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Supporting Figure S1. Image weighting factor η(θ,ϕ) for various cone sizes and orientations 

(α,θ0,φ0) plotted in two-dimensional orientation space with definitions given by the axes labels. 

In general, smaller cone angles α yield nearly uniform η(θ,ϕ) across the entire cone. 
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Supporting Figure S2. Effect of faster rotational diffusion on image weighting factor, SM PSFs, 

and lateral shift. Image weighting factor η(θ,ϕ) for (α,θ0,φ0) = (30°,45°,0°) and rotational 

correlation times (A) τR = 20 ns and (B) τR = 2 ns plotted in two-dimensional orientation space 

with definitions given by the axes labels. (C) xz (left) and xy (right) cross-sections of the 3D PSF 

for a SM diffusing within the same cone as above with τR = 20 ns. The lateral shift Δr(z) is 

overlaid in green. (B) Same as (A) for a SM diffusing τR = 2 ns. The lateral shift Δr(z) is overlaid 

with a dashed green line. The various z-planes containing the xy cross-sections are denoted by 

horizontal dotted/solid lines at left. Scale/axes arrows: 200 nm. Lateral shift Δr as a function of 

(E) axial position z (θ0 = 45°) and (F) cone axis orientation θ0 (z = 200 nm) for τR = 20 ns (solid 

green) and τR = 2 ns (dashed green). The faster correlation time causes the image weighting 
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factor to be more uniform across the entire cone, but this produces negligible differences in the 

observed SM PSFs and lateral shifts. The maximum difference in the lateral shift for τR = 20 ns 

and τR = 2 ns plotted above is 8 nm, but for most axial positions and orientations, the lateral shift 

curves are virtually identical. 
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Supporting Figure S3. Effect of cone angle on SM PSFs, intensity, and lateral shift. (A) xz (left) 

and xy (right) cross-sections of the 3D PSF for a SM diffusing within the cone (α,θ0,ϕ0) = 

(0°,45°,0°). The lateral shift Δr(z) is overlaid in black. (B) Same as (A) for a SM diffusing within 

the cone (α,θ0,ϕ0) = (30°,45°,0°). The lateral shift Δr(z) is overlaid in green. (C) Same as (A) for 

the cone (α,θ0,ϕ0) = (45°,45°,0°). The lateral shift Δr(z) is overlaid in blue. (D) Same as (A) for 

the cone (α,θ0,ϕ0) = (90°,45°,0°) (free rotational diffusion). The lateral shift Δr(z) is overlaid in 

gold. The various z-planes containing the xy cross-sections are denoted by horizontal dotted/solid 

lines at left. Scale/axes arrows: 200 nm. (E) Peak intensity versus orientation plot for cone angles 

α = {0° (black), 15° (red), 30° (green), 45° (blue), 60° (magenta), 90° (gold)} at constant z 

position. Two-dimensional plots of lateral shift as a function of axial position z and orientation θ0 

for (F) α = 0° (fixed dipole), (G) α = 15°, and (H) α = 30°. Color scale is in units of μm and has 

been saturated to emphasize smaller-scale lateral shifts. The overlaid contours depict the decay in 

relative intensity for increasing |z|/decreasing θ0. In general, SMs with larger cone angles have 

smaller lateral shifts and brighter relative intensities compared to those with smaller α for a given 
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axial position/SM orientation. In addition, molecules with Δr ≥ 100 nm are generally one-tenth 

as (or less) bright as SMs in focus and oriented perpendicular to the optical axis θ0 = 90°. 

  



7 
 

 

Supporting Figure S4. SM rotational diffusion effects on pixelated 3D PSFs and lateral shifts 

(65-nm pixel size, see Figure 2 for non-pixelated case). (A) xz (left) and xy (right) cross-sections 

of the 3D PSF for a SM diffusing within the cone (α,θ0,φ0) = (15°,45°,0°). The lateral shift Δr(z) 

is overlaid in red. (B) Same as (A) for a SM diffusing within the cone (α,θ0,φ0) = (60°,45°,0°). 

The lateral shift Δr(z) is overlaid in magenta. The various z-planes containing the xy cross-

sections are denoted by horizontal dotted/solid lines at left. Scale/axes arrows: 200 nm. (C) 

Lateral shift Δr as a function of axial position z for θ0 = 45° and cone angles α = {0° (black), 15° 

(red), 30° (green), 45° (blue), 60° (magenta), 90° (gold)}. (D) Lateral shift Δr as a function of 

cone axis orientation θ0 for z = 0.2 μm and the same cone angles α as in (C). 
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Supporting Figure S5. Defocused SM PSFs as a function of cone angle. The fine features of the 

defocused SM PSFs (z = 1 μm, θ0 = 45°, φ0 = 0°) vary subtly as cone angle α increases in both 

the non-pixelated images (top) and pixelated images (bottom, pixel size = 65 nm in object 

space). Scale bars: 200 nm. 
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Supporting Note: Mathematical framework for modeling the rotational mobility of single 

molecules 

A coordinate transformation simplifies the limits of integration of equation 1. The application of 

the rotation matrix R given in S1 converts from the Cartesian basis 

cos ,sin sin ,cos[ , , ] [sin ]T Tx y z θ φ θ φ φ=  to the rotated basis 

      cos ,[ , sin sin ,c, ] [ ]i os snT Tx y z θ φ θ φ φ= .  

