNA_positive
CT44_RNA_negative | | | | NRIS COMMITTEE OF THE PROPERTY | | रारक ⊤ वलक्रा सा | | | | | Mammal Cons | ستنف ستسليل | <u> </u> | | N613 | <u> </u> | | <mark>Tilledi da dika mata</mark> | Mark Annual State Co. | <u></u> | | So | Scale 70.02 mm9 | | |---|--|-----| | BMAL1_CT0
BMAL1_CT4
BMAL1_CT8 | and the second s | į. | | BMAL1_CT12
BMAL1_CT16 | The state of s | | | BMAL1_CT20
Bmal1_KO | | Ž. | | CLOCK_CT0
CLOCK_CT4 | | 7 | | CLOCK_CT8
CLOCK_CT12 | | | | CLOCK_CT16
CLOCK_CT20 | | | | Clock_KO
NPAS2_CT0
NPAS2_CT4 | a a a de la companya | * | | NPAS2_CT8
NPAS2_CT12 | | | | NPAS2_CT16
NPAS2_CT20 | | | | PER1_CT0
PER1_CT4
PER1_CT8 | | | | PER1_CT12
PER1_CT16 | ti da antigra de la composición del composición de la | | | PER1_CT20
Per1/2_KO | | | | PER2_CT0
PER2_CT4 | | | | PER2_CT8
PER2_CT12
PER2_CT16 | The second of th | - | | PER2_CT20
Per2_KO | and the second of o | | | CRY1_CT0
CRY1_CT4 | | - | | CRY1_CT8
CRY1_CT12 | | _ | | CRY1_CT16
CRY1_CT20
Cry1_KO | The second secon | - | | CRY2_CT0
CRY2_CT4 | | 2 | | CRY2_CT8
CRY2_CT12 | | - | | CRY2_CT16
CRY2_CT20
Cry1/2_KO | The second of th | | | 8WG16_CT0
8WG16_CT4 | | 2 | | 8WG16_CT8
8WG16_CT12 | The state of Advances are all as a second and a second and a second and a second a second and a second a second and a second seco | - | | 8WG16_CT16
8WG16_CT20 | to are arranged to compare and the compare are the Market to a factor of the compare to comp | | | Ser5P_CT0
Ser5P_CT4
Ser5P_CT8 | en la companya de la
La companya de la comp | ** | | Ser5P_CT12
Ser5P_CT16 | | | | Ser5P_CT20
CBP_CT0 | A NO | | | CBP_CT4
CBP_CT8 | A CONTROL OF THE CONT | Ž. | | CBP_CT12
CBP_CT16
CBP_CT20 | The state of the state of the first and the state of | 120 | |
p300_CT0
p300_CT4 | The second secon | - | | p300_CT8
p300_CT12 | | | | p300_CT16
p300_CT20
H3K4me1_CT0 | | | | H3K4me1_CT4
H3K4me1_CT8 | the state of s | _ | | H3K4me1_CT12
H3K4me1_CT16 | Now the first the street of th | - | | H3K4me1_CT20
H3K4me3_CT0
H3K4me3_CT4 | | | | H3K4me3_CT8
H3K4me3_CT12 | | - | | H3K4me3_CT16
H3K4me3_CT20 | | Ξ. | | H3K9ac_CT0
H3K9ac_CT4
H3K9ac_CT8 | The state of s | | | H3K9ac_CT12
H3K9ac_CT16 | The state of s | - | | H3K9ac_CT20
H3K27ac_CT0 | | Ē, | | H3K27ac_CT4
H3K27ac_CT8
H3K27ac_CT12 | A second district the seco | - | | H3K27ac_CT12
H3K27ac_CT16
H3K27ac_CT20 | | | | H3K36me3_CT0
H3K36me3_CT4 | | Ξ, | | H3K36me3_CT8
H3K36me3_CT12 | A TANDARD OF THE PROPERTY T | | | H3K36me3_CT16
H3K36me3_CT20
H3K79me2_CT0 | 10 - Link Anna Anna Anna Anna Anna Anna Anna An | | | H3K79me2_CT4
H3K79me2_CT8 | The state of s | - | | H3K79me2_CT12
H3K79me2_CT16 | 10 In the state of | | | H3K79me2_CT20
RevErbA_ZT8
RevErbB_ZT8 | and the same of th | - | | CT0_RNA_positiv
CT0_RNA_negati | the transfer of the collection | _ | | CT4_RNA_positiv
CT4_RNA_negati | Title of the state | | | CT8_RNA_positiv
CT8_RNA_negatir
