
Text S1

Extrinsic noise in dual negative feedback loop system

We find that the CV in peak nuclear NF-κB increases linearly with extrinsic variation

in total NF-κB and with extrinsic variation in IKK with identical CV values for both

the single and dual feedback models (Figure S5A,B). In contrast, the CV in late-phase

(asymptotic) NF-κB levels are significantly lower in the dual feedback system than in

the single feedback system. We varied the magnitude of extrinsic noise by changing

the spread of parameters (total NF-κB and IKK) from 0% to 50%. The CV in late-

phase NF-κB for the dual feedback system increases linearly from 0 to approximately

1 as the range of total NF-κB (Figure S5C) and IKK (Figure S5D) is increased to

±50%, while the CV in late-phase NF-κB for the single feedback system increases from

approximately 1.6 to 1.9 (Figure S5C,D). Thus, in the presence of extrinsic variations

in IKK and total NF-κB, the dual feedback system allows for a late-phase response

which is more robust than the response produced by the single feedback system.

Details of the full stochastic model

For the analysis of a full NF-κB system, we adopted the basic structure of the NF-κB

model formulated in Paszek et. al., 2010. The structure of the model is shown in

Figure S8A. The biological processes in the model were interpreted through stochastic

and deterministic representations. Nuclear transport, complex formation, synthesis,

transcription, and translation were described through a set of ordinary differential

equations (ODEs). Regulation of gene activity through NF-κB binding and dissociation

from DNA was modeled using stochastic representation. The time-evolution of the

system was accomplished through a hybrid simulation algorithm that uses Gillespie

algorithm (Gillespie, 1977) to evaluate the state of stochastic processes and an ODE

solver to compute the state of deterministic processes.

ODEs

See Tables S4 and S5 for variable and parameter descriptions respectively.
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˙NFκB = c5a · IκBα NFκB − ka1a ·NFκB · IκBα + kt2a · pIκBα NFκB −

−ki1 ·NFκB + c5e · IκBε NFκB − ka1e · IκBε ·NFκB +

+kt2e · pIκBε NFκB + kd1a · IκBα NFκB + kd1e · IκBε NFκB +

+ke1 ·NFκB (S1)

˙nNFκB = −ka1a · kv · nIκBα · nNFκB − ka1e · kv · nIκBε · nNFκB +

+ka1e · kv · nIκBε · nNFκB + kd1a · nIκBα NFκB − ke1 · nNFκB +

+c5a · nIκBα NFκB + c5e · nIκBε NFκB + kd1e · nIκB NFκB +

+ki1 ·NFκB (S2)

˙A20 = c2 · tA20− c4 · A20 (S3)

˙tA20 = c1 ·GA20(t)− c3 · tA20 (S4)

˙IκBα = −kc1a · IKKa · IκBα− ka1a · IκBα ·NFκB + c2a · tIκBα−

−c4a · IκBα− ki3a · IκBα + ke3a · nIκBα + kd1a · IκBα NFκB (S5)

˙tIκBα = c1a ·GIκBα(t)− c3a · tIκBα (S6)

˙nIκBα = −ka1a · kv · nIκBα · nNFκB + ki3a · IκBα− ke3a · nIκBα +

+kd1a · nIκBα NFκB (S7)

˙IκBα NFκB = ka1a · IκBα ·NFκB − c5a · IκBα NFκB − kd1a · IκBα NFκB +

+ke2a · nIκBα NFκB − kc2a · IKKa · IκBα NFκB (S8)

˙nIκBα NFκB = ka1a · kv · nIκBα ·NFκB − ke2a · nIκBα NFκB −

−kd1a · nIκBα NFκB − c5a · nIκBα NFκB (S9)

˙pIκBα = kc1a · IKKa · IκBα− kt1a · pIκBα (S10)

˙pIκBα NFκB = kc2a · IKKa · IκBα NFκB − kt2a · pIκBα NFκB (S11)

