Software commands and parameters

Extraction of FASTQ

From Sequence Read Archive (SRA) format files (HapMap and Kabuki exomes). Fastq-dump is available from http://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software.

fastq-dump -A SRRxxxxxx SRRxxxxxx

Alignment of single-end runs with BWA

Alignment of paired-end runs with BWA

```
bwa aln -q 30 hg19.fasta sample_run_1.fastq > sample_run_1.sai
bwa aln -q 30 hg19.fasta sample_run_2.fastq > sample_run_2.sai
bwa sampe hg19.fasta sample_run_1.sai sample_run_2.sai
        sample_run_1.fastq sample_run_2.fastq | gzip > sample_run.bwa.sam.gz
```

Further alignment with Stampy, keeping well-aligned reads from BWA

Stampy is available from http://www.well.ox.ac.uk/project-stampy.

```
samtools view -hbS -o sample_run.bwa.bam sample_run.bwa.sam.gz
python stampy.py --keepreforder -g hg19 -h hg19
        --bamkeepgoodreads -M sample_run.bwa.bam | gzip -c > sample_run.sam.gz
samtools view -hbS -o sample_run.unsorted.bam sample_run.sam.gz
samtools sort sample_run.unsorted.bam sample_run
```

Merge multiple runs

```
for each run:
    samtools view -H sample_run_X.bam | grep ^\@RG > sample_run_X.header.rg
    samtools view -H sample_run_X.bam | grep -v ^\@RG > sample.header
cat sample.header sample_run_1.header.rg ... sample_run_N.header.rg > sample.header.txt
samtools merge -h sample.header.txt sample.pre.rmdup.bam sample_run_1.bam ...
    sample_run_N.bam
```

Refine BAM file

Remove duplicates, re-align around indels, re-calibrate quality scores

```
java -Xmx4g -jar MarkDuplicates.jar
INPUT=sample.pre.rmdup.bam
OUTPUT=sample.bam
METRICS_FILE=sample.rmdup.metrics.txt
ASSUME_SORTED=TRUE
VALIDATION_STRINGENCY=SILENT
java -Xmx16g -jar GenomeAnalysisTK.jar
-T RealignerTargetCreator
```

```
-R hg19.fasta
   -known 1000G_phase1.indels.hg19.vcf
    -known Mills_and_1000G_gold_standard.indels.hg19.vcf
    -o sample.intervals
    -I sample.bam
java -Xmx16g -jar GenomeAnalysisTK.jar
    -T IndelRealigner
    -R hg19.fasta
    -known 1000G_phase1.indels.hg19.vcf
    -known Mills_and_1000G_gold_standard.indels.hg19.vcf
    -targetIntervals sample.intervals
   -I sample.bam
    -o sample.realigned.bam
java -Xmx16g -jar GenomeAnalysisTK.jar
    -T BaseRecalibrator
    -R hg19.fasta
    -knownSites dbsnp_137.hg19.vcf
    -I sample.realigned.bam
   -o sample.recal.grp
java -Xmx16g -jar GenomeAnalysisTK.jar
    -T PrintReads
   -R hg19.fasta
    -BQSR sample.recal.grp
    -I sample.realigned.bam
    -o sample.recal.bam
```

Down-sampling BAM files

Duplicates are re-marked to handle cases where reads are no longer duplicates after down-sampling.

```
for p from 0.1 to 0.9:
    java -Xmx4g -jar DownsampleSam.jar
    INPUT=sample.recal.bam
    OUTPUT=sample.\$p.pre.rmdup.bam
    PROBABILITY=\$p
    R=null
    java -Xmx4g -jar MarkDuplicates.jar
    INPUT=sample.\$p.pre.rmdup.bam
    OUTPUT=sample.\$p.bam
    METRICS_FILE=sample.\$p.rmdup.metrics.txt
    ASSUME_SORTED=TRUE
    VALIDATION_STRINGENCY=SILENT
```

Coverage and statistics

CCDS genes were downloaded from ftp://ftp.ncbi.nlm.nih.gov/pub/CCDS/current_human/CCDS.20121025. txt on 21 March 2013. Including only rows with status "Public", genes were split into protein-coding exonic regions and formatted into BED track format (http://genome.ucsc.edu/FAQ/FAQ/format.html#format1).

