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Sample Preparation and Characterization
The fluid was prepared by adding the required quantity of
polymers to 30 L of distilled water. The solution was gently stirred
for 48 h, and measurements were performed within a week. The
solutions were characterized by means of a commercial rheom-
eter (MARS II; Thermo Fisher Scientific) in controlled shear rate
mode using a cone and plate geometry (diameter = 60 mm, cone
angle = 0.5°). The instrument was set to a temperature of T =
20 °C, which is the same temperature the pipe flow experiments
were conducted at. The solutions were tested before and after
the measurements in the pipe; in addition, we tested samples
that were prepared in smaller quantities (250 mL) by means of
the same protocol mentioned above. The results for the different
solutions agreed within an experimental resolution of ± 5% and
in agreement with former studies (1). Specifically, we did not
observe any notable degradation of the polymer on the time
scale of resident times in the tube experiments, in the rheo-
logical shear tests, or in the capillary breakup extensional
rheometer (CaBER). The viscosity was measured at shear rates
30 s< _γ < 2; 500 s−1 for polymer concentrations of 50 ppm, 100 ppm,
200 ppm, 300 ppm, 400 ppm, and 500 ppm. The effect of shear
thinning is negligible [i.e., the respective power law coefficients
were very small (<0:026, compare Fig. S1)]. The (zero-)shear
viscosity η increases with the polymer concentration c and from
the dilution series, we can extract an overlap concentration of
c* ≈ 1; 280 ppm (compare Fig. S2) via a quadratic fit satisfying
½η�= limc→0ðηðcÞ− ηsÞ=ηs = 1=c* (2).
In addition, the pressure drop in the pipe in the laminar case

was calculated by means of the measured viscosity data and with
the assumption of a parabolic flow profile. Again, the calculated
values and the measured pressure drops agreed within ± 5%. The
Reynolds number (Re) was determined by means of the viscosity
of the sample solution (i.e., Re= ρUD=η).
The second rheological characterization was performed with

a custom-built CaBER (3) at ambient temperature (T ≈ 23 °C).
A droplet of the sample was placed between two steel plates,
from which the upper one is displaced by a linear motor until the
capillary bridge becomes unstable due to the Rayleigh–Plateau
instability. In the following thinning process, a parallel filament is
formed that shrinks exponentially in time. The characteristic time
scale of the thinning process λC (compare Fig. S3) can be related to
the polymer relaxation time λ. Simple models predict λ= 3λC, but
it has been shown that the relation is much more complex in re-
ality (1, 4). However, the CaBER is still most sensitive to the
elasticity of diluted aqueous solutions, and the time scale λC is
commonly used to define a Weissenberg number (Wi) (5). The
relaxation time λC depends on the concentration c according to
a power law λC ∝ c0:89± 0:03 (1). The nonlinear fit was performed by
direct weighting of the data to account for the increasing sparse-
ness of filament data when decreasing the polymer concentrations
and relaxation time, respectively. The error bars represent the SE
of the measurement series of each concentration.
From the CaBER relaxation times, an estimate of the critical

Weissenberg numbers (Wic) can be made, and we found that the
Wic were in the range of Wic = 3− 15.

Velocity Measurements
Velocity measurements were carried out with particle image
velocimetry in the D= 4-mm pipe. The flow was illuminated in
the mid r-z plane (with z being the axial direction and r being the

radial direction) using a laser light sheet for the experiments with
polymer solution and a high-power light-emitting diode for the
experiments with water, respectively. The fluid was seeded with
13-μm spherical hollow glass spheres to obtain particle images.
Sampling rates of the camera (Phantom V10; Vision Research)
were 200 Hz for the polymer experiments and 50 Hz for the case
of water. In Fig. S4, we show the z component of the velocity
measured at the pipe centerline: In the case of water, the the-
oretical value of the centerline velocity for a laminar velocity
profile for the given Reynolds number has been subtracted, and
in the case of polymer, the average velocity has been subtracted.
At Re= 527, the flow in the 500-ppm polyacrylamide solution is
laminar. Once the Re is raised above 800, elasto-inertial turbu-
lence (EIT) sets in and fluctuations start to increase with the Re
(Fig. S4B). As shown in Fig. 4B for Re= 2;140, the flow is uni-
formly fluctuating. For a water flow with a similar Re= 2;080
(Fig. S4C), however, flows show the intermittency distinctive of
the transitional regime in Newtonian turbulence, with turbulent
puffs (characterized by a strong dip of the centerline velocity)
interspersed by more quiescent flow.

Initial Perturbations for Direct Numerical Simulations
The protocol for our simulation was designed to mimic the
perturbed experimental setup within the limitation inherent to
boundary conditions. For any flow, Newtonian or polymeric, the
laminar solution is first obtained. Once the laminar flow is fully
developed, a perturbation is introduced over a short duration, in
the form of blowing and suction velocity on both walls, over which
white noise of prescribed intensity is introduced. The velocity
pattern is periodic in x and z:
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�
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where A is the amplitude, Lx and Lz are the horizontal domain
dimensions, and «ðtÞ is the random noise. The amplitude is in-
creased from zero over the first 10% of the duration of the
perturbation and decreased to zero over the last 10%. Choosing
A= 0:09Ub and the rms of « at 0:005Ub causes the Newtonian
flow to transition at Re= 6;000. The total duration of the pertur-
bation is 0:5H=Ub.

