
Appendix S1 
Theorem 1: Let ܺ௧ and ௧ܻ , ݐ  0 be two OU process random variables. Given a 

rooted phylogeny for trait evolution, assuming that the constraining force parameters 

 ௬ are constants during the evolutionary process, the covariance between theߙ ௫ andߙ

trait X of species i and the trait Y of species j is  

ൣݒܿ ܺ	, ܻ൧ ൌ ௬݁ିఈೣ௧݁ߪ௫ߪߩ	
ିఈ௧ೕ ଵି

ష൫ഀೣశഀ൯ೕ

ఈೣାఈ
, ݅, ݆ ൌ 1,2,⋯ , ݊. 

where ݐ measures the branch length from the root to the most common ancestor of 

species i and j; ݐ,ݐ are the branch lengths for species i and j since they diverged. 

Proof: 

As the covariation between two traits does not depend on their means, it suffices to 

consider the system of non mean-reverting SDEs. 

݀ܺ௧ ൌ െߙ௫ܺ௧݀ݐ   ௫,௧ܤ௫݀ߪ

݀ ௧ܻ ൌ െߙ௬ ௧ܻ݀ݐ   ௬,௧ܤ௬݀ߪ

Discretize the SDEs, we have  

     ܺ௧ା∆௧ ൌ ሺ1 െ ሻܺ௧ݐ∆௫ߙ  ௫,௧ା∆௧ܤ௫ሺߪ െ  ௫,௧ሻܤ

                 ௧ܻା∆௧ ൌ ሺ1 െ ሻݐ∆௬ߙ ௧ܻ  ௬,௧ା∆௧ܤ௬ሺߪ െ  ௬,௧ሻܤ

where Δt = 
௧


 is the infinitesimal unit of time.  

Given a rooted phylogeny, we can decompose the trait values at tip i and j, ܺ , ܻ as 

following 



ܺ ൌ ܺ୫୰ୡୟሺ,ሻ  ∆ ܺ and ܻ ൌ ୫ܻ୰ୡୟሺ,ሻ  ∆ ܻ  

where the mrcaሺ݅, ݆ሻ represents the most common ancestor for species i and j, 

ܺ୫୰ୡୟሺ,ሻ and ୫ܻ୰ୡୟሺ,ሻ are the traits for mrcaሺ݅, ݆ሻ, and ∆ ܺ and ∆ ܻ are the 

changes in trait value from their most common ancestor to the extant species ܺ and 

ܻ. Then the covariance between ܺ and ܻ can be written as  

ൣݒܿ ܺ, ܻ൧ ൌ ሺܺሺ,ሻ	ሾܧ  ∆ ܺ	ሻሺ ܻሺ,ሻ  ∆ ܻሻ	ሿ 

ൌ ሺ,ሻܺൣܧ ܻሺ,ሻ൧  ∆ሺ,ሻܺൣܧ ܻ൧  ൣܧ ܻሺ,ሻ∆ ܺ൧  ∆ሾܧ ܺ∆ ܻሿ	 	 	 	 	 (a) 

 

Note that this method was also used in Blomberg et al. [1] where a discrete version of 

the OU process was applied. Let ݐ ൌ  be the branch length from the most ݐ∆݉

common ancestor of i and j to the species j at the tips. Then ܻ can be represented as  

			 ܻ ൌ ൫1 െ ൯ݐ∆௬ߙ
ାଵ

ܻሺ,ሻ 

													ߪ௬ ∑ ሺ1 െ ሻିݐ∆௬ߙ
ୀ ൛ܤ௬,ሺିାାଵሻ∆௧ െ   ௬,ሺିାሻ∆௧ൟܤ

The expectation, ܧሾܺሺ,ሻ∆ ܻሿ, is  

∆ሺ,ሻܺൣܧ ܻ൧ 

ൌ ሺ,ሻ൛െܺൣܧ ܻሺ,ሻ  ܻൟ൧ 



ൌ െܺൣܧሺ,ሻ ܻሺ,ሻ൧ 	

 ܧ ܺሺ,ሻ ൝ሺ1 െ ሻାଵݐ∆௬ߙ
ܻሺ,ሻ

 ௬ሺ1ߪ െ ሻିݐ∆௬ߙ



ୀ

௬,ሺିାାଵሻ∆௧ܤൣ െ  ௬,ሺିାሻ∆௧൧ൡ൩ܤ

ൌ ൫ሺ1 െ ሻାଵݐ∆௬ߙ െ 1൯ܧሾܺሺ,ሻ ܻሺ,ሻሿ 

ൌ ൬ሺ1 െ ௬ߙ
ݐ
݉
ሻାଵݐ∆ െ 1൰ܧሾܺሺ,ሻ ܻሺ,ሻሿ 

So ܺൣܧሺ,ሻ∆ ܻ൧ ൌ ቀሺ1 െ ௬ߙ
௧ೕ

ሻାଵ െ 1ቁܧሾܺሺ,ሻ ܻሺ,ሻሿ      (b1) 