CT12_RNA_positi | ative office the state of s | | | CT12_RNA_positi
CT12_RNA_nega
CT16_RNA_positi | andewed where the transfer of | | | CT16_RNA_nega
CT20_RNA_positi | opposed
Borney | | | CT20_RNA_nega | AND THE RESIDENCE OF THE PARTY | | | CT24_RNA_positi | stive or the right of the state | | | CT24_RNA_nega
CT28_RNA_positi | ative many control of the | | | CT24_RNA_nega
CT28_RNA_positi
CT28_RNA_nega
CT32_RNA_positi
CT32_RNA_nega | above Tay | | | CT24_RNA_nega
CT28_RNA_positi
CT28_RNA_nega
CT32_RNA_positi
CT32_RNA_nega
CT36_RNA_positi
CT36_RNA_nega | able of the state | | | CT24_RNA_nega
CT28_RNA_positi
CT28_RNA_nega
CT32_RNA_nega
CT32_RNA_nega
CT36_RNA_positi
CT36_RNA_nega
CT40_RNA_positi
CT40_RNA_nega | The property of o | | | CT24_RNA_nega
CT28_RNA_positi
CT28_RNA_nega
CT32_RNA_positi
CT32_RNA_nega
CT36_RNA_positi
CT36_RNA_nega
CT40_RNA_positi | Topice The first control of the con | | the same and s Mammal Cons by Martin | Sca
chr | | 108590000 | 108595000 | 108600000 | 20 kb | 108610000 | 108615000 | 108620000 | mm9
108625000 | 108630000 | 108635000 | 108640000 | 108645000 | |--|--------------------------|--|------------------------------------|---|--|--
--|--|---|--|----------------------------|---|---| | BMAL1_CT0
BMAL1_CT4
BMAL1_CT8 | | والمتعلق الما | | | | أفينين | turrig | | : | | يننينين. | | | | BMAL1_CT12
BMAL1_CT16 | | A A SA A A A A A A A A A A A A A A A A | | | | Linkley
Linkley | | | | | | And the second | ** * * | | BMAL1_CT20
Bmal1_KO | | | | | | | * | | | | | | | | CLOCK_CT0
CLOCK_CT4 | | | | | | The same | المال المعمالية | | | | | and the second | | | CLOCK_CT8
CLOCK_CT12 | | | | | | - 44-4 | A | | | | | | | | CLOCK_CT16
CLOCK_CT20 | | | | T 2272 | | | Actoria de la compansión compansió | | | | | ***** | | | Clock_KO
NPAS2_CT0
NPAS2_CT4 | | 1 1 2 2 | | | | | | | | | | - | | | NPAS2_CT8
NPAS2_CT12 | | ' | | | • • | # A | | | | | | | | | NPAS2_CT16
NPAS2_CT20 | | | | | | | | | | | | | | | PER1_CT0
PER1_CT4
PER1_CT8 | | 200 | • . | | | | المراجع المراج
المراجع المراجع المراج | | | | 4.0 | 111 1 | • | | PER1_CT12
PER1_CT16 | | 2.22 | J 7 | | | . 22. | | | 122 | | - | 1 1 2 | _ | | PER1_CT20
Per1/2_KO | 1 | | | | . I | And a second | t ilii : : | . 12 | | | | | | | PER2_CT0
PER2_CT4 | | 100 | 100 | 14. | 4. | Time | | : | · . | | | | | | PER2_CT8
PER2_CT12
PER2_CT16 | | | 2 | - | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | م تعدد د دهه | | | | | | • | | PER2_CT20
Per2_KO | | 2 | | | | All and a second | بعديات المتكاف | a in although a
Tagainn although | | | - A | | | | CRY1_CT0
CRY1_CT4 | - | | | - | | در مناهد
بالمحادث | | | | | | | | | CRY1_CT8
CRY1_CT12 | - | - 1 <u>- 1</u> 1 | | = = : | | | 4 | | | | | | - | | CRY1_CT16
CRY1_CT20
Cry1_KO | _ | | | | | | runit. | | | | | | | | CRY2_CT0
CRY2_CT4 | | | | | | III. | والمتال والمستعلقة | | | | 2 2 2 | | - | | CRY2_CT8
CRY2_CT12 | [] | | T 1 | | | The second of th | and Artistan A.