˙IκBε = −kc1e · IKKa · IκBε− ka1e · IκBε ·NFκB + c2e · tIκBε−

−c4e · IκBε− ki3e · IκBε+ ke3e · nIκBε+ kd1e · IκBε NFκB (S12)

˙tIκBε = c1e ·GIκBε(t− TD)− c3e · tIκBε (S13)

˙nIκBε = −ka1e · kv · nIκBε · nNFκB + ki3e · IκBε− ke3e · nIκBε+

+kd1e · nIκBε NFκB (S14)
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˙IκBε NFκB = ka1e · IκBε ·NFκB − c5e · IκBε NFκB − kd1e · IκBε NFκB +

+ke2e · nIκBε NFκB − kc2e · IKKa · IκBε NFκB (S15)

˙nIκBε NFκB = ka1e · kv · nIκBε ·NFκB − ke2e · nIκBε NFκB −

−kd1e · nIκBε NFκB − c5e · nIκBε NFκB (S16)

˙pIκBε = kc1e · IKKa · IκBε− kt1e · pIκBε (S17)

˙pIκBε NFκB = kc2e · IKKa · IκBε NFκB − kt2e · pIκBε NFκB (S18)

˙IKKKa = TR · kr · (KN − IKKK)− kri · IKKKa−

kaA20 · A20 · IKKKa (S19)

˙IKKn = kp · kbA20

kbA20 + A20
· (KNN − IKKn− IKKa− IKKi)−

−ka · IKKKa · IKKn (S20)

˙IKKa = ka · IKKK − ki · IKKa (S21)

˙IKKi = ki · IKKa− kii · IKKi (S22)

Stochastic processes

The state of each gene promoter could be either on or off depending on whether NF-

κB molecule is bound or unbound to it. Since each of the genes in the model has

two independent homologs, the state of transcriptional activity of each gene can be

described by G(t) ∈ {0, 1, 2}. Furthermore, because of transcriptional delay of IκBε

proteins, we must consider the delayed state of transcriptional activity, GIκBε(t−TD) ∈

{0, 1, 2}.

To calculate the state of transcriptional activity of each gene, we must consider

the binding and dissociation propensities of NF-κB. The binding propensity, rb, is

assumed to be proportional to the nuclear NF-κB concentration, while the dissociation

propensity, rd, is proportional to the nuclear IκB protein concentration:

rb(t) = q1 · nNFκB(t, G(t)) (S23)

rd(t) = q2a · nIκBα(t, G(t)) + q2e · nIκBε(t, G(t)) (S24)

The total propensity for the occurrence of any binding or dissociation event can be
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described by

r(t) = rbA20 · (2−GA20(t)) + rbIκBα · (2−GIκBα(t)) + rbIκBε · (2−GIκBε(t)) +

rdA20 ·GA20(t) + rdIκBα ·GIκBα(t) + rdIκBε ·GIκBε(t) (S25)

Using Fortran 90, we eployed the following algorithm (Paszek et al, 2010) to com-

pute the time evolution of the system. For all simulations, we ran this algorithm until

steady state values were reached and saved scheduled delayed reactions and their times

before perturbing the system.

1. At t = t0, initialize state of discrete variables, G(t0). Set GIκBε(t) = 0 for

t ∈ [t0 − TD, t0).

2. Select two random numbers, p1 and p2 from the uniform distribution on (0, 1).

3. Using fifth and sixth order Runge-Kutta solver, dverk, evaluate the system of

model ODEs until time t+ τ , where

ln(p1) +
∫ t+τ

t
r(s)ds = 0.

Incorporate any scheduled delayed reactions in the time interval [t, t+ τ).

4. Choose which stochastic reaction j is to occur at t+ τ by finding j such that

j−1∑
i=1

ri(t+ τ) < p2 · r(t+ τ) ≤
j∑
i=1

ri(t+ τ)

where ri, i = 1, ..., 6 are individual reaction propensities.

5. Update discrete variable states GA20, GIκBα, and GIκBε.

6. Replace t with t+ τ and repeat from 2
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