Overlapping or abutting regions were merged to avoid double-counting. The merged regions were split into adjacent tiles of 100bp each.

```
java -Xmx4g -jar GenomeAnalysisTK.jar
    -T DepthOfCoverage
    -R hg19.fasta
    -I sample.bam
    -L CCDS.20121025.exons.tiled.bed
    -omitLocusTable
    -omitIntervals
    -o sample.depths.tsv
java -Xmx4g -jar GenomeAnalysisTK.jar
    -T CountBases
    -R hg19.fasta
    -I sample.bam
java -Xmx4g -jar GenomeAnalysisTK.jar
    -T CountReads
    -R hg19.fasta
    -L CCDS.20121025.exons.merged.bed
    -I sample.bam
Variant calling
java -Xmx4g -jar GenomeAnalysisTK.jar
    -T UnifiedGenotyper
    -R hg19.fasta
    -L CCDS.20121025.exons.merged.bed
    --dbsnp dbsnp_137.hg19.vcf
    -I sample.bam
    -o sample.vcf
    -stand_call_conf 30
    -stand_emit_conf 10
    -rf BadCigar
    -glm BOTH
map VCF to GRCh37 for snpEff annotation
java -jar snpEff.jar
    -c snpEff.config
    -o vcf
    -s sample.snpeff.html
    -no-intergenic
    -ud 1000
    GRCh37.68
    sample.grch37.vcf > sample.grch37.snpeff.vcf
```

Detection sensitivity calculation example

From Methods:

Sensitivity for a given genotype g (heterozygous or homozygous) and read depth d was calculated as:

$$\frac{TP}{TP + PTP + FN}$$

where TP and PTP were the number of correctly positioned SNV calls of genotype g at read depth $\leq d$ with correct or incorrect genotype respectively and FN was the number of SNV calls of genotype g made in the full alignment where there was no corresponding call made in any reduced alignments with read depth $\leq d$ at that position.

In this example, we consider a set of three sites which are heterozygous in an individual, and that all three are correctly identified in the full alignment of the exome captured for that individual. The reduced alignments produce the following data, where a genotype of 0/1 is heterozygous reference, 0/0 is homozygous reference; and 1/1 is homozygous non-reference:

Alignment size (C)	S	ite 1	S	ite 2	S	ite 3
Alignment size (G)	Depth	Genotype	Depth	Genotype	Depth	Genotype
0.05	0	0/0	1	0/0	0	0/0
0.10	1	0/0	2	1/1	0	0/0
0.15	0	0/0	3	1/1	0	0/0
0.20	2	1/1	2	1/1	0	0/0
0.25	1	0/0	3	1/1	0	0/0
0.50	3	1/1	5	0/1	0	0/0
0.75	3	0/1	8	0/1	2	0/0
1.00	4	0/1	12	0/1	3	0/1

We sort each site's genotype calls by depth, and classify them as TP, PTP, or FN. If there are different genotype calls at the same depth, they are weighted by the number of occurrences. For example, at depth 3, site 1 is called once as homozygous and once as heterozygous. Therefore it contributes 0.5 to the PTP and 0.5 to the TP count at that depth. If there is no data for a given depth, the genotype calls from that depth minus one are used, recursively.

Donth	Gene	otypes		Cla	ssificati	ons	
Depth	Site 1	Site 2	Site 3	TP	PTP	$_{\rm FN}$	Sensitivity
0	0/0 (2)		0/0 (6)	0	0	2	0
1	0/0 (2)	0/0 (1)		0	0	3	0
2	1/1 (1)	1/1 (2)	0/0(1)	0	2	1	0
3	0/1 (1), $1/1$ (1)	1/1(2)	0/1(1)	1.5	1.5	0	0.5
4	0/1(1)			2	1	0	0.67
5		0/1(1)		3	0	0	1
6				3	0	0	1
7				3	0	0	1
8		0/1(1)		3	0	0	1
9				3	0	0	1
10				3	0	0	1
11				3	0	0	1
12		0/1 (1)		3	0	0	1

Applying the sensitivity calibration curve

We provide the data for the sensitivity calibration curve in the file recall.tsv. This can be used to calculate and plot sensitivity across a given genomic region or set of regions, as in Figure 3. It can also be used to summarize the total detection sensitivity for a genomic region or set of regions, as we demonstrated for the targeted exome in Figure 2 and Supplementary Figure 3. This is done using the Genome Analysis Toolkit (McKenna *et al.*, 2010) and a custom R script.

