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Description of the study 

The background historical context to the Baltimore-based Frost-Sydenstricker study was described in 
Chapter 7 of (1), and the first detailed description of the study was given in (2) with some further analyses 
focusing on the impact of socio-economic status in (3).  

Wade Hampton Frost worked first as a field epidemiologist in the United States Public Health Service 
and later, in 1919, was the founding chair of the department of epidemiology at Johns Hopkins School of 
Public Health (1). In 1917, the Public Health Service was incorporated into the US military, and Frost 
noted that “the conditions of war…impose additional burdens…as a result of the concentration of 
population in and around military encampments and industrial centers. Additional public health 
problems will arise in the civil population as the war progresses…” (1) which seems prescient given 
accounts of how the H1N1 pandemic emerged (4). In April 1918, during what is now recognized as the 
herald spring wave of the pandemic epidemic, an Office of Field Investigations of Influenza was 
organized and led by Frost (1). The task of this office was to collate and analyze influenza statistics. 
Following the far more devastating autumn wave of the epidemic, the present study of influenza 
transmission in households in Maryland (2) appears to have been a pilot study to establish influenza 
infection rates which could not be deduced from weekly mortality data (1).  The study design, based on 
systematic household canvassing, was pioneered by Sydenstricker who in 1919 became the chief 
statistician of the US Public Health Service (1).    

After describing the localities in Maryland where surveys were carried out (2), the study design was 
described as follows:  

“In each of these localities a numbers of areas were selected for house-to-house canvass. The size of the 
areas was roughly fixed so as to include approximately the same number of persons in each, the selection 
of the areas within a town or city being made so as to give a fairly uniform geographic distribution. 
Enumerators were employed to visit every house in the selected areas, and to make enquiries of the 
housewife or other responsible member of the household as to the sex and age of each member, the date 
of onset and duration of each case of influenza or pneumonia, and the date of each death from influenza 
or pneumonia.  

“Thus the sex and age of every person in the population canvassed, as well as persons affected by the 
disease, were ascertained. The data obviously are crude to a certain degree because of the following 
conditions: (1) The canvass was made some time after the earlier cases occurred, and the dates of onset 
were not accurately recalled for a small proportion of the cases; (2) the families’ statements as to 
diagnosis were accepted; (3) the enumerators were not persons especially trained in this work, although 
they were carefully selected for intelligence and reliability. […]” 

Of relevance here, the canvass in Baltimore was carried out Nov. 20 to Dec. 15 1918, and in Frederick in 
Nov. 27 to 30. In 1917, as reported in (2), the total population of Baltimore was 594,637 and that of 
Frederick 11,225. This is in close agreement with the census population size of 599,653 inhabitants for 
Baltimore reported in (5). In total 33,776 people were reported to have been included in the Baltimore 
canvass and 2,420 in the Frederick canvass (2). 
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Approximately 3,927 (0.65%) of the city’s population of 599,653 inhabitants died of pneumonia or 
influenza in eight weeks (5, 6). 

For the current study, new documents pertaining to the Maryland canvasses were identified in the Frost 
collection of the Chesney Medical Archives at the Johns Hopkins University (Document S1). These 
identify data from 6,774 households in Baltimore and 534 households in Frederick.  

S1. The data 

From the data in Document S1, we can tabulate the number of households of size n  reporting m  cases, 

which we denote ( ),m nk , in Tables S1 and S2. 

 

 Number of persons in household, n 

C
as

es
 in

 h
ou

se
h

ol
d

, m
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 17 
0 207 807 767 703 436 288 141 113 45 22 10 10 2 2 0 
1 37 228 351 296 218 136 91 32 18 11 3 2 1 0 0 
2  91 140 211 161 84 47 35 20 6 1 1 0 0 1 
3   84 91 81 76 42 24 9 6 1 0 1 0 0 
4    77 65 41 32 27 5 1 3 2 0 0 0 
5     56 28 36 13 8 7 3 0 0 0 0 
6      27 21 13 5 2 0 2 0 0 0 
7       24 12 3 9 0 1 0 0 0 
8        15 4 6 0 0 1 0 0 
9         0 2 2 2 0 0 0 
10          2 2 1 0 1 0 
11           0 1 0 0 0 
12            1 0 0 0 

 

Table S1 - the distribution households according to size and number of influenza cases, based on the 
canvass in Baltimore  
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 Number of persons in household, n 
C

as
es

 in
 h

ou
se

h
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, m

 

 1 2 3 4 5 6 7 8 9 10 11 12 

0 17 58 67 60 35 15 10 5 1 1 1 1 
1 3 26 34 17 7 3 6 0 0 1 0 0 
2  14 16 16 7 6 4 1 0 0 0 0 
3   7 6 7 4 1 1 1 0 0 1 
4    5 15 4 4 3 0 2 0 0 
5     10 2 3 1 1 1 0 1 
6      2 2 0 0 1 0 0 
7       3 3 1 0 1 0 
8        1 4 1 2 0 
9         1 0 0 0 
10          0 0 0 
11           0 0 
12            0 

 

Table S2 – the distribution households according to size and number of influenza cases, based on the 
canvass in Frederick  

The data from Baltimore are plotted in Fig. 1B, along with some summary statistics. Here (Fig S1) we 
show the data plotted for both Baltimore and Frederick for direct comparison. 

0%

25%

50%

75%

0%

25%

50%

75%

100%

1 2 3 4 5 6 7 8 9 10 11 12

A
tta

ck
 ra

te
s

Pr
op

or
tio

n 
of

 h
ou

se
ho

ld
s

Household size

0%

25%

50%

75%

0%

25%

50%

75%

100%

1 2 3 4 5 6 7 8 9 10 11 12

A
tta

ck
 ra

te
s

Pr
op

or
tio

n 
of

 h
ou

se
ho

ld
s

Household size  

Figure S1 – For each household size, the bars show the proportion of households recording 0, 1, 2, etc... 
cases, highlighted in darkening shades of gray. a, is identical to Fig. 1b, while b shows the data for 
Frederick. The black symbols show the mean attack rate for each household size, while the open symbols 
show the secondary attack rate. Data from households of size >12 are sparse and are not shown. 

In Figure S1, the mean attack rate for each household size is calculated as 

( ) ( )( ) ( )( ), ,0 0

n n
m n m nm m

AR n mk n k
= =

= å å , while the secondary attack rate is calculated as 

( ) ( ) ( )( ) ( ) ( )( ), ,1 1
1 1

n n
m n m nm m

SAR n m k n k
= =

= - -å å . 
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The largest household sampled was of size max 17n = . The number of households sampled was 

( )
max

,1 0

n n
H m nn m
N k

= =
= å å , while the number of people sampled was ( )

max

,1 0

n n
m nn m

N n k
= =

= å å . The 

total number of cases reported was ( )
max

,1 0

n n
m nn m

M mk
= =

= å å . For Baltimore: 6,753HN = , 

28,977N = and 7,140M = ; for Frederick: 534HN = , 2,207N =  and 695M = .  

The distribution of household sizes is denoted ( ) ( ),0
1 /

n
H m nm

pr n N k
=

é ù =ë û å .  

 

Figure S2 – the distribution of households plotted by size for Baltimore (dark bars, left axis) and 
Frederick (light bars, right axis).  

Based on this distribution, the mean household size is max

1
/

n
Hn

E n n pr n N N
=

é ù é ù= =ë û ë ûå . In Baltimore, 

the mean household size is 4.29E né ù =ë û  while in Frederick it is 4.13E né ù =ë û .  The probability that an 

individual randomly chosen from the population lives in a household of size n , denoted f né ùë û , is given by  

the size-biased household size distribution, prf n n n E né ù é ù é ù=ë û ë û ë û .  

The estimated overall attack rate, AR /M N= , is AR 24.6%=  (95% confidence interval (c.i.) [24.2%-

25.2%]) for Baltimore and AR 31.5%=  (95% c.i. [29.6%- 33.5%]) for Frederick. 

The original report of the study (2) gave 33,776N = , 7, 868M =  for Baltimore and 2,420N = , 

777M =  for Frederick (from Table 1 in (2)).  The data reported in Document S1 thus does not include 
all the households in the original report. The size of the data in Document S1 represent 85.8%, 90.7%, 
91.2% and 89.4% of the original published study’s sample sizes, respectively; the inclusion criteria from 
the original published reports are unclear.  The attack rates in the original report were similar to those 
derived from the present data, i.e. AR 23.3%=  for Baltimore  and AR 32.1%=  for Frederick estimated 
in (2).  
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S2. The Reed-Frost transmission model 

The Reed-Frost model is formulated in discrete generations of infection (7). The model describes the 
spread of an infection which generates sterilizing immunity within a closed population, and is defined by 
two rules. The first is that no one is re-infected. The second is that, if susceptible, there is a constant 
probability of being infected by each infectious individual in the previous generation. This probability, 
denoted p , is sometimes known as the susceptible-infectious transmission probability, and 1q p= - is 

known as the escape probability.  Confusingly, p  is sometimes also known as the secondary attack rate; 

here we reserve secondary attack rate for the total proportion of the household which is infected following 
the introduction of an infectious case. 