Polymer Extension
Fig. S5 shows profiles of polymer extension, defined as

X
L
=

ffiffiffiffiffiffiffiffiffiffiffi
trðCÞp
L

; [S2]

across the channel half-height. The extension of polymers at the
lowest Re is just shy of 20% of maximum polymer extension. At
17:4%, the wall polymer extension is higher than the analytical
solution for a purely laminar channel flow (16:2%), due to the
fluctuations of the velocity gradient tensor caused by EIT. Sin-
gle-molecule experiments measured extension in shear flow, at
Wi= 25, around 30% (6, 7). This discrepancy comes from the
semiquantitative nature of the finitely extensible nonlinear elas-
tic Peterlin (FENE-P) model. The choice of the polymer param-
eters is a compromise between capturing the key dynamical
features of polymer–flow interactions and numerical stability.
Among others, Li et al. (8), Housiadas and Beris (9), and Tam-
ano et al. (10) studied the effects of rheological parameters and
viscoelastic models. The conclusions of these studies are that (a)
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elongational viscosity is the most important rheological property
and (b) long polymers and a large Wi are more likely to repro-
duce the features of polymer drag reduction, especially maximum
drag reduction. It is noteworthy that simulations with a smaller
polymer L= 100, which yields a wall extension of 30%, were also
found to produce EIT. Our choice of polymer length was mo-
tivated by the fact that using longer polymers emphasizes the
elastic instability and facilitates the study of EIT while retain-
ing the same dynamics as with L= 100.

Identification of the Structure of Elasto-inertial Instability
Fig. 4 shows an interesting pattern of flow instabilities in the
form of quasi-2D patterns aligned in the streamwise direction.
The identification of the flow structures is made possible by the
visualization of isosurfaces of Q, the second invariant of the
velocity gradient tensor ∇u. Defining the velocity gradient tensor
as ∇u= ∂ui=∂xj, the second and third R invariants are written as

Q= −
1
2
∂ui
∂xj

∂uj
∂xi

  ; [S3]

R= −
1
3
∂ui
∂xj

∂uj
∂xk

∂uk
∂xi

  ; [S4]

where Einstein’s index rule applies. Q and R are used to study
the topology of turbulent flows (11) because their local values
relate to the local topology of the streamlines. This is illustrated
in Fig. S6 in the Q−R phase diagram that defines four quadrants
delimited by R= 0 and D= 0, where D is the discriminant of ∇u:

D=
27
4
R2 +Q3   : [S5]

It can also be shown that Q is the difference between the norm
squared of the rotation and strain rate tensors, which suggests
that positive regions of Q are regions where the local rotation
rate overcomes the strain rate. This argument is the motivation
for the widespread use of the positive Q criterion (12) for the
identification of vortices. However, it is important to point out
that the Q-vortex identification method is subjective, because the
proper reduction of vortices requires that Q>Qth, where Qth is a
positive threshold that depends on the flow intensity.
The local topology of the flow determines the stretching

dynamics of the polymer field. Specifically, extensional flows
cause the polymer to stretch, thereby increasing the local ex-
tensional viscosity, which is, for instance, the source of polymer
drag reduction (13). At Re = 1,000 (Fig. 4 and Fig. S7A),
compact regions of positive Q do not define vortices because
they fail to meet the criterion of spiraling streamlines (12).
Nonetheless, the contours of D (Fig. S7A) clearly show that the
isosurfaces of positive and negative Q are regions of weakly
rotational and extensional flows in regions of large polymer
extension, as shown by Fig. S7B. These fluctuations of exten-
sional flow create, in turn, fluctuations of extensional viscosity
that directly affect the flow. Note that the computational grid is
displayed in Fig. 7A to demonstrate that the elastic instability
is well resolved. In this particular case, the grid spacing in x
is ≈ 1l+ = ν=uτ.
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Fig. S1. Shear viscosities of the polymer solutions measured at shear rates between 30 s−1 and 2,500 s−1 for solutions of 50 ppm, 100 ppm, 200 ppm, 300 ppm,
400 ppm, and 500 ppm at T = 20 °C. Shear thinning is of little importance. Also shown is a reference measurement with pure water.
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Fig. S2. Specific (zero)-shear viscosity of the polymer solutions for different concentrations. The overlap concentration is estimated to be c*≈ 1;280 ppm.
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Fig. S3. Characteristic relaxation time λC of the polymer solutions in the CaBER experiments. It scales with the polymer concentration c with a power law with
an exponent of 0:89± 0:03.
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Fig. S4. Velocity time series. (A) Centerline velocity of laminar flow in a 500-ppm polymer solution at Re= 530. (B) Velocity time series in the elasto-inertial
turbulent regime at Re= 2;140. (C) Velocity trace in a pure water flow at Re= 2;080 shows the intermittent appearance of turbulent puffs typical of Newtonian
turbulence.
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Fig. S5. Profiles of polymer extension defined by X=L=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðCÞ=L2

p
as a function of the distance from the wall normalized by the half-height of the channel

y=h. Red line, Re= 1;000, Wi= 24; blue line, Re= 6;000, Wi=100; green line, Re= 6;000, Wi= 700.
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Fig. S6. Flow topology in the Q−R phase diagram [Reprinted with permission from the study by Chong et al. (13)], with the typical inverted teardrop shape of
a joint-probability density function of a turbulent flow. The figure shows the four quadrants of flow topology delimited by R= 0 and D= 0 (Eq. S5), from
(R> 0;D> 0) counterclockwise: rotational flow under compression, rotational flow under extension, biaxial compressional flow, and biaxial extensional flow.
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Fig. S7. Visualization of the instability observed in Fig. 4 in a cross-sectional plane of the flow (left to right) for about one-fourth of the length of the domain.
The walls are the top and lower boundaries. (A) Contours of positive (solid black lines) and negative (dashed black lines) Q superimposed over the contours of
positive (red) and negative (blue) D in a cross-sectional plane of the flow aligned with the streamwise and wall-normal directions. The grid is shown to
demonstrate that the observed instability is fully resolved. (B) Contour lines are the same as in A, with contours of the polymer extension.
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