Calculate and plot sensitivity across a genomic region

The coordinates of a genomic region in 1-based, end-inclusive format are in a tab-delimited text file called **regions.bed**. In this example, the coordinates are for the exons of FERMT3, the gene shown in Figure 3.

chr116397483763974996chr116397808363978316chr116397852463978643chr116397874763978915chr116397911763979219chr116398672363986830chr116398799663987130chr116398721263987261chr116398753163987487chr116398769263987487chr116398769263988141chr116398848863988612chr116399052063990661chr116399078563990964

Coverage across the region for a given exome alignment is calculated using the GATK DepthOfCoverage tool. The tool will generate a tab-delimited text file containing the read depth at every position in the given region.

In R, this can be plotted in combination with the sensitivity calibration information from the file recall.tsv.

```
source("depth_and_recall.r")
library(lattice)
depths = read.target.depths.and.recall("depths.tsv", "recall.tsv")
breaks = calculate.breaks(depths)
plot.recall.over.target(depths, breaks)
```

Summarize total detection sensitivity

For a summary statistic describing the quality of an entire exome capture or a particular subset of targets, we provide the total detection sensitivity for heterozygous and homozygous SNVs. This uses the depths.sample_cumulative_coverage_counts output from DepthOfCoverage.

The data frame recall looks like this:

	genotype	recall_low	recall_mean	recall_high
1	Heterozygous	0.7532072	0.7700903	0.7869733
2	Homozygous	0.8595090	0.8713913	0.8831860

To calculate the expected number of missed SNVs at a given mean on target read depth, as given in the abstract, we identified the downsampled alignment with mean depth closest to the target for each exome, in this case 20X. We then summarized the total detection sensitivity for each of the samples as above, and took the mean \pm one standard deviation of estimated mean recall across the samples.

Supplementary Figure 1: SNV sensitivity as a function of depth at position

(a) Known (HapMap3) and novel SNVs. Novel SNV calls have no cross-reference to filter out false positives.

(b) Known SNVs in all tiles and difficult tiles.

(c) Known SNVs by capture method.

Supplementary Figure 2: Empirical heterozygous SNV sensitivity compared to theoretical heterozygous SNV sensitivity based on the binomial distribution as described in Chang *et al.* (2011).

(a) Complete CCDS target.

Supplementary Figure 4: Uniformity of read depth across targets from full CCDS target set. Mean read depth for non-overlapping tiles of length 100bp. All individual exomes from a given source show a similar distribution to the aggregate (data not shown). The x-axis has been truncated for display. The maximum values for the four distributions are: 142X, 3026X, 700X, and 4424X, with 0, 2085, 108, and 8941 tiles with mean depth over 400X, in order from left to right then top to bottom.

Supplementary Figure 5: Read depth in HW-Nimblegen sample for sites of novel heterozygous SNV calls from the corresponding HW-Agilent replicate.

Supplementary Figure 6: G+C content distribution of 100bp target tiles classified as difficult or easy in at least one third of the exomes under study, compared with all other tiles ("Neither"). We considered a base well-covered if it had a read depth of at least 10, and a target region tile as well-covered if at least 90% of its bases were well-covered. "Difficult" target region tiles had no well-covered bases in the full alignments. "Easy" target regions were well-covered in the downsampled 0.1 alignments.

Supplementary Figure 7: Number of exomes sharing a difficult or easy target tile from full CCDS target, for non-overlapping tiles of length 100bp. The spike at 6 exomes in the difficult tiles histogram is primarily caused by tiles which were difficult only for the HW - Nimblegen set of exomes. Similarly, the spike at 14 exomes is caused by tiles which were difficult for both the HW - Nimblegen and the HapMap sets of exomes.

Supplementary Table 1: Sequencing and variant statistics for full alignments. The identification number in brackets for the Kabuki exomes is the kindred identification from Ng *et al.* (2010). Target is all exons from CCDS 20121025.