These rules lead to a chain binomial model of the number of new infections in each generation. Let t  

denote the generation of infection ( )0,1,2t =  , and ts  and ti denote the number of susceptible and 

infectious individuals, respectively. The probability that there are 1ti + infectious individuals in the next 

generation is then  

 ( ) 1 1

1
1

pr 1
t t t

t t
i s it i i

t
t

s
i q q

i
+ +-

+
+

æ ö÷ç é ù é ù÷ç= -÷ç ê ú ê ú÷ ë û ë û÷çè ø
 [1] 

and the number of susceptible individuals is reduced to 1 1t t ts s i+ += - . For small population sizes, as in 

households, this model can be solved to give closed equations for distribution ( )0 0,s i
mP of the final number 

infected, 0m s s¥= - , with 0s and 0i  initial susceptibles and infecteds, respectively (8).    

The usefulness of this simple discrete generation model is that it can represent far more complex infection 
processes due to a fundamental superposition principal for epidemics, which states that the order in which 
‘infectious exposures’ take place in an epidemic does not affect the final number of individuals infected 
(8, 9). An ‘infectious exposure’ refers to an event which leads to infection if and only if the recipient of 
the exposure is susceptible. The discrete-generation Reed-Frost model can thus be viewed as a convenient 
mathematical construct used to compute the final size of more complex real-time outbreaks.  

More precisely, given a fixed probability of infectious exposure from outside the household ( )1 Q- for 

each household member, and a particular distribution of within‐household infectiousness, the distribution 
of final sizes can be correctly calculated on the  assumption that all outside potentially infectious 
exposures happen simultaneously and before any within‐household transmission, even if in fact they 
occur at different times and possibly after there has been within‐household transmission. 

The initial number infected 0i  can thus be chosen to represent the number of individuals infected outside 

of the household, at any stage in the epidemic. Given the definition of Q above, the probability 

distribution of initial values 0i  in a household of size n is given by the binomial distribution  
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 ( ) 0 0

0
0

1
i n in

pr i Q Q
i

-æ ö÷ç é ù é ù÷ç= -÷ç ë û ë û÷÷çè ø
 [2] 

and the initial number of susceptibles is 0 0s n i= - .  Our model is not ‘closed’, in the sense that we do 

not link the escape probability Q  to the number of people infected, as in (10).  

The predicted probability distribution 0,n s
mF  for the final number of cases, m , in a household of size 

n with 0s  initial susceptible individuals can be obtained as a function of the parameters Q  and q  which 

quantify the intensity of between and within household transmission, respectively7,9-11. Several analytical 

approaches exist for determining the final size distribution 0,n s
mF  for this model, but we use the easily 

solved upper triangular system of equations 

 ( ){ }00 00 0 ,
0

0

  for   0, ,
k

m s kn s s k
m

m

s s m
F q Q k s

k k m
- -

=

æ ö æ ö-÷ ÷ç ç÷ ÷ç ç= = ¼÷ ÷ç ç÷ ÷-÷ ÷ç çè ø è ø
å  [3] 

S3. Some generalizations of the Reed-Frost model 

The model was extended to incorporate additional features of influenza transmission which we wanted to 
test against these data.  

3.1. Heterogeneous infectiousness 

The first generalization of the basic Reed-Frost model which we considered was to allow for intrinsic 
variability in individuals’ overall infectiousness, reflecting differences in viral shedding, duration of 
infectiousness, and contact rates. A convenient formalism is to specify a distribution for the cumulative 

infection hazard to each other member of the household, denoted 0nh > , possibly dependent on the size 

n of the household. The escape probability from an infected individual is ( ) ( )expn nq h h= - , and the 

susceptible-infectious transmission probability is ( )SITP 1n nq h= - . The probability distribution of h  is 

denoted ( )pr h . Equation [3] generalizes to  

 ( ){ }0 00 0 ,
0 0

0

  for   0, ,
k

mn s s k
m n

m

s s m
F Q s k Q k s

k k m
f -

=

æ ö æ ö-÷ ÷ç ç é ù÷ ÷ç ç= - = ¼÷ ÷ç ç ë û÷ ÷-÷ ÷ç çè ø è ø
å  [4] 

 where ( ) ( )expn nx E h xf é ù= -ë û  is the moment generating function of the distribution of hazards in 

households of size n  (8, 10-12) and we have now made the final size distribution 0,n s
mF Qé ùë û  an explicit 

function of Q  for reasons apparent below.  Note that the susceptible-infectious transmission probability is 

related to the moment generating function by ( )SITP 1 1n nf= - . 
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To ensure a relatively general range of possibilities, we assume that the cumulative hazard nh  is 

distributed as a Gamma distribution with mean nB  and shape parameter k , i.e.  

 ( )
( )

( ) ( )

1 exp /

/

k
n

k
n

h hk B
pr h

B k k

- -
=

G
 [5] 

This has moment generating function  

 ( )
k

n
n

k
x

k xB
f

æ ö÷ç ÷= ç ÷ç ÷ç +è ø
 [6] 

The function nB  may be equal to a constant parameter, i.e. nB b= , or may be specified as a function of 

household size, as below.  

3.2. Household size dependence of infectiousness 

Previous studies have indicated that the infection hazard for influenza may be dependent on the size of the 
household (13, 14).   To reflect this possibility, we allowed for a decreasing function of the form 

nB nab= . a  is a continuous coefficient which measures how steeply the transmission hazard 

decreases as a function of household size (if 0a > ); 0a =  corresponds to density-dependent 
transmission, while 1a =  corresponds to frequency-dependent transmission.  

Given these two model extensions, the standard Reed-Frost model is recovered when 0a =  and 
k  +¥ , so that the transmission hazard h  is constant and independent of household size, i.e. h b= . In 

this case, the moment generation function becomes  

 ( )R-F
xx qf =  [7] 

where ( )expq b= - , in which case equation [4] reduces to [3].  

3.3.  Prior immunity 

The epidemic of H1N1 influenza virus in the autumn of 1918 may have been preceded by a spring wave 
of transmission with a similar virus with lower pathogenicity which could have generated immunity in 
part of the population (15, 16). It is also possible that resistance to infection could be generated by cross-
specific immunity to other influenza (17) or non-influenza viruses.  

To model this, we considered inclusion of an earlier unobserved epidemic, or series of epidemics, which 
generate prior immunity in the population. For parsimony, this was modelled as being identical to the 
main studied autumn wave in terms of within household transmission, but with a separate degree of 
outside exposure to reflect the extent of prior immunity. Thus, the number of individuals with prior 
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immunity, denoted l , in households of size n  was distributed according to ,
prior

n n
lF Qé ù

ë û (given by 

equation [4]). Allowing for prior immunity results in a distribution of final cases in the autumn wave, 

denoted 0,n s
mR  given by  

 
0

00 0
,, ,

prior
0

s m
n sn s n s l

m m l
l

R F Q F Q
-

-

=

é ùé ù= ë û ë ûå  [8] 

3.4.  ‘Protected’ or asymptomatic uninfectious individuals 

The next extension of the model allowed for a proportion of individuals prp to be either protected against 

infection by a mechanism not related to previous influenza transmission, or if infected, to remain un-
infectious and asymptomatic.  Such individuals were deemed removed from transmission in both the 
spring and autumn waves of transmission. Allowing for this, the distribution of cases becomes 

 ( )
0

0 0, ,
pr

0

Bin , ,
s m

n s n s r
m m

r

S r p n R
-

-

=

= å  [9] 

Where ( ) ( ) ( )Bin , , 1
n in i

ii p n p p
-

= -  is the standard Binomial probability distribution.  

3.5.  Asymptomatic infectious individuals 

Next, we allowed for proportion asxp of infected infectious individuals to be asymptomatic (at least to the 

extent of not being recorded in the Frost survey). The distribution of recorded cases is then modified to   

 ( )
0

00
,,

asx
0

Bin , ,
s m

n sn s
m m t

t

T t p m t S
-

+
=

= +å  [10] 

Note that this model can also be used to represent <100% reporting of cases, as asymptomatic infectious 
cases could also be thought of as symptomatic cases which were not reported. 

