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Supporting Information

Individual-based Model

Individual-based epidemiology models are used to study the effects of public health interventions and changes

in individual behavior to the dynamics of infectious diseases [1]. A detailed description of the individual-based

model used in simulating the outbreaks in this study is presented in [2]. The individual-based model is made up of a

dynamic social contact network and a disease transmission model. The social contact network which is a synthetic

representation of a particular geographical region is generated using United States Census data. The structure of

the underlying network is important since interactions between agents influences how disease propagates during

epidemic simulations. In this initial study, neither changes in individual behavior nor intervention strategies are

explored. However, in later studies to better understand the implications of specific intervention strategies, we

would forecast disease dynamics given that effective measures have been introduced to control the spread of an

outbreak.

The construction of the dynamic social contact network requires two steps. In step 1 a synthetic popula-

tion is created. Individuals in the synthetic population are tagged to realistic demographics while preserving the

confidentiality of the original data sets. Each individual is assigned to a household using a decision tree based on

demographic information (such as number of people in a household, number of children etc.) from data provided in

SF3 and PUMA (Public Use Microdata Area) census files. Households are placed in realistic geographical regions.

The synthetic population is statistically identical to the census aggregated at the block level. More information can

be found in [3], [4] and [5].

Step 2 assigns a daily activity list with specified durations (start and end times) to each household based on

several thousand responses to an activity or time-use survey. The activity templates which vary by region given

factors such as the geographical location and age composition of the population, are created based on the National
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Table S1: Modeling Approaches used in the Individual-based Model

Models References

Urban Population Mobility [8], [7],
Models [9], and [10]
Natural Disease History [11], [12],

[13], [14], and
[15]

Transmission Models [13], [14], and
[15]

Social Network Models [16], [13],
[17]

Types of Interventions [18], [19],
[20], and [13]

Household Transportation Survey. A gravity model and land-use data [3] are used in assigning activities to realistic

locations. The addresses of non-housing locations are obtained from Dun and Bradstreet’s Strategic Database

Marketing Records. Presently, this modeling approach is considered the de facto standard in transportation science

and is called activity based travel demand modeling [1].

This process results in the assignment of a minute-by-minute schedule to each of the agents in the synthetic

population. The contact between agents during activities results in a realistic contact graph GPL, where P is the set

of people and L is the set of locations. If person p ∈ P visits location l ∈ L, there is an edge (p, l, label) ∈ E(GPL)

between them with type and duration of activity recorded as label [1]. Edges exist between individuals in the

same activity location. Synthetic individuals mimic the behaviors of real people by participating in everyday

activities such as socializing, shopping etc. and multiple edges can be used between each person and the locations

representing their frequency of visits. See [6] and [7] for additional information. The modeling approaches used

in the individual-based as presented in [1] are given in Table S1.

After generating the social contact network, a computational model is developed to represent disease progres-

sion within individuals and transmission between individuals in the synthetic population. The disease progression

is a stochastic diffusion process for which probabilistic timed transition system (PTTS) models are used. PTTS

is an extension of the well known finite state machine (FSM) with probabilistic and timed state transitions (S =

Susceptible, E = Exposed, I = Infectious, R = Recovered). This means that the end point of state transitions are

chosen probabilistically. The interaction between individuals that are neighbors in the social contact network is

represented by their PTTS. The disease can only be transmitted from an infectious node u to a susceptible node v.

The probability of transmission with contact duration w(u, v) is given by:
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p(w(u, v)) = 1 − (1 − r)w(u,v) (1)

where r is the probability of disease transmission for a unit of contact time. Each infected node progresses through

the succeeding transmission states where it stays for a defined period of time. The transition durations can be

described using probability distributions based on the disease of interest. Several studies have been implemented

to validate specific components of the model and the general approach. See [3], [16], and [13] for structural validity

of these models.

To run a simulation experiment, a population (contact network), characteristics of a disease and initial condi-

tions are specified. Each simulation is seeded with a randomly selected set of initially infected individuals and

several realizations of the stochastic process of disease propagation are computed. Intervention options such as

vaccination, antiviral and social distancing can be applied during the outbreak to control its propagation.

The Epidemic Parameter Search Problem

Let G(V , E) denote a contact network on a population V of size |V | = n. Each edge e = (u, v) ∈ E denotes contact

between two nodes u, v ∈ V and is weighted by the duration of contact w(u, v). Each node u ∈ V is assumed to be

in one of four health states - susceptible, exposed, infectious, or recovered - and the set of all health states of nodes

in V at the start of the simulation is given by the n-dimensional vector X0.

The three disease parameters used in the network-based disease model are the disease transmissibility, the

incubation period distribution, and the infectious period distribution. The transmissibility of the disease (S) is

defined as the probability that a node in the infectious state in the contact network infects a neighboring susceptible

node for each unit of contact time. An infected node in the contact network has an incubation period of i days and

an infectious period of j days with probabilities pE
i and pI

j, respectively, where i = 1, · · · , tE
max, and j = 1, · · · , tI

max.

The upper bounds on the support of the incubation and infectious period distributions, tE
max and tI

max, are obtained

from literature [13, 21].