	(a) Reads.	Reads on target inclu	des duplicate rea	ds.		
Source	Id	Unpaired reads	Read pairs	Unmapped reads	Duplication	Reads on target
	SRX005923 (NA12156)	96 794 096	0	42 376 281	0.38	28535286
	SRX005924 (NA12878)	112 713 195	0	73 850 868	0.38	$45 \ 944 \ 812$
	SRX005925 (NA18507)	$102 \ 411 \ 337$	0	$64 \ 206 \ 533$	0.38	43 565 656
TT M	SRX005926 (NA18517)	$104\ 243\ 170$	0	45 558 312	0.39	$39 \ 199 \ 920$
HapMap	SRX005927 (NA18555)	95 868 427	0	51 540 046	0.39	36 176 546
	SRX005928 (NA18956)	$104 \ 942 \ 582$	0	50 890 268	0.39	$43 \ 758 \ 021$
	SRX005929 (NA19129)	$105 \ 718 \ 468$	0	$53 \ 649 \ 298$	0.37	43 595 172
	SRX005930 (NA19240)	$105 \ 851 \ 627$	0	57 118 784	0.36	46 481 789
	SRS086451 (5)	55 554 344	0	8 922 948	0.26	$25 \ 337 \ 330$
	SRS086452 (10)	$107 \ 470 \ 880$	0	$33 \ 626 \ 554$	0.37	$51\ 584\ 160$
	SRS086453 (8)	$69 \ 910 \ 410$	0	$11\ 271\ 662$	0.40	$32 \ 279 \ 661$
	SRS086454 (1)	$101 \ 617 \ 662$	0	$30 \ 265 \ 201$	0.30	39 520 882
	SRS086455 (4)	28 420 086	$21 \ 977 \ 080$	$52 \ 444 \ 732$	0.20	$26\ 979\ 319$
Nabuki	SRS086456 (2)	$32 \ 947 \ 971$	31 842 782	$42 \ 375 \ 985$	0.15	$40 \ 061 \ 409$
	SRS086457 (9)	$34 \ 649 \ 387$	$29\ 112\ 346$	$40 \ 984 \ 344$	0.16	35 573 753
	SRS086458 (7)	$32 \ 492 \ 116$	$18 \ 372 \ 748$	$31 \ 872 \ 853$	0.19	26 843 835
	SRS086459 (6)	33 076 820	$25 \ 383 \ 251$	41 771 754	0.16	35 567 936
	SRS086460 (3)	$34 \ 647 \ 576$	$34 \ 367 \ 697$	45 463 717	0.21	47 173 550
	HW01	1 308 139	$49 \ 904 \ 469$	$2 \ 032 \ 001$	0.14	$48 \ 041 \ 526$
	HW02	1 897 449	$84\ 216\ 154$	$3\ 155\ 080$	0.23	$75\ 217\ 183$
	HW03	$2 \ 187 \ 668$	73 413 924	3 538 901	0.12	$62 \ 695 \ 130$
n vv - Inilibiegen	HW04	$2 \ 515 \ 907$	$72 \ 956 \ 766$	$4\ 123\ 779$	0.21	$61 \ 690 \ 997$
	HW05	$1 \ 244 \ 015$	$49 \ 439 \ 950$	$1 \ 969 \ 695$	0.19	$47 \ 732 \ 543$
	HW06	$2\ 272\ 384$	$85\ 484\ 712$	$3 \ 967 \ 312$	0.43	73 853 952
	HW07	1 805 307	53 068 827	$2 \ 225 \ 554$	0.15	$49 \ 867 \ 900$
	HW08	$2 \ 469 \ 392$	$103 \ 671 \ 713$	5 997 767	0.13	$72 \ 015 \ 099$
	HW09	$2 \ 218 \ 302$	$88 \ 423 \ 465$	$4\ 469\ 173$	0.13	$70 \ 108 \ 401$
n v - Aguenu	HW10	$1 \ 820 \ 150$	$50\ 762\ 270$	$2\ 295\ 696$	0.18	$45 \ 910 \ 895$
	HW11	$1 \ 952 \ 722$	$93 \ 109 \ 004$	2 537 229	0.29	82 536 576
	HW12	$2 \ 127 \ 991$	$98 \ 186 \ 380$	$5\ 017\ 474$	0.12	$82\ 127\ 392$