Similarly, we have 

ൣܧ  ܻሺ,ሻ∆ ܺ൧ ൌ ቀሺ1 െ ௫ߙ
௧

ሻାଵ െ 1ቁܧሾܺሺ,ሻ ܻሺ,ሻሿ           (b2) 

Since trait evolution on different branches is independent, we have for ݇ ൌ 0,1,⋯ ,݉, 

ܧ ቂൣܤ௫,ሺିାାଵሻ∆௧ െ ௬,ሺିାାଵሻ∆௧ܤ௫,ሺିାሻ∆௧൧ൣܤ െ ௬,ሺିାሻ∆௧൧ቃܤ ൌ 0.	 

Hence,	

∆ൣܧ ܺ∆ ܻ൧ ൌ ቀሺ1 െ ௫ߙ
௧

ሻାଵ െ 1ቁ ቀሺ1 െ ௬ߙ

௧ೕ

ሻାଵ െ 1ቁܧሾܺሺ,ሻ ܻሺ,ሻሿ.	 	 	(b3) 

Substituting (b1), (b2), (b3) into (a) and simplifying, we have   

ൣݒܿ ܺ, ܻ൧ ൌ ሺ1 െ ௫ߙ
௧

ሻାଵሺ1 െ ௬ߙ

௧ೕ

ሻାଵܧሾܺሺ,ሻ ܻሺ,ሻሿ.	 	 	 	 	 	 	 (c) 

To derive ܧሾܺሺ,ሻ ܻሺ,ሻሿ, as both species i and j are the same species from the 

root to their most common ancestor, ܺ and ܻ can be regarded as two different 

traits of the same species. Since by Brownian motion the evolution after speciation is 

independent, the correlation ߩ between the two Brownian motion processes is 



non-zero only when the two traits were evolved in the same species. The correlation 

can thus be defined  

ܧ ቂൣܤ௫,ሺାଵሻ∆௧ െ ௬,ሺାଵሻ∆௧ܤ௫,∆௧൧ൣܤ െ ௬,∆௧൧ቃܤ ൌ ൜
,ݐ∆ߩ ݆ ൌ ݇;
0,													݆ ് ݇.  

Let ݐ be the branch length from the root to the most common ancestor of 

species i and j. ݐ can be divided into short intervals: ݐ ൌ   Now using .ݐ∆݈

    ܻሺ,ሻ ൌ ሺ1 െ ሻାଵݐ∆௬ߙ ܻ  ௬ߪ ∑ ሺ1 െ ሻିݐ∆௬ߙ

ୀ ൛ܤ௬,ሺାଵሻ∆௧ െ  ,௬,∆௧ൟܤ

we have  

ሺ,ሻܺൣܧ ܻሺ,ሻ൧ ൌ 

 ቀሺ1 െ ௫ߙ
௧ೕ

ሻାଵቁ ቀሺ1 െ ௬ߙ

௧ೕ

ሻାଵቁ ሾܺܧ ܻሿ  ௬ߪ௫ߪߩ

ଵିሺଵିఈೣ
ೕ

ሻశభሺଵିఈ

ೕ

ሻశభ

ఈೣାఈିఈೣఈ
ೕ


 

Following [1] and assuming E[ܺ ܻ] = 0 (no correlation at the root), equation (c) 

becomes ܿൣݒ ܺ, ܻ൧ ൌ ௬ሺ1ߪ௫ߪߩ െ ௫ߙ
௧

ሻାଵሺ1 െ ௬ߙ

௧ೕ

ሻାଵ ଵିሺଵିఈೣ

ೕ

ሻశభሺଵିఈ

ೕ

ሻశభ

ఈೣାఈିఈೣఈ
ೕ


 

which converges to	ߪߩ௫ߪ௬݁ିఈೣ௧݁
ିఈ௧ೕ ଵି

షሺഀೣశഀሻೕ

ఈೣାఈ
 as ݉, ݈ approach infinity 

 .(0	to	appraoches	ݐ∆)

In this study, I use ݐ ൌ ݃, ݐ ൌ 	 ݐ ൌ 	1 െ ݃ and ݐ  ݐ ൌ ݃ ൌ 1. Therefore 

the covariance structure used for data analysis is 

	 	 	 	 	 	 ൣݒܿ ܺ, ܻ൧ ൌ ௬݁ߪ௫ߪߩ
ି൫ఈೣାఈ൯ሺଵିೕሻ ଵି

ష൫ഀೣశഀ൯ೕ

ఈೣାఈ
, ݅, ݆ ൌ 1,2,⋯ , ݊.	 	

Note that when ܺ ൌ ܻ, we have ρ ൌ 1,	α୶ ൌ α୷	and	σ୶ ൌ σ୷. Thus the 

variance-covariance structure agrees with the variance-covariance structure in 

univariate data analysis. Q.E.D.  
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