As part of the epidemic forecasting problem, we seek a set of disease parameters θtrue that satisfies y(θ) |θ=θtrue =

α, where θ = (pE
1 , pE

2 , · · · , pE
tE
max

; pI
1, pI

2, · · · , pI
tI
max

; S) denotes the set of nonnegative real valued epidemic parameter

values and α ∈ �t denotes the epidemic curve observed up to time t for the set of disease parameters θtrue. The

outcome of y : �d → �t (d = tE
max + tI

max + 1) is stochastic and can be estimated using Yk(θ) = 1
k
∑k

i=1 zi(θ), where

z : �d → �t is the simulated outcome of the network-based epidemic model for parameter θ, and the superscript i
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indicates the ith simulated replicate.

For a fixed contact network G(V , E), an initial health state X0 of the population V , and α and Yk defined as

above, the epidemic parameter search problem at time t can be stated as a simulation optimization problem as

follows.

Minimize ‖α − Yk(θ)‖

subject to
tE
max∑
i=1

pE
i = 1

tI
max∑
j=1

pI
j = 1

0 ≤ pE
i , pI

j ≤ 1, i = 1, · · · , tE
max, j = 1, · · · , tI

max

0 ≤ S ≤ 1.

We note that α here is only one instance of the stochastic event observed for the set of disease parameters

θtrue, but is considered as the expected epidemic outcome in the simulation optimization formulation. Also, for the

purposes of this study we consider a Euclidean norm in the objective function. However, the problem formulation

allows for its substitution with any other applicable norm.

Modified Nelder-Mead Simplex Method

Nelder-Mead simplex is a direct search method that attempts to minimize functions of real variables using only

function evaluations without any derivatives. The Nelder-Mead algorithm proceeds through recursive updates of

the simplex vertices via a series of four basic operations: reflection, expansion, contraction and shrinkage. For a

function of m variables, Nelder-Mead maintains m + 1 vertices forming a polytope. The m variables represent m

parameter sets.

At every step of the algorithm, one of the above-mentioned operations is used to generate a new parameter set

that replaces a vertex in the simplex representing parameters with the worst objective value. If no better parameter

set is found, all vertices are drawn halfway toward the current best vertex. This requires new simulation runs

to evaluate the objective function for the updated parameter set. The dimension of the polytope always remains

the same; containing m + 1 vertices. The algorithm converges if the relative difference between the best and
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worst function values in the new polytope is less than the defined relative tolerance. The method is illustrated in

Algorithm S1. Based on [22, 23] best values for the Nelder-Mead parameters are ρ = 1 (reflection coefficient),

xi = 2 (expansion coefficient), γ = 0.5 (contraction coefficient), and σ = 0.5 (shrinkage coefficient).

The modified version of the Nelder-Mead algorithm is also given in Algorithm S2. The algorithm proposes

new values for the transmissibility, in addition to the probability values for the incubation and infectious period dis-

tributions. The probabilities must be non-negative and sum to one independently for the incubation and infectious

periods.
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Algorithm S1: Modified Nelder-Mead Simplex Algorithm with Constraints
Input: Initial parameters and surveillance epidemic curve
Output: Optimal parameter set

START:
INIT: Nelder-Mead coefficients ρ = 1, ξ = 2, γ = 0.5, σ = 0.9.
for xi ∈ X: initial set of parameters in the form of vertices of size m do

evaluate the objective function
end for
sort and find the best (xl), the worst (xh) and the second worst (xs) set of parameters
find the centroid of the polytope (x) based on the best m parameters
adjust (x) using algorithm 2
repeat

conduct REFLECTION (xr = (1 + ρ)x − ρxh)
adjust xr using algorithm 2 and evaluate f (xr)
if f (xl) < f (xr) < f (xs) then

xh = xr

else if f (xr) < f (xl) then
conduct EXPANSION (xe = (1 + ρξ)x − ρξ)
adjust xe using algorithm 2 and evaluate f (xe)
if f (xe) < f (xr) then

xh = xe

else
xh = xr

end if
else if f (xs) < f (xr) < f (xh) then

conduct outside CONTRACTION (xc = (1 + ργ)x − ργxh)
adjust xc using algorithm 2 and evaluate f (xc)
if f (xc) < f (xh) then

xh = xc

else
replace xh with xr in the simplex
for all of the parameter sets except xl SHRINK (x j = xl + σ(x j − xl))
adjust x j using algorithm 2 and evaluate f (x j)
re-evaluate f (xl)

end if
else

conduct inside CONTRACTION (xc = (1 − γ)x + γxh) and evaluate f (xc)
if f (xc) < f (xh) then

xh = xc

else
replace xh with xr in the simplex
for all of the parameter sets except xl SHRINK (x j = xl + σ(x j − xl))
adjust x j using algorithm 2 and evaluate f (x j)
re-evaluate f (xl)

end if
end if

until converged
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Algorithm S2: Parameter set Adjustment
Input: A proposed parameter set
Output: Feasible parameter set

START:
set zero for every negative pi in the set
for i ∈ {2, 3, 4, 5} do

replace pi with pi
5∑

k=2
pk

end for
for i ∈ {6, 7, 8, 9, 10} do

replace pi with pi
10∑

k=6
pk

end for
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