C	1	D	Man an tourst				Dege
2011102	DT	target	read depth (X)	3rd quartile	median	1st quartile	over 15X
	SRX005923 (NA12156)	748 129 484	23.3	33	23	14	70.9
	SRX005924 (NA12878)	938 442 775	29.2	43	31	17	77.2
	SRX005925 (NA18507)	$785 \ 157 \ 626$	24.5	34	24	15	74.5
$\mathbf{U}_{\circ \circ} \mathbf{M}_{\circ \circ}$	SRX005926 (NA18517)	747 479 318	23.3	32	22	14	71.5
пармар	SRX005927 (NA18555)	674 142 296	21.0	29	21	13	67.9
	SRX005928 (NA18956)	745 827 941	23.2	32	22	14	71.5
	SRX005929 (NA19129)	$794\ 884\ 872$	24.8	34	24	16	75.2
	SRX005930 (NA19240)	838 847 299	26.1	36	26	16	76.5
	SRS086451 (5)	$716\ 863\ 810$	22.3	32	22	12	66.7
	m SRS086452~(10)	$1 \ 336 \ 500 \ 389$	41.6	62	42	21	82.2
	SRS086453 (8)	745 626 895	23.2	34	22	11	64.7
	SRS086454 (1)	$1\ 211\ 593\ 918$	37.7	55	37	19	79.4
Wahuli	SRS086455 (4)	$1 \ 064 \ 500 \ 162$	33.2	48	17	2	52.4
NADUKI	SRS086456 (2)	$1 \ 688 \ 303 \ 250$	52.6	73	48	26	85.5
	SRS086457 (9)	$1 \ 396 \ 928 \ 739$	43.5	62	40	20	80.3
	SRS086458 (7)	$1 \ 057 \ 429 \ 708$	32.9	47	31	16	76.1
	SRS086459~(6)	$1 \ 390 \ 924 \ 591$	43.3	62	37	19	79.8
	SRS086460 (3)	$1 \ 868 \ 207 \ 905$	58.2	80	52	28	86.2
	HW01	$1 \ 673 \ 052 \ 868$	52.1	82	47	10	72.4
	HW02	$2 \ 263 \ 108 \ 604$	70.5	111	64	15	74.7
utw Mimblegen	HW03	$1 \ 968 \ 695 \ 632$	61.3	66	58	13	73.7
II VV - INITIULEBELL	HW04	$1 \ 729 \ 762 \ 191$	53.9	85	49	11	72.6
	HW05	$1 \ 562 \ 492 \ 306$	48.7	75	43	10	72
	HW06	$1 \ 651 \ 050 \ 568$	51.4	93	16	2	50.1
	HW07	$1 \ 402 \ 799 \ 214$	43.7	61	32	14	73.2
	HW08	2 539 615 761	79.1	104	57	27	85.6
HIM A ciloset	HW09	$2\ 435\ 454\ 947$	75.9	104	56	23	81.2
TTATIST - AATT	HW10	$1 \ 253 \ 477 \ 679$	39.1	55	29	12	69.5
	HW11	$1 \ 986 \ 899 \ 670$	61.9	86	45	19	79.5
	HW12	$2 \ 922 \ 944 \ 682$	91.1	122	68	32	86.3