Albanda di Barini A. Ilai
Albanda di Barini di Ilai | o de la lación lación de la lación de lació | | . هماستو د | i i i | | | | CRY2_CT16
CRY2_CT20
Cry1/2_KO | w = = | ** | | د داداد
ده مدد | | | | 4.1.1 | 2 2 22 | 2.2 | | | | | 8WG16_CT0
8WG16_CT4 | - | * | | 5 5 2252 | | د مدمد د.
د دخت | and and the second of seco | | | | | | | | 8WG16_CT8
8WG16_CT12 | | | | | | | * | | | | ال تاليا | | | | 8WG16_CT16
8WG16_CT20 | | | | | | | | | | | | | | | Ser5P_CT0
Ser5P_CT4 | | | | | | | | | | | | | - | | Ser5P_CT8
Ser5P_CT12
Ser5P_CT16 | | | - | 8 | | | Bar and | | | | - | | | | Ser5P_CT20
CBP_CT0 | | | | | | المعيد | | | | | | | | | CBP_CT4
CBP_CT8 | 2 | and the second s | | | | andhere e | Abordania de la compania de la comp | raaminin mining
Lawa a waxii wa | | | | | T.J.D. | | CBP_CT12
CBP_CT16 | | Anna a a a | | | | - Marian - | | | | * | | | | | CBP_CT20
p300_CT0
p300_CT4 | | | | | | 4 | | | | | . <u> </u> | | | | p300_CT8
p300_CT12 | 1 | - T | | 12 11 | | ALC: U | | | | | 4 4 1 | 1 | - | | p300_CT16
p300_CT20 | ¹ | | | e Service | | 47. | 4 | | · | | | - 1 Tu | | | H3K4me1_CT0
H3K4me1_CT4
H3K4me1_CT8 | 11 27 7 | a au canada a a a a a a a a a a a a a a a a a | | الدالب التسايطية والمطار | | ، مصنفط
مندالا | معالفات في ماليسي بريميان بار.
الفراد كارسيان والمعالمين والم | i akealikaken a
Angun kangan | الا المنظم المنظمة
معلق المنظمة المنظمة | a and and an area of the con- | سرو مديد عيين أأيفالم ك | د ای وجب ایداد خباند استامه
د موسیست امادهای وجد مو | المراجعة المستحد | | H3K4me1_CT12
H3K4me1_CT16 | Miles and the first | | هولمتا بالعسفان | ىدىنى بەلگەرلىك
سارى بىر كىلىملىرى | الاستخطاريين السائد
وفي الاستخاصية المد | | المستقد على معادد سبب
الماسلسية مستورين | e idealle de
el inici
Collègae de est est est
Collègae de est est | عه الاستعاما | | بالتحيم وهمجية الم | | المالية لمالية.
المالية الموالية | | H3K4me1_CT20
H3K4me3_CT0 | alla | ang maka sali big aku di ai dina di ai di
Ang maka dilik di kamana maka di ai | | dita & Alexandra a | | distance - | and the second second | k militaria and ancien | | الريادة عمامالية الأماد الأماد الم
المادية الأماد المادية | A Military | According to the second | | | H3K4me3_CT4
H3K4me3_CT8
H3K4me3_CT12 | | | | | | | | | | | | | | | H3K4me3_CT16
H3K4me3_CT20 | | | | | | | | | | | | | | | H3K9ac_CT0
H3K9ac_CT4 | A Cab and Co | | | | | معمطاء د | Artefunation | Carlos Marian | | | Comment to the second | | det comment | | H3K9ac_CT8
H3K9ac_CT12 | | | | | | المدافد.
المدافلين | add the state of the | nindak da e
Kababah di erebi | للما المنظمان | | | | | | H3K9ac_CT16
H3K9ac_CT20
H3K27ac_CT0 | | الله الأراضية المستوطنة التاريخ
الما المستورية المستولات المستولات المستولات | and the second | لترمة م عملم التماريين
المراجع الترام م تاكرية | | ica silikuwini
Antonio ali | AND STREET AND ADDRESS OF THE PARTY P | kanakan labarah .
Kapan Merupak | للدي الطائد لا للديد .
مام الديا الديانيات | د وندود دادود د
نصارتانه منتاند | e sananningen.
