Appendix S1

Theorem 1: Let X; and Y;, t > 0 be two OU process random variables. Given a
rooted phylogeny for trait evolution, assuming that the constraining force parameters
a, and a, are constants during the evolutionary process, the covariance between the
trait X of species i and the trait Y of species J is
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where t;; measures the branch length from the root to the most common ancestor of
species i and j; ¢;,t; are the branch lengths for species i and j since they diverged.
Proof:
As the covariation between two traits does not depend on their means, it suffices to
consider the system of non mean-reverting SDEs.
dX, = —a,X.dt + 0,dB,;
dY; = —a,Y.dt + 0,dB,,;
Discretize the SDEs, we have
Xevar = (1 — axA) Xy + 0 (Byg+at — B t)
Yerar = (1 — ayAt)Yt + 0y (By,t+At - By,t)
where At = % is the infinitesimal unit of time.
Given a rooted phylogeny, we can decompose the trait values at tip i and j, X;,Y; as

following



Xi = Xmrea(i,j) + AX; and Y, = YViyrca ) + AY;
where the mrca(i, j) represents the most common ancestor for species i and |,
Xmrca(i,j) and Ymreaqi,jy are the traits for mrea(i, j), and AX; and AY; are the
changes in trait value from their most common ancestor to the extant species X; and
Y;. Then the covariance between X; and Y; can be written as
cov[X;, Y] = El Ximrcaqi ) + AXi ) Vnrcaijy + AY) ]

= E[XmreagijyYmreatip] + E[Xmreai yAY;] + E[Ymrea yAXi] + E[AX;AY;] (a)

Note that this method was also used in Blomberg et al. [1] where a discrete version of
the OU process was applied. Let t; = mAt be the branch length from the most

common ancestor of i and j to the species j at the tips. Then Y; can be represented as

m+1
Ymrca(i,j)

Y= (1-a,At)
+0, Tt o(1 — ayAD™ ¥ {B,, (n—m+k+1)ac — By n-m+rac}
The expectation, E[Xmycq(ijHAY;], is
E[Xmrea(iyAY)]

= E[erca(i,j){_ymrca(i,j) + YJ}]



=—F [erca(i,j) Ymrca(i,j)]

+ E

erca(i,j) {(1 - ayAt)m+1Ymrca(i,j)

m
+ 0y Z(l - ayAt)m_k [By,(n—m+k+1)At - By,(n—m+k)At]u
k=0

= ((1 = ayA)™ — DE[Ximrcag, jy Ymrea(i ]
= ((1 - ay%M)mJr1 - 1) E[Xmrcadi,j)Ymrea(ij]
S0 E[Xumreaqnd¥] = ((1 =y D™ = 1) EXunreagij Ymreati ) (b1)
Similarly, we have
E[YimreandXi] = ((1 = 5™ = 1) E[Xmreaqi jy Ymrea(i,p] (b2)
Since trait evolution on different branches is independent, we have for k = 0,1, -, m,
E [[Bx,(n—m+k+1)At — By (n-m+iont| [ By,-m+k+1)ae — By,(n—m+k)At]] = 0.
Hence,
E[axaY] = ((1 - a ™ = 1) (1 = &y D™ = 1) E[Xmreagiy Ymreaiipl- - (b3)
Substituting (b1), (b2), (b3) into (a) and simplifying, we have
cov[Xy, Y| = (1 — ay %)mﬂ(l —ay %)mHE[erca(i,j)Ymrca(i,j)]- ()
To derive E[Xmrca(i j)Ymreaci,jyls @s both species i and j are the same species from the
root to their most common ancestor, X; and Y; can be regarded as two different
traits of the same species. Since by Brownian motion the evolution after speciation is

independent, the correlation p between the two Brownian motion processes is



non-zero only when the two traits were evolved in the same species. The correlation

can thus be defined

At, = k;
E [[Bx,(j+1)At - Bx,jAt][By,(kH)Af o By'k“]] - {%, j # k.

Let t;; be the branch length from the root to the most common ancestor of
species i and . t;; can be divided into short intervals: t;; = [At. Now using

Yircatijy = (1 — ayADFY, + 0y Thoo(1 — ay A ¥ By, ev1yae — By ae}
we have

E [erca(i,j) Ymrca(i,j)] =

ti: ti: 1_(1_axﬁ)l+1(1_ayﬁ)l+1
(1= & 2H51) (1 = @, D) E[XoYo] + poyoy R A
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Following [1] and assuming E[X,Y;] = 0 (no correlation at the root), equation (c)

biji1+1 tij 141
ti tj 1-(1-ax—=)" " (1-ay=5)
becomes cov[X;,Y;] = poyo, (1 — ay —nll)m“(l —a, —ﬁ’l)m+1 L L

ax+ay—axay%

t] 1_e—(ax+ay)tl-j

which converges to po, 0, e ~**tie” % as m,l approach infinity

axtay

(At appraoches to 0).
In this StUdy, Iuse ti]' = Gij, t; = t] =1- 9ij and t; + tij =0ii = 1. Therefore
the covariance structure used for data analysis is
[x,v] = ~(ayray) gy el
cov|X;,Y;| = poyo,e p i, =12, ,n.
Note that when X; =Y}, we have p = 1, ay = oy and oy = oy. Thus the

variance-covariance structure agrees with the variance-covariance structure in

univariate data analysis. g g.p.
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