3.6.  Non-complying households 

Finally, we allowed for a proportion com1 p-  of households to either be non-compliers (in the sense of 

reporting nil cases for the whole household irrespective of outcome) or to be fully removed from the 
epidemic (due for example to effective quarantine measures, social distance from the epidemic or 
heritable or shared features of individuals in households).  The final distribution of reported cases is then 
given by  

 
0 0

0 0

, ,
0 com com 0

, ,
com

1

      for    1

n s n s

n s n s
m m

U p p T

U p T m

= - +

= >
 [11] 
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3.7.  The full model 

The full model was thus characterized by 8 parameters: the outside escape probabilityQ , the within-

household infection hazard parameters b , a  and k , the escape probability from a virus generating prior 

immunity priorQ , the proportion asymptomatic uninfectious/protected prp  , the proportion asymptomatic 

infectious asxp  and the proportion of complying households comp , and from these predicted the final 

distribution of observed cases in households given by ,n n n
m mP U= .    

We constructed 26=64 variants of the full model, representing all possible combinations of the extensions 
to the basic model considered. To name each model, we use a code to denominate each assumption 
included. All the models contain the parameters Q  and b  needed to define the Reed-Frost model. 

• V denotes that k  is finite, whereas by default k  +¥  (corresponding to moment generating 
function [7]). 

• P denotes that 0a ³ , whereas by default 0a = . 

• S denotes that prior 1Q £ , whereas by default  prior 1Q = . 

• X denotes that pr 0p ³ , whereas by default pr 0p = .  

• A denotes that asx 0p ³ , whereas by default asx 0p = .  

• R denotes that com 1p £ , whereas by default com 1p =  . 

So for example the model variant PXR had k  +¥  (fixed), 0a ³ (variable), prior 1Q =  (fixed), 

pr 0p ³  (variable), asx 0p =  (fixed) and com 1p £  (variable). All models had the basic Reed Frost 

parameters 1Q £  (variable) and 0b ³  (variable).  

S4. Method for fitting the models 

The data are a contingency table of outcomes, i.e. the number of households of size n  reporting m  cases, 

denoted ( ),m nk . We define Was the set of integers { },m n such that the contingency table is non-zero, i.e. 

such that ( ), 0m nk > .  

Each outcome can be viewed as an independent realization of a transmission experiment, and thus the 
likelihood describing the goodness of fit of the model to these data is 

 ( ) ( )

{ }

,

,

m nkn
m

m n

L P
ÎW

=   [12] 
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To obtain a more objective measure of the goodness of fit, we compared this with the saturated 
likelihood, given by  

 ( ) ( )

{ }

,

sat
,

m nkn
m

m n

L O
ÎW

=   [13] 

where ( ) ( ), ,0
/

nn
m m n j nj
O k k

=
= å  is the observed distribution of final outbreak sizes, and defined the 

corresponding deviance 

 ( ) ( ) ( )( )
{ }

,
,

Dev 2 ln lnn n
m n m m

m n

k O P
ÎW

= -å  [14] 

The model was fit by minimizing Dev  with respect to all the free parameters, which is equivalent to 
maximizing the likelihood L . This was repeated for each of the 64 possible models. The best possible fit 
any model could achieve would result in Dev 0= .  

The number of parameters which were varied to fit the model to the data (#params ) changed from 

model to model, and ranged from 2 for the basic Reed Frost model to 8 for the full model denoted 
PVRAXS. The number of degrees of freedom in the data (#dof ) was estimated as the number of non-

zero entries in the contingency table ( ),m nk , and was 89 for the Baltimore sample and 60 for the Frederick 

sample.  

The model equations were solved and the optimization performed using Mathematica  (18).By default, the 
deviance was minimized using the ‘FindMaximum’ function with plausible initial guesses, which was 
quick and efficient for these models. To check for the robustness of the optimization, a selection of model 
fits were repeated using the ‘NMaximize’ function with default options and widest possible parameter 
ranges. In no cases did this improve the model fit, indicating that the optimization was robust and thus 
that the likelihood must have a relatively simple dependence on the parameters.  

The only cases in which either some dependence on the initial parameters when using ‘FindMaximum’ 
and/or some difficulty in using ‘NMaximize’ was detected were for models containing both prior 
immunity (S) and misreporting (R), indicating a degree of trade-off between the corresponding 
parameters in the likelihood.  

All the characteristics and parameters of the best fit models are described in Table S3 (below).    

S5. Method for model comparison  

Before performing a more rigorous model comparison exercise, the models were classified into three 
broad groups based on some simple criteria. Models containing the assumption of misreporting or lack of 
compliance with the study (assumption R) were treated separately, as these model variants were viewed 
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primarily as a sensitivity analysis to understand the robustness of the model to problems with the original 
data.  

It was also readily apparent that there was very little statistical support for the presence of asymptomatic 
infection (whether infectious (A) or uninfectious (X)). Therefore models containing these assumptions 
were grouped separately from the baseline set of models.  

The different models were compared by computing the adjusted Akaike’s information criterion(19) 

(denoted AICc ), defined as  

 ( ) ( ) #dof
AIC min Dev 2 #params constant

#dof #params 1c

æ ö÷ç= + ÷ +ç ÷ç ÷è ø- -
 [15] 

where #parameters  is the number of parameters varied to minimise Dev , ( )min Dev  is the value of 

Dev  obtained for the best fit model, and the constant is irrelevant ( ( )2 ln satL= - , the same for each 

model).  

Of the basic models, the best fitting model (with the lowest AICc , defined as AICrefc ), was model PVS, 

taken as our reference best fit model. A measure of the quality of fit relative to this reference was given 
by  

 AIC AIC AICrefc c cD = -  [16] 

The degree of support for this model over any of its simpler variants was very strong ( AIC 22cD > , see 

Table S3). None of the models with asymptomatic infection fitted better than this (all had AIC 0cD > ) 

indicating a lack of support for these models.  

Models which included misreporting (R) could fit better than the reference model ( AIC 0cD < ), though 

there was still strong support for the hypotheses represented by P, V and S.   

S6. Alternative measures of goodness of fit 

To increase our understanding of the quality of fit of the different models, and their different explanatory 
power, we computed two alternative deviance measures based on summary statistics of the data. Note that 
these do not contain extra information relative to the deviance used to fit the model, but are used to 
explain which aspects of the data are best fit by different model variants. The first deviance was based on 
the proportion of households which experienced at least one case as a function of household size (the 

household attack rate, HARn ), given by  



15 

 

 

 

 
( )

( )

,
1

,
0

n

m n
m

n n

m n
m

k

HAR

k

=

=

=
å

å
 [17] 

For models without prior immunity or misreporting, the predicted household attack rate is given by  

  ( )HAR 1 1
n

n Q= - -  [18] 

which is a monotonically increasing function of household size. If misreporting is present, this becomes 
modified to   

  ( )( )comHAR 1 1
n

n p Q= - -  [19] 

which tends asymptotically to com 1p < . If prior immunity is present, then this becomes the more 

complex expression   

  ( )( ),
prior

0

HAR 1 1
n

mn n
n m

m

F Q Q
=

é ù= - -ë ûå  [20] 

where ,n s
mF Qé ùë û  is defined in equation [4] and which need not increase monotonically as a function of 

household size. The agreement between data and prediction is assessed by the deviance defined in 
analogy with [14] to be  

 ( ) ( ) ( )( ) ( ) ( ) ( )( )HAR 0, ,
1

Dev 2 ln 1 HAR ln 1 HAR ln HAR ln HAR
n

n nn n m n n
n m

k k
=

é æ ö ù÷çê ú÷ç= - - - + -÷çê ú÷ç ÷çê úè øë û
å å [21] 

The second deviance measure was defined based on the number of cases conditional on at least one case 
having occurred within the household, and thus tested the ability of the model to describe the distribution 

of the number of cases within infected households. We define the subset 'W Ì W  of pairs { },m n  such 

that 1m ³ . The deviance is  

 ( )
{ }

IH ,
, '

1 1

Dev 2 ln ln
n n
m m

m n n nn nm n s ss s

O P
k

O PÎW
= =

é æ æ ö æ ööù÷ ÷÷ç ç çê ú÷ ÷÷ç ç ç÷ ÷÷ç ç ç= -ê ú÷ ÷÷ç ç ç÷ ÷÷ê úç ç ç÷ ÷÷÷ ÷÷ç ç çè è ø è øøê úë û
å

å å
 [22] 

Both these deviance measures are included in Table S3. In comparing different models, it is apparent that 
prior immunity provides model fits which optimally describe the household attack rate, but that the 
distribution of cases within a household is best described by models with misreporting.  
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S7. Results of the model fitting and model comparison  