					SN	V_{S}		
				HapMap3			Novel	
Source	Id	Indels	Heterozygous	Homozygous	Total	Heterozygous	Homozygous	Total
	SRX005923 (NA12156)	104	6663	5 202	11 865	3 990	$1 \ 611$	5 601
	SRX005924 (NA12878)	95	6618	5 195	11 813	3 657	1 555	$5\ 212$
	SRX005925 (NA18507)	119	6843	5516	$12 \ 359$	6187	1 838	8025
Urandan	SRX005926 (NA18517)	110	6 876	$5 \ 495$	$12 \ 371$	6284	1775	$8 \ 059$
uapıvlap	SRX005927 (NA18555)	66	5 949	5823	$11 \ 772$	$3 \ 395$	1 675	5070
	SRX005928 (NA18956)	90	5 961	5737	11 698	3 331	1 651	4 982
	SRX005929 (NA19129)	132	6796	5732	12 528	6291	1 825	8116
	SRX005930 (NA19240)	104	6 945	5553	$12 \ 498$	6 308	1 829	8 137
	SRS086451 (5)	94	7 040	5598	$12 \ 638$	$4 \ 319$	$1 \ 497$	$5\ 816$
	SRS086452 (10)	128	7 328	5 691	$13 \ 019$	4 993	1 740	6733
	SRS086453 (8)	103	6866	5714	12 580	4500	1 631	$6\ 131$
	SRS086454 (1)	135	7526	5627	$13 \ 153$	5082	1 768	6 850
Wahada.	SRS086455 (4)	154	6 091	5216	$11 \ 307$	$9\ 100$	2 262	$11 \ 362$
Nabuki	SRS086456 (2)	159	7 303	5 693	$12 \ 996$	5220	$1 \ 934$	7 154
	SRS086457 (9)	156	7 316	5516	12 832	5 366	1 875	7 241
	SRS086458 (7)	156	7 116	5868	$12 \ 984$	5025	1 981	7006
	SRS086459 (6)	165	$8 \ 365$	$5 \ 316$	$13 \ 681$	6601	1 747	8 348
	SRS086460(3)	172	7262	5 642	$12 \ 904$	5 260	$1 \ 939$	$7\ 199$
	HW01	135	6169	4 838	11 007	4 250	1 518	5768
	HW02	155	5 951	4 994	$10 \ 945$	4 448	1704	$6\ 152$
	HW03	140	5843	4 902	$10 \ 745$	3627	1 697	$5 \ 324$
II W - INITIDIEGEII	HW04	118	6 309	4 678	10 987	3879	1 556	$5\ 435$
	HW05	135	6 400	4 789	$11 \ 189$	$4 \ 396$	1 679	6075
	HW06	102	4 488	4 284	8 772	3024	1 441	$4 \ 465$
	HW07	271	7 276	5512	$12 \ 788$	12 798	2 185	$14 \ 983$
	HW08	226	7551	5756	13 307	5 331	1 927	7 258
HW/ A cilont	HW09	189	7 667	5680	$13 \ 347$	$5\ 611$	1 847	7 458
MAINSY - WITH	HW10	235	6598	5781	$12 \ 379$	12 597	2 107	14 704
	HW11	212	7546	5738	13 284	10582	1 994	12 576
	HW12	184	7 899	5751	$13 \ 650$	$6\ 434$	2 041	8 475

(c) Variants in target regions.

Depth	Heterozygous	Homozygous
0	0.00	0.00
1	0.00	0.06
2	0.00	0.89
3	0.30	0.97
4	0.52	0.99
5	0.67	0.99
6	0.76	0.99
7	0.81	0.99
8	0.84	0.99
9	0.88	0.99
10	0.90	0.99
11	0.92	0.99
12	0.94	0.99
13	0.96	0.99
14	0.97	0.99
15	0.97	0.99
16	0.98	0.99
17	0.98	0.99
18	0.98	0.99
19	0.99	1.00
20	0.98	1.00
25	0.99	1.00
30	0.99	1.00
35	1.00	1.00
40	0.99	1.00

Supplementary Table 2: Mean sensitivity at varying levels of read depth at a polymorphic site. Data shown in Figure 2. A complete table up to depth 100 is available in the file recall.tsv.

Supplementary Table 3: Data sources and sample information.

Source	Samples	Reads	Capture	Sequencing
НарМар	8	single 76bp	2 custom Agilent 244K microarrays	Illumina GAII
Kabuki	10	single/paired 76bp	custom Agilent 1M aCGH array	Illumina GAII
HW - Nimblegen	6	paired 54bp	Roche NimbleGen 2.1M	Illumina GAII
HW - Agilent	6	paired 54bp	Agilent SureSelect All Exon $38M$	Illumina GAII

- Chang, H., Jackson, D. G., Kayne, P. S., Ross-Macdonald, P. B., Ryseck, R. P., and Siemers, N. O. (2011). Exome sequencing reveals comprehensive genomic alterations across eight cancer cell lines. *PLoS One*, **6**(6).
- McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., and DePristo, M. A. (2010). The genome analysis toolkit: a mapreduce framework for analyzing next-generation dna sequencing data. *Genome Res*, 20(9), 1297–1303.
- Ng, S. B., Bigham, A. W., Buckingham, K. J., Hannibal, M. C., McMillin, M. J., Gildersleeve, H. I., Beck, A. E., Tabor, H. K., Cooper, G. M., Mefford, H. C., Lee, C., Turner, E. H., Smith, J. D., Rieder, M. J., Yoshiura, K., Matsumoto, N., Ohta, T., Niikawa, N., Nickerson, D. A., Bamshad, M. J., and Shendure, J. (2010). Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet, 42(9), 790–793.