Historia | And a second of | La Caracter Co. | | H3K27ac_CT4
H3K27ac_CT8 | | | | | | - Alberta | | A | | | | | • | | H3K27ac_CT12
H3K27ac_CT16 | | | | | | Adda
data | A Harman | | | | | | | | H3K27ac_CT20
H3K36me3_CT0
H3K36me3_CT4 | | | | and the second section of | | <u></u> | and a second second second | | | | | | | | H3K38me3_CT8
H3K38me3_CT12 | | معلى ومنابع الطائب معم فيارميم الله
والأمامي المراقعة الله السائلات الما | and the second | an da san andre andre
Andreas and andre designed | Andrew Steel | and a second | The Report Property and Park St. | بالمصافدة القبشقان | and in the control of | د معدد د است ادامه
داد داده هستند ادامه | بالمقتمعة فالبار المقتارين | بالمراهد فقالته للمطلب | and Branch Street | | H3K36me3_CT16
H3K36me3_CT20 | The second second second | an and a second control of the contro | للا والمعطورة المراد المراد | بقدمته مامه مامانيا بالراجيات | فده فيدا أبا التحدقات المفه | Control of | na entre des de la colonia | A SHEET WAY SHEET, Married St. | and the second second second | A LIBERTAL A LIMBER
L'ESTA BELLINE L'INCEL
A RELL'INCELL L'ART NE | والأعظم فرمانتها مراب | بالقداعات سمسقناها | أأنته للمستبطة بعم | | H3K79me2_CT0
H3K79me2_CT4 | | | المسائد همات الأمار المد | The Committee of | للاعلانة تعلما تحاساتهما | | | والمحمدين المادمة | | والمستحدثات والما | | | | | H3K79me2_CT8
H3K79me2_CT12
H3K79me2_CT16 | and the second second | . A la las la la la la mara a la | مهاهم ماه م ما
دانستان ها دانوا | ە ئىلمىلىلىقىدىلى مەم
ئىللىق ئىقلىلىلىدىن | and a secondary of | | nde administration or const | المتعاط فالمتعاد | | معتليم والموارات | | المدالكين عددادا | - 4 - 1 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | | H3K79me2_CT20
RevErbA_ZT8 | ************ | | | | فوست بندر کو با سروبوست
میگر مگاری با بندر بیش کندر به | | Andreas Alberta de la companya della companya della companya de la companya della | | | | | | | | RevErbB_ZT8 CT0_RNA_positive | | | | | | | 3 . 8 . 88 | | | | | | | | CT0_RNA_negative
CT4_RNA_positive
CT4_RNA_negative | | M | | | | | بمقتسمين إدوا بطأنيا بمنودا | م نطم | | | | | | | CT8_RNA_positive
CT8_RNA_negative | | | | - | | | المقالمين عربيا المسالف | <u> </u> | | | | | | | CT12_RNA_positiv
CT12_RNA_negativ | e
ve | | | | | -p - | المظالبة فالمساليات | | | | | 1 | | | CT16_RNA_positiv
CT16_RNA_negativ
CT20_RNA_positiv | ve | • | | | | | اماله منظیر در مالانداند.
منافعه در ما داند | | | | | | | | CT20_RNA_negativ
CT24_RNA_positiv | ve
e | | | | | - 1- 1- | الفظائمة التحديد والمحد الباشد.
المطافع مديد والمحدد والمد | | | | | | | | CT24_RNA_negativ
CT28_RNA_positiv | ve
e | | | | 4 | | المانات | | | | | | | | CT28_RNA_negativ
CT32_RNA_positiv
CT32_RNA_negativ | e | - | | | | | | | | | | | | | CT32_RNA_negativ
CT38_RNA_positiv
CT38_RNA_negativ | e | | | | | | Million of the Million | | | | i | | | | CT40_RNA_positiv
CT40_RNA_negativ | e
ve | | | | | | الكليكيين متطبيد ليالا | | | | | | | | CT44_RNA_positiv
CT44_RNA_negativ | e
ve | 4 | | | | · • | الكائمالين بالمطالب | # | | | | | | | | 20 | | | | AK042445 | | | _ | | | | | | | Mammal Cons | م سيسلم | احصاب المعدسس | عابليفينية فينسب | المال علاقيان المنظم المالي | بطستأن حداث مسافقات | الأللسية | | <u> Aldir Naturah</u> | عب استعماله | <u> </u> | الشاف وتقلب و | علىداسلىللى ما | عائدها فالمالة فمحد |