Model Δ 
AICc 

AICc K Q β k α Qprior pasx ppr pcom SITP3 SITP9 Dev Dev IH Dev HAR † 

PVS 0.00 173.16 5 0.80 0.37 0.94 0.35 0.88    0.20 0.15 162.45 154.08 29.30 X 
PS 22.91 196.07 4 0.80 0.33  0.33 0.88    0.20 0.15 187.60 179.92 27.56 X 
VS 24.35 197.51 4 0.80 0.20 0.76  0.88    0.17 0.17 189.04 180.49 26.51 X 
S 57.95 231.11 3 0.80 0.18   0.89    0.16 0.16 224.83 214.94 25.97 X 
PV 58.28 231.44 4 0.85 0.42 1.00 0.52     0.19 0.12 222.97 152.43 97.57 X 
P 115.84 289.00 3 0.86 0.37  0.49     0.19 0.12 282.72 211.34 98.33 X 
V 115.84 289.00 3 0.85 0.17 0.86      0.14 0.14 282.72 211.34 98.33 X 
ReedFrost 188.35 361.51 2 0.85 0.15       0.14 0.14 357.37 286.90 97.60 X 
 

PVAS 2.30 175.46 6 0.80 0.37 0.94 0.35 0.88 0.00   0.20 0.15 162.45 154.08 29.30  
PVXS 2.30 175.46 6 0.80 0.37 0.94 0.35 0.88  0.00  0.20 0.15 162.45 154.08 29.30  
PVAXS 4.65 177.81 7 0.80 0.37 0.94 0.35 0.88 0.00 0.00  0.20 0.15 162.45 154.08 29.30  
PAS 25.16 198.32 5 0.80 0.33  0.33 0.88 0.00   0.20 0.15 187.60 179.92 27.56  
PXS 25.16 198.32 5 0.80 0.33  0.33 0.88  0.00  0.20 0.15 187.60 179.92 27.56  
VXS 25.20 198.36 5 0.79 0.23 0.65  0.88  0.06  0.18 0.18 187.64 179.41 26.53 X 
VAS 26.59 199.75 5 0.80 0.20 0.76  0.88 0.00   0.17 0.17 189.04 180.49 26.51  
PAXS 27.45 200.61 6 0.80 0.33  0.33 0.88 0.00 0.00  0.20 0.15 187.60 179.92 27.56  
VAXS 27.50 200.66 6 0.79 0.23 0.65  0.88 0.00 0.06  0.18 0.18 187.64 179.41 26.53  
AS 60.14 233.30 4 0.80 0.18   0.89 0.00   0.16 0.16 224.83 214.94 25.97  
XS 60.14 233.30 4 0.80 0.18   0.89  0.00  0.16 0.16 224.83 214.94 25.97  
PVA 60.52 233.68 5 0.85 0.42 1.00 0.52  0.00   0.19 0.12 222.97 152.43 97.57  
PVX 60.52 233.68 5 0.85 0.42 1.00 0.52   0.00  0.19 0.12 222.97 152.43 97.57  
AXS 62.39 235.55 5 0.80 0.18   0.89 0.00 0.00  0.16 0.16 224.83 214.94 25.97  
PVAX 62.82 235.98 6 0.85 0.42 1.00 0.52  0.00 0.00  0.19 0.12 222.97 152.43 97.57  
VX 111.04 284.20 4 0.83 0.22 0.69    0.12  0.18 0.18 275.73 204.61 98.08 X 
PA 111.40 284.56 4 0.86 0.37  0.49  0.00   0.19 0.12 276.09 204.92 98.38  
PX 111.40 284.56 4 0.86 0.37  0.49   0.00  0.19 0.12 276.09 204.92 98.38  
VAX 113.28 286.44 5 0.83 0.22 0.68   0.00 0.12  0.18 0.18 275.73 204.57 98.13  
PAX 113.64 286.80 5 0.86 0.37  0.49  0.00 0.00  0.19 0.12 276.09 204.92 98.38  
VA 118.03 291.19 4 0.85 0.17 0.86   0.00   0.14 0.14 282.72 211.34 98.33  
A 190.49 363.65 3 0.85 0.15    0.00   0.14 0.14 357.37 286.90 97.60  
X 190.49 363.65 3 0.85 0.15     0.00  0.14 0.14 357.37 286.90 97.60  
AX 192.68 365.84 4 0.85 0.15    0.00 0.00  0.14 0.14 357.37 286.90 97.60  
 

PVRS -13.30 159.86 6 0.75 0.38 0.29 0.45 0.94   0.78 0.16 0.11 146.85 134.66 34.09 X 
PVR -12.53 160.63 5 0.77 0.39 0.27 0.55    0.74 0.15 0.09 149.92 136.67 36.08 X 
PVRAS -10.94 162.22 7 0.75 0.38 0.29 0.45 0.94 0.00  0.78 0.16 0.11 146.86 134.67 34.11  
PVRXS -10.94 162.22 7 0.75 0.38 0.29 0.45 0.94  0.00 0.78 0.16 0.11 146.86 134.67 34.11  
PVRA -10.23 162.93 6 0.77 0.39 0.27 0.55  0.00  0.74 0.15 0.09 149.92 136.67 36.08 X 
PVRX -10.23 162.93 6 0.77 0.39 0.27 0.55   0.00 0.74 0.15 0.09 149.92 136.67 36.08 X 
PVRAXS -8.53 164.63 8 0.75 0.39 0.29 0.45 0.94 0.00 0.00 0.78 0.16 0.11 146.85 134.63 34.12  
PVRAX -7.88 165.28 7 0.77 0.39 0.27 0.55  0.00 0.00 0.74 0.15 0.09 149.92 136.67 36.07  
VRS 1.80 174.96 5 0.74 0.18 0.25  0.92   0.76 0.13 0.13 164.24 150.97 33.47  
VRXS 3.38 176.54 6 0.73 0.20 0.23  0.92  0.03 0.77 0.14 0.14 163.52 150.66 33.04  
VRAS 4.10 177.26 6 0.74 0.18 0.25  0.92 0.00  0.76 0.13 0.13 164.24 150.97 33.47  
VRAXS 5.71 178.87 7 0.73 0.21 0.23  0.92 0.00 0.03 0.77 0.14 0.14 163.51 150.50 33.14  
VRX 7.89 181.05 5 0.72 0.24 0.16    0.12 0.72 0.13 0.13 170.33 157.77 34.81 X 
VRAX 10.19 183.35 6 0.72 0.23 0.16   0.00 0.12 0.72 0.13 0.13 170.34 157.78 34.82  
VR 12.25 185.41 4 0.76 0.15 0.23     0.73 0.11 0.11 176.94 164.37 34.97  
VRA 14.12 187.28 5 0.75 0.17 0.20   0.03  0.72 0.11 0.11 176.56 164.33 34.55 X 
PRS 25.16 198.32 5 0.80 0.33  0.33 0.88   1.00 0.20 0.15 187.60 179.92 27.56  
PRAS 27.45 200.61 6 0.80 0.33  0.33 0.88 0.00  1.00 0.20 0.15 187.60 179.92 27.56  
PRXS 27.45 200.61 6 0.80 0.33  0.33 0.88  0.00 1.00 0.20 0.15 187.60 179.92 27.56  
PRAXS 29.81 202.97 7 0.80 0.33  0.33 0.88 0.00 0.00 1.00 0.20 0.15 187.60 179.92 27.57  
RS 60.14 233.30 4 0.80 0.18   0.89   1.00 0.16 0.16 224.83 214.94 25.97  
RAS 62.39 235.55 5 0.80 0.18   0.89 0.00  1.00 0.16 0.16 224.83 214.94 25.97  
RXS 62.39 235.55 5 0.80 0.18   0.89  0.00 1.00 0.16 0.16 224.83 214.94 25.97  
RAXS 64.69 237.85 6 0.80 0.18   0.89 0.00 0.00 1.00 0.16 0.16 224.83 214.94 25.97  
PR 104.48 277.64 4 0.83 0.34  0.48    0.91 0.18 0.11 269.17 222.40 72.83  
PRA 106.72 279.88 5 0.83 0.34  0.48  0.00  0.91 0.18 0.11 269.17 222.40 72.82  
PRX 106.72 279.88 5 0.83 0.34  0.48   0.00 0.91 0.18 0.11 269.17 222.40 72.82  
PRAX 109.02 282.18 6 0.83 0.34  0.48  0.00 0.00 0.91 0.18 0.11 269.17 222.40 72.83  
R 169.16 342.32 3 0.82 0.14      0.86 0.13 0.13 336.04 303.68 57.51  
RA 171.35 344.51 4 0.82 0.14    0.00  0.86 0.13 0.13 336.04 303.68 57.51  
RX 171.35 344.51 4 0.82 0.14     0.00 0.86 0.13 0.13 336.04 303.68 57.51  
RAX 173.60 346.76 5 0.82 0.14    0.00 0.00 0.86 0.13 0.13 336.04 303.68 57.51  