 
0 0 0 0 0
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0 0 0 0 0

cos cos sin
sin cos 0

sin sin co

cos sin

co i ss s n
R

θ φ θ φ θ
φ φ

θ φ θ φ θ
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 = − 
  

 (S1) 

This leads to the following definitions for  ( , )θ φ : 

 

0 0 0cos(arccos[sin sin ) co ]s cosθ θ θ φ φ θ θ= +−  (S2A) 
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where atan2(y,x) refers to the four-quadrant inverse tangent function whose range is [-π,π] 

(in contrast to the standard arctan(y/x) function whose range is [-π/2,π/2]).  In these rotated 

coordinates the integral in equation 1 transforms to: 
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π
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where we have defined a new weighting factor       [ ( ,( ), ( ,, ) ]) ,η θ φ η θ θ φ φ θ φ= . In evaluating S3 we 

make use of the inverse relations of S2: 

   

0 0arccos[cos c sinos sin cos ]θ θ θ θ θ φ−=  (S5A) 
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The weighting factor   ( , )η θ φ is the probability density of emitting a photon at orientation  ( , )θ φ , 

and is given by equation S5. 

 
           

0 0

2sin ( ) ( , , | , ,0) | ( , )( , ) |incd f t gdt d t E
α π

π

η θ φ θ θ φ θ φ θ φ µ θ φ
∞

−

′ ′ ′ ′ ′ ⋅= ′ ′∫∫ ∫
 

 (S5) 

An implicit assumption in equation S5 is that if the molecule is rotationally immobile, its 

absorption dipole moment is parallel to its emission dipole moment. This assumption is justified 

by the fact that these two moments are collinear1 or nearly collinear2 for many common 

fluorophores. As discussed in the text, /( ) /Ft
Ff t e τ τ−= is the PDF of emitting a photon a time t 

after absorption.  

2| ( , ) |incEµ θ φ′ ′ ⋅
 

is the PDF of the SM absorbing a photon at orientation  ( , )θ φ′ ′

(pre-factor containing physical constants omitted), where µ


is the absorption dipole and incE


is 

the incident electric field.    ( , , | , ,0)g tθ φ θ φ′ ′  is the conditional PDF of the SM having rotated to 

 ( , )θ φ at time t, given that it was at  ( , )θ φ′ ′ at time 0. Within the cone, g is a solution to the 

rotational diffusion equation3 given by 

 
 



  

2

2 2

1 1sin
sin sinrot

g D g
t

θ
θ θ θ θ φ

 ∂ ∂ ∂ ∂ = +  ∂ ∂ ∂  ∂
, (S6) 

subject to the boundary condition 

 


0g
αθ

∂
=

∂
 (S7) 

and initial condition 

    ( 0 ( ( )) )g t δ θ θ δ φ φ− ′ −= ′= .  (S8) 

In equation S6, Drot is the rotational diffusion constant and the bracketed portion is the Laplacian 

expressed in spherical polar coordinates.  The analytical solution4 is  
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where ( )
km

mPν ⋅ are the Legendre polynomials of non-integer order and the coefficients Akm and Bkm 

are given by 
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where 
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km
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α
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The generally non-integer values of νkm in equation S8 are determined by finding the solutions of 

the equation 

 1 ) co(co c s 0s t ( o )
km km

mm m PPν να α α+ + = .  (S12) 

While the MATLAB function legendre computes the associated Legendre functions of 

integer order, MATLAB does not have a built-in function for evaluating Legendre functions of 

non-integer order. Thus, we wrote our own routine based on the relationship between these 

functions and Gauss’s hypergeometric function.4 We wrote custom MATLAB routines to find 

kmν ’s via equation S12 for each ,30{ ,45 ,6015 }α ° ° ° °∈  and calculated the corresponding Akm and 

Bkm coefficients via equation S9; for the special case of α = 90°, {0,2,4,...}kmν ∈ . In our 

computation of S5 we found it convenient to take advantage of the fact that g is symmetric with 

respect to  ( , )θ φ and  ( , )θ φ′ ′ , i.e.        ( , , | , ,0) ( , , | , ,0)g t g tθ φ θ φ θ φ θ φ′ ′ = ′ ′ . We define the function 

   ( , ; , )ξ θ φ θ φ′ ′ : 
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(S13) 
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such that S5 becomes 

  

 
          

0

2( ,( ; , ) | ( , ), ) |incd d E
α π

π
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−

′ ′ ′ ′ ′ ′= ⋅∫ ∫
 

 (S14) 

The Jacobian sinθ′was included in ξ to facilitate convergence in the calculation of ξ described 

below. We used a custom MATLAB routine to compute ξ for each α and an array of  ( , )θ φ′ ′ (with 

0.25° spacing) and  ( , )θ φ (with 0.5° spacing). Computation of ξ varied for different α and 

typically required 2-30 min to calculate ξ over the full range of  ( , )θ φ′ ′ for each  ( , )θ φ  on an Intel 

Core 2 Duo 3 GHz workstation. Since    ( , ; , )ξ θ φ δ θ φ δ′ ′ + +  =    ( , ; , )ξ θ φ θ φ′ ′ for all phase shifts δ, 

it was only necessary to compute ξ directly over a range of   ( , 0 )θ φ °=  and then shift the results 

accordingly. These results were used to evaluate equation S14 and in turn equation S3. The 

numerical integration of equation S3 was also performed in MATLAB with spacing dθ  = 0.5° 

for α ≤ 90° ( dθ  = 1° for α = 90°) and dφ  = 6°. 
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