Appendix

A. One protein one substrate model

Derivation of equation (8)
If dissociation is negligible, the set of differential equations is given by:
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dt

dt dt

= k1[P][5]. (A1)

To solve this, we need the following equations, which describe that the total number of particles is
preserved:

[Py] = Po — [P] = So — [5]. (A2)
With this, we can write:
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Now, we use the method separation of variables to get:
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From [1] we know the formula:
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with the constant of integration c.
Using eq. (A5) to integrate eq. (A4) leads to:
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From eq. (A2) we know that [S] + Py — So = [P] > 0, which allows rewriting eq. (A6) without the

modulus function:
[S]+ Po — So

(5]

If we solve this equation for [S] and choose the constant of integration in a way, which fullfills the
condition [S](t = 0) = Sy, we get the solution for [S]:

In = (kxt + ¢)(P — So) (A7)
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Using eq. (A2) leads to the solution for [P]:
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Derivation of equation (9)

If the dissociation rate is not negligible, the set of differential equations is given by:

dip] _ _d[P] _ _d[S]

=——— = ——— = k[P][S] — k_1[P] . Al
b= S = T PS] - k[P (A10)
To solve this, we use the same steps as presented in the derivation of eq. (8). This leads to:
d[9] = —kqdt (A11)
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To integrate this equation we use the following formula from [1]:

/ dx B 1 In 2ax + b — v/b? — dar te (A12)
ax? +br+r Vb2 —dar |2az + b+ Vb2 — dar ’
with the constant of ingeration c.
After the integration of eq. (A1l), we get:
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Next, we will show that 2[S] + b — v/b% — 4r > 0.
First, we need to know all possible values of [S], for which we calculate the minimum S*, which corresponds
to the limit lim; o [S](¢). This limit has to fullfill the following equation:
as* 11 *
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From eq. (A2), we know that P* = S* + Py — Sp and P} = Sy — S*, which together with eq. (A16) leads
to:
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Since we always use the starting condition P,(t = 0) = 0, the value of % never will be positive and [5]
will monotonously decline from Sy to S*. This means that all possible values of [S] are given by:

So > [S] > 57 (A18)

With this it can be shown that:

2[5 +b— Vb2 —4r > 25" +b— b2 —4r =0. (A19)

Now, we can write eq. (A13) without the modulus function:
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Solving this equation for [S] and using [Py] = Sy — [S] leads to the solution presented in the paper

(eq.(9)).




B. Two protein one substrate models

Derivation of equations (24)-(27) and (44)-(47)

We start with the following set of differential equations:
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The solution of [S](¢) is trivial:
[S])(t) = Spe~(ks+athsip)t (A25)
Now, we can rewrite equation (A23):
B
% = —ks4a[SB] + ksypSoe Fstathsin)t (A26)

This is an inhomogeneous linear ordinary differential equation, which can be solved by the standard
method variation of parameters to get the solution of [SB](t) (equation (26)). The same steps apply to
equation (A22) to get the solution of [SA](t) (equation (25)). Now, it is possible to compute the solution
of [SAB](t) by integrating the right hand side of equation (A24).

The derivation of equations (44) to (47) consists of the same steps as presented above: First, [S](¢) is
computed, which allows rewriting the differential equations of [SA](t) and [SB](t), which in turn can be
solved by the method wvariation of parameters. Finally, it is possible to get the solution of [SAB](t) by
integration.

Derivation of equations (35)-(38) and (52)-(55)
We start with the following set of differential equations:

d[S]

=~ = —(kssa + ksip)IS] + ksn-p[SBI, (A27)
DAL _ kgsalS] + hsp-pISAB] ~ ksasnlSA], (A28)
U5B) _ ks 18]~ (ksea+ ksp-p)(SB], (A29)
d[Sd"t‘B D ks AlSB] + ksass[SA] — ksp_plSAB). (A30)

Adding the first to the third equation as well as adding the second to the fourth equation leads to:

d([S] +[SB))

22— hsia(1S) + [SB) (A31)



d([SA] + [SAB))
dt
This set of differential equations is similar to the one presented in the methods section of the paper
(equation (5)) if [S] from equation (5) is substituted by ([S] + [SB]) and [P] from equation (5) is
substituted by ([SA] 4+ [SAB]). Hence, the solution is given by equation (6) and (7) with the described
substitutions:

= ks a([SA] + [SAB]). (A32)

1S1(8) + [SB(t) = Soe*s+41, (A33)
[SA|(t) + [SAB](t) = Sp(1 — e Fs+aty, (A34)
Solving equation (A33) for [S](t) leads to equation (35), which allows rewriting equation (A29):

@ = k‘s_f_B(SoeikS*'At —[SB]) — (ks+a + ksp-p)[SB]. (A35)
Again, it is possible to use the method wariation of parameters to solve this inhomogeneous differential
equation, which leads to the solution for [SB](t) (equation (36)).

Using the same steps, it is possible to compute the solution for [SA](t) and [SAB](t): First, equation
(A34) has to be solved for [SA](t), which leads to equation (37). Then, it is necessary to plug in the
formula for [SA](¢) (equation (37)) and the solution of [SB](t) (equation (36)) into equation (A30) to get
a differential equation, in which only [SAB](t) is unknown. This can be solved by using the variation of
parameters method, which leads to the solution for [SAB](t) (equation (38)).

The derivation of equations (52) to (55) follows the same steps as described above.
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