 

Table S3 – The table summarizes the goodness of fit for all of the possible extensions of the basic Reed-
Frost model. The table is divided into three sections: the first are the basic models considered in the main 
text; the second set are extensions of this first set which allow for the different types of asymptomatic 
infection; the third set allows for the possibility of systematic misreporting by household. The statistic 
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used to compare the models, AICcD , is recorded relative to the first two sets of models, hence the 

negative values in the third set, representing models that fit better than baseline if one allows for 
systematic misreporting. Only fitted values of parameters are shown; default values for non-fitted 

parameters are k  ¥ , 0a = , prior 1Q = , asx 0p = , pr 0p =  and com 1p = . †By default, the likelihood 

was optimized using the local optimizer ‘FindMaximum’ in Mathematica (18) with plausible initial 
guesses for the parameters. The fit of the marked models were checked using the global optimizer 
‘NMaximize’ with default options. In no cases did this result in an improved fit, suggesting that 
‘FindMaximum’ used an acceptable optimization algorithm for this task.  

 

S8. Confidence intervals  

Confidence intervals were obtained from the univariate likelihood profiles. For the model analyzed in the 
main text, confidence intervals for were obtained for the PVS model (Table 1) ignoring the possible effect 

of asymptomatic infection. Confidence intervals for the parameter asxp  determining the proportion of 

infections that are asymptomatic and infectious were obtained for the PVAS model. Similarly, confidence 

intervals for prp  were obtained for the PVXS model.  

 

S9. Best fit parameters with 95% confidence intervals 

9.1. The basic Reed-Frost model 

Symbol Description Best estimate and 95% 
Confidence Interval  

Q  Probability of not being exposed outside 
of the household at any stage in the fall 
epidemic wave 

0.85 
(0.85-0.86) 

p Susceptible-infectious transmission 
probability 

0.14 
(0.13-0.15) 

Table S4 – best fit parameters and 95% confidence intervals for the basic Reed-Frost model 



18 

 

 

 

 

9.2. The PVS model 

Symbol Description Best estimate and 95% 
Confidence Interval  

Q  Probability of not being exposed outside 
of the household at any stage in the fall 
epidemic wave 

0.80 
(0.78-0.82) 

β  Mean transmission parameter for within-
household transmission 

0.37 
(0.29-0.48) 

α  Coefficient for declining transmission as 
function of household size 

0.35 
(0.22-0.49) 

k  Shape coefficient for variable individual 
infectiousness 

0.93 
(0.59-1.72) 

priorQ  Probability of not being exposed outside 
the household during the spring wave of 
the epidemic  

0.88 
(0.85-0.91) 

prp  Proportion of individuals who are 
asymptomatic and not infectious† 

0.00 
(0.00-0.06) 

asxp  Proportion of individuals who are 
asymptomatic and fully infectious† 

0.00 
(0.00-0.03) 

†parameters only included in an extended model. 

Table S5 – best fit parameters and 95% confidence intervals for the PVS model 

 

 



19 

 

 

 

S10. Comparison of the model fit for several different models  
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Figure S 3 – Plots showing the best fitting model for all the model variants included in the first part of 
Table S3 using the same display scheme as in Figure 1 and Figure S1. The panels ordered by increasing 
goodness of fit: a, data from Baltimore; b, Reed Frost model; c, model V; d, model P; e, model PV; f, 
model S; g, model VS; h, model PS and i, model PVS.  
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S11. Alternative visual representations of the results  

The main results from the best fit models are presented in Figures 1 and 2. Alternative graphs give some 
additional insights into the nature of the fit.  
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Figure S4 – the distribution of cases within households of different sizes in Baltimore (bars) and best fit 
Reed-Frost model (circles). Exact Binomial 95% confidence intervals are plotted for the cases in 
household as an indication of stochastic natural variation in random re-samples, included for indication 
only since goodness of fit is assessed by a full multinomial likelihood.  
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Figure S5 – as Figure S4 –, but with the circles representing the prediction of the better fitting PVS 
model instead. The PVR model is not included as the difference in goodness of fit relative to the PVS 
model is not discernible to us using these graphs.   

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12

Ho
us

eh
ol

d 
at

ta
ck

 ra
te

Household Size
 

Figure S6 –The household attack rate: the proportion of households in Baltimore experiencing at least 
one case (bars with exact Binomial 95% confidence intervals) and predictions of the best fit Reed-Frost 
model (triangles), PVS model (circles) and PVR model (squares). 
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Figure S7 – The individual attack rate: the proportion of individuals with reported infection in Baltimore, 
stratified by size of household. Symbols are as in Figure S6 . 
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Figure S8 – The secondary attack rate: the proportion of secondary individuals with reported infection in 
households that experienced at least one case in Baltimore, stratified by size of household. Symbols are 
as in Figure S6 . 

S12. Comparison of the epidemics in Baltimore and in Frederick  

The PVS model was fit to the data from Frederick to obtain a comparison between different epidemics. 
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Symbol Description Baltimore Frederick 
Q  Probability of not being 

exposed outside of the 
household at any stage in the 
fall epidemic wave 

0.80 
(0.78-0.82) 

0.80 
(0.75-0.85) 

β  Mean transmission parameter 
for within-household 
transmission 

0.37 
(0.29-0.48) 

0.51 
(0.25-1.00) 

α  Coefficient for declining 
transmission as function of 
household size 

0.35 
(0.22-0.49) 

0.43 
(0.05-0.80) 

k  Shape coefficient for variable 
individual infectiousness 

0.94 
(0.59-1.72) 

0.94, fixed* 

priorQ  Probability of not being 
exposed outside the household 
during the spring wave of the 
epidemic   

0.88 
(0.85-0.91) 

0.95 
(0.87-1.00) 

 

Table S6 – Comparison of estimated parameters for the canvasses carried out in Baltimore and in 
Frederick (Document S1). *The shape parameter k was kept fixed to the best fit value for the Baltimore 
data as the sample size in Frederick was too small to estimate this reliably.  If k was fitted as a 

parameter, the confidence interval was [ ]1.68,∞ , with the best fit obtained when k → ∞ corresponding 

to constant infectiousness.  

The estimated parameters were very similar. Due to the smaller sample size, it was not possible to obtain 
information on the shape of the offspring distribution in Frederick, and so this was assumed to be similar 
to that estimated in Baltimore. The main difference between the epidemics was the significantly lower 
estimate of the magnitude of the inferred prior spring epidemic. This thus leads us to hypothesise that the 
higher overall attack rate in Frederick  (32.1% versus 23.3% in Baltimore) may have been due to lower 
levels of prior immunity in that population.  

S13. Comparison of the models with and without misreporting  

As can be seen above, models which include systematic misreporting by household (i.e. models including 

R with com 1p £ ) can fit the data better than models which do not include this. The overall best fit model 

is model PVRS, but this model suffers from parameter identifiability issues, due to a trade-off between 
the effect of S and R in the final distribution of cases in households. In the main text, we place most 
emphasis on model PVS which assumes no misreporting, while emphasizing which conclusions are or 
aren’t robust to inclusion of some forms of systematic misreporting. This choice is motivated by the fact 
that models of misreporting can be somewhat arbitrary, and that our choice summarised by equation [11] 
might be one of many. The strengths of the conclusions of this analysis are dependent on the reliability of 
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the original survey. We focus on model PVR which is a form of sensitivity analysis to assumptions about 
misreporting.  

The principal effects of including the effects of possible misreporting were to reduce the estimated 

magnitude of prior immunity ( prior 0.88 0.94Q =   in PVRS) and to increase the estimated degree of 

individual variability in infectiousness ( 0.94 0.29k =   in PVR). From the goodness of fit statistics 
presented in Table S3, we see that the PVR model tends to fit better than the PVS model to data within 
infected households, but less well to data on the proportions of households which actually get infected. A 
full comparison is included in Table S7.  

Symbol Description Best estimate and 95% 
Confidence Interval  

Estimates for PVS 
model for comparison 

Q  Probability of not being exposed outside 
of the household at any stage in the fall 
epidemic wave 

0.77 
(0.75-0.79) 

0.80 
(0.78-0.82) 

β  Mean transmission parameter for within-
household transmission 

0.39 
(0.28-0.57) 

0.37 
(0.29-0.48) 

α  Coefficient for declining transmission as 
function of household size 

0.54 
(0.35-0.75) 

0.35 
(0.22-0.49) 

k  Shape coefficient for variable individual 
infectiousness 

0.27 
(0.19-0.39) 

0.94 
(0.59-1.72) 

ncp  Probability of a household complying 
with the survey (otherwise record zero 
cases)   

0.74 
(0.71-0.79) 

NA 

prp  Proportion of individuals who are 
asymptomatic and not infectious† 

0.00 
(0.00-0.10) 

0.00 
(0.00-0.06) 

asxp  Proportion of individuals who are 
asymptomatic and fully infectious† 

0.00 
(0.00-0.07) 

0.00 
(0.00-0.03) 

 

Table S7 – Best fit parameters for the PVR model with systematic misreporting, and comparison with the 
best fit PVS model.  

S14. Exploring the dependence of infectiousness on household size 

The statistical inference provided strong support for a dependence of infectiousness on household size. 
The model assumed a functional relationship between the transmission hazard and household size of the 

form /nB nab=  where b  is drawn from a distribution. Given this distribution for the parameter b , the 

mean susceptible-infectious transmission probability is given by ( )1nf , where the moment generating 

function f  is defined in equation [6]. This is plotted in Fig. 2b for the best fit model.   

The choice of the assumed functional dependence for infectiousness on household size, namely  

/nB nab= , was based on earlier work (13, 14).  To explore the validity of this functional relationship, 

we considered an alternative non-parametric model where each nB  was considered as an independent 
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parameter, also plotted in Fig 2b. To avoid the problem of parameter over-specification when considering 

confidence intervals for the parameters nB , these were derived only within the subspace of the whole 

parameter space where all the other parameters were kept fixed at their best fit values for the PVS model 
(i.e. those given in Table 1). The agreement between the functional curve and the non-parametric model 
seen in Fig. 2b suggests that the choice of function was acceptable. It would be interesting in future work 

to explore the alternative choice given by ( )1nB n
a

b= -  which provides an alternative interpolation 

between frequency and density dependent transmission (when 0a =  and 1a =  respectively).   

S15. Estimation of the susceptible-infectious transmission probability 

The susceptible-infectious transmission probability is defined as the cumulative probability that an 
infectious individual infects a susceptible individual in a household (assuming that the susceptible 
individual remains susceptible for the duration of the infectiousness of his or her infectious contact). In 

general, it depends on the household size, and is given by ( )SITP 1 1n nf= -  where ( )n xf  is the 

moment generating function of infectiousness defined earlier. In general this will depend on household 
size, and we thus define the susceptible-infectious transmission probability for a randomly chosen 
infected individual as  

 ( )
max

0

SITP 1 1
n

n
n

f nf
=

é ù= - ë ûå  [23] 

where f né ùë û  is the size-biased household size distribution defined earlier. We derived the best estimate for 

this by substituting maximum likelihood parameters into equation [23]. For the Reed-Frost model, 

( ) ( )1 expnf b= -  and so confidence intervals were obtained from the confidence intervals for b . For 

other models, we obtained conservative confidence intervals by substituting lower and upper bounds of 

confidence intervals of the non-parametric estimates of nB described in the previous section into equation 

[23]. 

S16. Exploring the impact of large households on inferred parameters 

Based on the summary statistics used to describe the goodness of fit, it is reasonable to ask whether the 
model inferences are driven by specific differences in the outcome of the epidemic in large households. 
To test this, we analyzed the epidemic within the subset of the sample restricted to households of size 
equal to or less than six. The results were not appreciably different (Table S8), indicating that the inferred 
results were not specifically driven by the outcomes observed in large households. 
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Model Δ 
AICc 

AICc K Q β k α Qprior pasx ppr pcom SITP3 SITP9 Dev Dev IH Dev HAR † 

PVS 0.00 173.16 5 0.80 0.37 0.94 0.35 0.88    0.20 0.15 162.45 154.08 29.30 X 
PS 22.91 196.07 4 0.80 0.33  0.33 0.88    0.20 0.15 187.60 179.92 27.56 X 
VS 24.35 197.51 4 0.80 0.20 0.76  0.88    0.17 0.17 189.04 180.49 26.51 X 
S 57.95 231.11 3 0.80 0.18   0.89    0.16 0.16 224.83 214.94 25.97 X 
PV 58.28 231.44 4 0.85 0.42 1.00 0.52     0.19 0.12 222.97 152.43 97.57 X 
P 115.84 289.00 3 0.86 0.37  0.49     0.19 0.12 282.72 211.34 98.33 X 
V 115.84 289.00 3 0.85 0.17 0.86      0.14 0.14 282.72 211.34 98.33 X 
ReedFrost 188.35 361.51 2 0.85 0.15       0.14 0.14 357.37 286.90 97.60 X 

 

Model Δ AICc AICc K Q β k α Qprior pasx ppr pcom SITP3 SITP9 Dev Dev IH Dev HAR † 

PVS 0.00 27.15 5 0.84 0.39 0.81 0.40 0.90    0.20 0.14 29.15 20.94 8.24  
PV 7.29 34.45 4 0.84 0.40 0.90 0.51     0.18 0.12 36.45 20.58 15.98  
VS 9.55 36.71 4 0.80 0.22 0.82  0.88    0.18 0.18 38.71 30.77 7.84  
PS 20.15 47.31 4 0.80 0.33  0.32 0.86    0.21 0.15 49.31 39.82 9.67  
V 24.61 51.77 3 0.84 0.19 0.88      0.16 0.16 53.77 37.77 16.07  
S 28.97 56.12 3 0.79 0.20   0.86    0.18 0.18 58.12 47.22 10.92  
P 38.93 66.08 3 0.85 0.34  0.46     0.19 0.12 68.08 52.02 16.41  
ReedFrost 58.77 85.93 2 0.85 0.17       0.16 0.16 87.93 72.03 16.20  

 

Table S8 – Best fit parameters for a range of models fitted to the data from Baltimore for all households 
(above) and for households of size less or equal to six (below). Table headings are as in Table S3.  

S17. The offspring distribution in the large population limit 

To compare our model of heterogeneous infection hazards to an earlier study of heterogeneous 
infectiousness in epidemic models (20), we consider the large population limit of our model of within-
household transmission. Heterogeneity is assessed by the variation in the number of offspring (i.e. new 
infections) which each infected individual generates over the total course of infectiousness, called the 
offspring distribution (21). Extending our model to the large population limit, mixing is assumed 

homogeneous and random, and infectious individuals infect others with hazard Eh . This hazard is a 

drawn from a gamma distribution with mean R  and shape parameter k , where R is the individual 

reproduction number and k  is as defined in [5]. Given a hazard Eh , an infectious individual infects a 

number x  of new individuals drawn from the Poisson distribution:  

 ( )
( ) ( )

( )
exp

pr |
1

x
E E

E

h h
x h

x

-
=

G +
 [24] 

Averaging this distribution over the underlying distribution of hazards, the distribution of the number 
infected is given by a negative binomial distribution with mean R  and shape parameter k , i.e. 

 ( )
( )

( ) ( ) ( )
pr

1

x k

x k

x k k R
x

x k k R
+

G +
=

G + G +
 [25] 

In other words, the shape parameter k  which measures the heterogeneity in infectiousness in the model of 
within-household transmission can be directly equated with the shape parameter k  associated with a 
negative binomial offspring distribution which has been estimated in other epidemics and outbreaks (20). 
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S18. Two-group high-spreader/low-spreader model variants  

To test the sensitivity of our analysis to our assumed parametric shape for the offspring distribution, we 
considered an alternative model consisting of a superposition of two Poisson distributions, corresponding 
to a sub-group of the population being more infectious than the rest. This assumption is quite general, but 
can be viewed in a special case as a two class children/adult model in the light of our discussion of age 
structure below.   

In this model variant, there are two possible infection hazards high / nab  and low / nab  which arise with 

probability highp  and high1 p-  respectively. The moment generating function is then  

 ( ) ( ) ( ) ( )2-group high high high lowexp / 1 exp /x p x n p x na af b b= - + - -  [26] 

The standard Reed-Frost model is recovered when 0a = , high 0p =  and lowb b= . We denote by T 

models which include this two-group structure, and consider models PTS and PTR as alternatives to PVS 
and PVR.  
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Symbol Description PTS PVS PTR PVR 
Q  Probability of not being 

exposed outside of the 
household at any stage in 
the fall epidemic wave 

0.81 0.80 
 

0.77 0.77 

α  Coefficient for declining 
transmission as function of 
household size 

0.38 0.35 
 

0.53 0.54 
 

priorQ  Probability of not being 
exposed outside of the 
household in the spring 
wave epidemic 

0.89 0.88 - - 

ncp  Probability of a household 
complying with the survey 
(otherwise record zero 
cases)   

- - 0.76 0.74 
 

β  Mean transmission 
parameter for within-
household transmission 

- 0.37 
 

- 0.39 
 

k  Shape coefficient for 
variable individual 
infectiousness  

- 0.94 
 

- 0.27 
 

highβ  Transmission parameter for 
high infectiousness group 

3.92 - 1.88 - 

lowβ  Transmission parameter for 
low infectiousness group 

0.28 - 0.12 - 

highp  Proportion of individuals 
who are highly infectious 

0.048 - 0.15 - 

Dev  Deviance, a goodness of fit 
measure 

141.00 162.45 152.74 149.92 

cAICD  Comparative goodness of 
fit measure relative to PVS 
model 

-19.15 0.00 
 

-7.41 -12.53 

3SITP  The susceptible-infectious 
transmission probability in 
a household of size 3 

0.20 0.20 0.15 0.15 

9SITP  The susceptible-infectious 
transmission probability in 
a household of size 9 

0.15 0.15 0.10 
 

0.09 

 

Table S9 – Best fit parameters for the two-class PTS and PTR models and PVS and PVR models 
presented for comparison.   

These supplementary sensitivity analyses highlight two aspects of our conclusions. First, our main 
conclusions regarding the low infectiousness and heterogeneity in offspring distribution are robust to 
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consideration of different forms of the model. Second, that the relative support for either a model 
including a spring wave epidemic or a specific form of misreporting is dependent on the details of the 
model chosen. The PTS model is the best fitting of all tested, but relies on a somewhat artificial choice of 
model for the offspring distribution that may a priori be considered implausible.     

S19. Variation in susceptibility  

Most of our model variants are based on considering variation in individuals’ infectiousness, but 
individuals also vary in their susceptibility to infection given exposure. While we do not include this 
explicitly in our models due to the computational challenge involved, we argue on qualitative grounds 
that models involving substantial variability in susceptibility are unlikely to be strongly supported by the 
Frost-Sydenstricker data.  

At one extreme, model variants which include the asymptomatic uninfectious state (models including P 
state) can be also considered as models including a subset of people with zero susceptibility to infection 
(a protected class), and thus an extreme case of variable susceptibility. Almost all these models variants 

receive no support from the data (see estimates of prp in Table S3).  

More generally, the effect of variable susceptibility to infection is to decrease the variance of the 
distribution of the number of final cases in the household(8), and model variants which are favoured in 
the model comparison exercise are ones which increase the variance relative to the basic Reed-Frost 
model. Thus, we hypothesise that if we were to include variable susceptibility in our analysis, we would 
as a result obtain estimates with higher variability in infectiousness to compensate.  

Some variability in susceptibility is likely for all infections, and for influenza, much interest focuses on 
age-dependence. We analyse some complementary data below which shows quite mild variation in 
susceptibility by age compared to studies of influenza in other epidemics.  

S20. Age structure  

One aspect of influenza transmission which has been considered important in many studies is the 
dependence of infection rates on age (see (14, 22-25) and references therein). Either because of mixing 
patterns, biology, or both, children are more susceptible to infection and may also be more infectious 
when infected. While we do not have sufficient data for a full age stratified model of the Frost-
Sydenstricker study, some summary data exist (Document S1). The overall composition of the households 
by age group was recorded, albeit in an incomplete manner. 
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Figure S9 – the distribution of age classes within infected households, stratified by size of the household, 
and excluding the index case in the household.  

We did not discern striking trends in the age distribution apart from the relative rarity of children in 
households of size 2, as might be expected. These were the households which experienced the highest 
susceptible-infectious transmission probabilities.  

The documents also record the age structure in cases subsequent to the original index case in the 
household, from which some information on the age-dependent susceptibility can be gleaned.  

 

Figure S10 – the probability of ultimately being infected within a household when not an index case, 
stratified by age.  

Age-dependent susceptibility does not appear to decline systematically until age 35. This is consistent 
with a hypothesis of some cross-protection arising from infection by viruses circulating between the 1847 
and 1889 influenza pandemics (26).   

To explore whether the inclusion of age structure could modify our results, we modify the two class 
model defined in section S18 to model a two group structure where we divide the population into more 
infectious young individuals (age 19 or less) making up 37.4% of the population (based on the incomplete 
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data summarised in figure Figure S9), and the rest. We use G to denote model variants which include this 
type of age structure. 

Symbol Description PGS PGVS PVS PGR PGVR PVR 
Q  Probability of not 

being exposed 
outside of the 
household at any 
stage in the fall 
epidemic wave 

0.80 0.80 0.80 
 

0.79 0.77 0.77 

α  Coefficient for 
declining 
transmission as 
function of 
household size 

0.36 0.33 0.35 
 

0.61 0.54 0.54 
 

priorQ  Probability of not 
being exposed 
outside of the 
household in the 
spring wave 
epidemic 

0.88 0.88 0.88 - - - 

ncp  Probability of a 
household 
complying with the 
survey (otherwise 
record zero cases)   

- - - 0.80 0.75 0.74 
 

β  Mean transmission 
parameter for 
within-household 
transmission 

- - 0.37 
 

- - 0.39 
 

k  Shape coefficient 
for variable 
individual 
infectiousness  

- 2.46 0.94 
 

- 0.33 0.27 
 

highβ  Transmission 
parameter for high 
infectiousness group 

0.76 0.65 - 1.03 0.67 - 

lowβ  Transmission 
parameter for low 
infectiousness group 

0.13 0.18 - 0.06 0.24 - 

highp  Proportion of 
individuals who are 
highly infectious 

0.37* 0.37* - 0.37* 0.37* - 

Dev  Deviance, a 
goodness of fit 
measure 

167.13 160.52 162.45 176.74 149.73 149.92 

cAICD  Comparative 
goodness of fit 

6.99 2.73 0.00 
 

16.59 -8.06 -12.53 
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measure relative to 
PVS model 

3SITP  The susceptible-
infectious 
transmission 
probability in a 
household of size 3 

0.20 0.20 0.20 0.17 0.15 0.15 

9SITP  The susceptible-
infectious 
transmission 
probability in a 
household of size 9 

0.15 0.15 0.15 0.10 
 

0.09 0.09 

 

Table S10 – Best fit parameters for the two-class age-stratified PGS/PGVS and PGR/PGVR models and 

PVS and PVR models presented for comparison.  *The proportion highp  is fixed to 37.4% , the 

proportion of under 20s estimated in the population.   

As for the two-class model considered in section S18, the main outcome of including age-structure in the 
model, seen in Table S10 is to modify the offspring distribution. This particular modification is not 
statistically supported, which does not of course reject age-related variation in infectiousness, but rather 
indicates that the data we have do not enable us to detect it. Other parameters are not substantially 
modified by these changes in the offspring distribution.   

S21. Time-series analysis 

21.1. The instantaneous individual reproduction number  

The instantaneous reproduction number ( )R t  was introduced in (27) to estimate changes in the 

reproduction number over time from time-series of incident cases in an epidemic. It is one of a number of 
related methods developed to do this (28-30), all of which are equivalent in the case of an exponentially 
growing epidemic (31). The method used here is based on the simplest renewal equation for an epidemic 

(27), determined from the time series of incident cases tI  and with knowledge of the generation time 

distribution, denoted tw . The estimate is given by  

 ( )
1

t
t

t s ss

I
R t

I w-=

=
å

 [27] 

The generation time distribution tw is defined as the distribution of times taken between a person being 

infected and infecting another (defined forwards in time and over all actual transmission events). More 

precisely, tw is the probability of such a time lying in the continuous interval 1,t tù ù-û û .  
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21.2. The instantaneous household reproduction number  

The instantaneous household reproduction number ( )*R t  was also introduced in (27) to generalize the 

concept of reproduction in a way which explicitly accounts for household structure. It is defined as the 
number of households one newly infected household at time tmay be expected to infect over the whole 
duration of the within-household outbreak, should conditions remain the same. It is defined by 
generalizing equation [27] to  

 ( )
*

1

* t
t

t s ss

I
R t

I w-=

=
å

 [28] 

The household generation time distribution *
tw  is defined in (27) as the mean time taken for one 

household to infect another. In this case, it is estimated numerically based on simulating 100,000 
household outbreaks using an algorithm analogous to that described in the supplementary information of 
(27), but adapted for the best-fitting model of within household outbreaks estimated here. Outbreaks are 
assumed to be started by an individual drawn randomly from the susceptible population; prior immunity 

from the spring wave is generated from the best-fitting distribution  ,
prior

n n
lF Qé ù

ë û .    

21.3. Dependence on generation time distribution  

The generation time distribution is difficult to estimate in practice, and few estimates exist for influenza. 

We use the estimates of tw  from adapted from reference (31) (as in (27)) based on seasonal influenza 

which is relatively robust and represents a relative consensus between variable published values (21). 
Estimates were also adapted from (14, 22)  for sensitivity analysis.  

For Choice 1 ((31), (27)), the mean generation time is 2.85 days with standard deviation 0.93 days. For 
Choice 2 (14), the mean generation time is 2.67 days with standard deviation 1.81 days. For Choice 3 
(22), the mean generation time is 5.30 days with standard deviation 4.27 days.  
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Figure S11 – comparison of estimates of the individual reproduction number ( )R t  for three different 

choices of the generation time distribution. The mean values of ( )R t for the period up to 10-Oct are 1.52  

for Choice 1 (used in the main text)(31), 1.45 for Choice 2(14) and 1.77  for Choice 3(22). For the 
subsequent time-period (end of the epidemic wave), the values were 0.80 , 0.79  and 0.61  respectively.  
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Figure S12 – comparison of estimates of the household reproduction number ( )R t  for three different 

choices of the generation time distribution. The mean values of ( )R t for the period up to 10-Oct are 1.79  

for Choice 1 (used in the main text)(31), 1.67 for Choice 2(24) and 2.17  for Choice 3(22). For the 
subsequent time-period (end of the epidemic wave), the values were 0.66 , 0.67  and 0.49  respectively.     

21.4. An improved estimator for the reproduction numbers  

To move beyond point estimates of the reproduction number, we develop a likelihood-based method for 
estimating reproduction numbers. The renewal equation needs to be extended to include stochastic 
variation, so that the likelihood can be defined as the probability of observing the data given the model. A 
stochastic model equivalent to equation [27] is derived by assuming that daily incidence counts are 
distributed around their expectation according to a Poisson distribution, i.e.  

 ( )1
Poisson

t
t t t s ss
I R I w-=å  [29] 

A likelihood for the reproduction numbers is then given by  

 { }( ) ( )1 1
ln

t t
t t t t s s t t s st s s

l R const I R I R Iw w- -= =
é ù= + -ê úë ûå å å  [30] 

Non-smoothed renewal-type estimates of the reproduction number from epidemic time-series typically 
suffer from heavy negative autocorrelation (as seen by large fluctuations in Figure S11 and S12). 

Improved stability of estimates is obtained by reducing the number of time points where tR  can change. 
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For the estimates presented in Figure 3, tR was considered piecewise constant over 10 day intervals, while 

for the estimates presented in Table 1, tR  was assumed constant before and after the 10th October.  In 

both cases estimates were derived by maximum likelihood using equation [30].  

 

S22. Analysis of  transmission of seasonal influenza in modern households  

Two published studies have characterized the transmission of seasonal H3N2 influenza in households (13, 
32, 33). To enable a model-consistent comparison with our results from the 1918 pandemic, we re-analyse 
the data from the Tecumseh (32, 33) and Epigrippe (13) studies here using our model.    

These studies were different from the 1918 study, and different from each other, and thus required the 
model to be adapted and comparisons to be interpreted with caution.  

 Number of persons in household, n 

C
as

es
 in

 
h

ou
se

h
ol

d
, m

  1 2 3 4 
0 45 52 17 16 
1 18 11 4 4 
2  8 3 6 
3   5 0 
4    2 

 

Table S11 - the distribution households according to size and number of influenza cases reported in one 
influenza season, based on the canvass in Tecumseh. These data are extracted from Table 4 in (33) and 
consist of all the households where all individuals have low influenza specific antibody titres prior to the 
study period. Thus in this case the probability of lack of prior immunity didn’t need to be estimated, 
rather it could be assumed =0%. Similarly, this study measured seroconversion, not symptomatic 
infection and thus we did not need to account separately for asymptomatic cases.  

 Number of persons in household, n 

C
as

es
 in

 
h

ou
se

h
ol

d
, m

  2 3 4 5 
1 53 28 31 11 
2 49 24 22 11 
3  23 33 10 
4   18 7 
5    4 

 

Table S12 - the distribution households according to size and number of influenza cases, based on the 
Epigrippe study. In this study  households were followed to detect secondary infections for two weeks 
following the presentation of an index symptomatic influenza case in a general practice surgery (13).This 
study was based on symptoms in secondary cases – we assumed a single index case and that all 
secondary cases has manifested themselves over the two week follow-up period. 
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Because these studies were small, it was not possible to identify as many parameters as in the 1918 study. 

In analyzing both studies, we assume no prior immunity ( prior 1Q = ). The shape parameter is assumed 

fixed to the best fit value in model PVS, i.e. 0.94k = .  

To analyse the Tecumseh study data, the full final distribution without prior immunity, ,n n
mF Qé ùë û  defined 

by equation [4], was used.  The fit parameters were 1.99b = , 1.43a =  and 0.83Q = .    

The Epigrippe study follows an outbreak initiated by an index case, and we thus use the appropriate 

model distribution for outbreaks, i.e. n
mG  defined by

 ( )1
0

1
1    for   0, , 1

k
mn

m
m

n n m
G n k k n

k k m
f

+

=

æ ö æ ö- -÷ ÷ç ç÷ ÷ç ç= - - = ¼ -÷ ÷ç ç÷ ÷-÷ ÷ç çè ø è ø
å  [31] 

(from references (10, 11)). In this case the best fit parameters were 2.43b =  and 1.30a = . Note that 

there may have been some selection bias for more severe symptoms and thus higher infectiousness in 
index cases (14).  

For a more informative comparison with the results from the Frost 1918 study, we compare susceptible-
infectious transmission probabilities stratified by household size, using the non-parametric method 
described in section S14. The results are summarised in Figure 2A.This shows that the estimates of 
susceptible-infectious transmission probabilities for the Frost study in 1918 are lower than comparable 
estimates for more recent studies of seasonal influenza. 

It also highlights that the dependence of the susceptible-infectious transmission probability on household 
size is less marked in 1918 than in these more recent studies. Whether this is due to differences in study 
design, differences in the virus, or secular trends in household mixing patterns is unclear.   

 

S23. Analysis of  H1N1 pandemic influenza transmission in households in 2009  

A recent study has characterized transmission of pandemic H1N1 virus in households in the USA (34). 
Here, we re-analyse these data using our model. The final-size data are summarized below.  

 Number of persons in household, n 

C
as

es
 in

 
h

ou
se

h
ol

d
, m

  2 3 4 5 6 
1 28 34 52 31 11 
2 11 9 13 9 4 
3  4 2 4 0 
4   2 1 1 
5    0 0 
6     0 
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Table S13 - the distribution households according to size and number of influenza cases reported in a 
period +/- 7 days centred around the report of an index case. Cases were defined based on reports of 
acute respiratory infection.  

The study was analyzed using the same outbreak model as used for the Epigrippe study of seasonal 
influenza (previous section), and we also found that the study was too small to reliably identify more than 
the basic parameters which determine infectiousness. We assumed that the household outbreak was 
complete within the 7 day follow-up, thus ignoring censoring effects in the data. This approximation 
seemed reasonable given the short generation time estimates and low secondary attack rate estimates for 
this infection (34). 

The best fit parameters were 0.92b =  with 95% confidence interval ( )0.31 2.99- , 

( )1.44 0.72 2.31a = -  and ( )2.56 0.42k = - ¥ . We also estimated susceptible-infectious transmission 

probabilities stratified by household size (Figure 2A).  

Because of evidence of both prior cross-reactive immunity and asymptomatic infection having played a 
role in the 2009 pandemic (35), we examined the sensitivity of our estimates to different assumptions 
about asymptomatic infections and prior immunity in these households.  

 

Figure S13 – sensitivity analysis of estimates to different assumptions about parameters that could not be 

estimated for this study. In the main scenario there was no prior immunity ( )prior 1Q = or asymptomatic 

infections asx 0p = and pr 0p = . We then considered three alternative scenarios where 1) pr 0.25p = , 

asx 0p = and prior 1Q = , 2) pr 0p = , asx 0.25p = and prior 1Q =  and 3) pr 0p = , asx 0p = and 

prior 0.75Q = .  The overall susceptible-infectious transmission probability (averaged over the size-biased 

distribution of household sizes) was main: ( )11.9% 7.1% 18.2%- , 1): ( )18.4% 10.9% 28.3%- , 2) 

( )15.4% 9.3% 23.3%-  and 3) ( )13.8% 8.3% 20.8%- . 
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