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Film Deformation Due to the Action of Surface Tension,
Laplace Pressure, and Gravity
For a linearly elastic material, when bending slopes are small
compared with unity, the vertical deflection of the thin film, w(x),
is governed by:

EI  ∇4w− σII∇2w= pðrÞ; [S1]

where E is the Young’s modulus of the film, I is the area moment
of inertia, and p(r) is the force distribution (line tension, Laplace
pressure, and gravity). Eq. S1 assumes that the tension inside and
outside the contact line is the same. We have solved Eq. S1 subject
to the boundary conditions that w and its first derivative vanish at
the outer radius. As shown by Fig. 1C, because the drops are small
compared with the outer radius of the membrane, the effect of
gravity is merely an offset of the entire displacement profile. To
investigate the effect of bending, it is sufficient to study the special
case where the outer boundary is infinitely distant. As before, the
boundary conditions are as follows: (i) w and all its derivatives
vanish at r=∞; (ii) the deflection, slope, and bending moment
are continuous at the contact line at r= c; and (iii) symmetry
requires that the slope at r= 0 is zero. After some detailed cal-
culations, which will be given in a separate paper, the vertical
deflection w is found to be:
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where Ko and K1 are the modified Bessel functions of the second
kind and I0 and I1 are modified Bessel functions of the first kind.
A posteriori, we find that in most of our experiments,
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compared with unity. In this limit, the solution is given by:
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The main point to be gleaned from Eq. S4 A and B is that the
effect of bending is confined to a small boundary layer near the
contact line (r= c). This is due to the rapid decay of the function
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«

p Þ for r> c. The shape of the film, particularly its radius
of curvature near the axis of symmetry, which is given by the first
term on the right-hand side of Eq. S4A, is essentially unaffected
by bending. The first term inside the brackets in Eq. S4A rep-
resents membrane-like behavior. The second term, which rep-
resents the effect of bending, vanishes for small
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p
(an example

is provided in Fig. S1).
We have used data only for conditions where
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«

p
≤ 0:25. Thus,

we can neglect the influence of bending away from the contact
line by analyzing the thin-film deflection near the axis of sym-
metry, where the film supports mainly biaxial tension:

P= 2σII=R; [S5]

which is just Laplace’s equation, where R is the radius of curva-
ture. Additionally, by a force balance between Laplace pressure
in the drop and its surface tension, we obtain the following re-
lationship between the tension and easily measurable geometric
parameters:
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PR
2
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c

sinðθ−ϕÞ: [S6]

Eq. S6 is equivalent to Eq. 2 and replaces it. We obtain the
radius of curvature by fitting a sphere to a small region near
the center of deformation for various values of c (Fig. S3).
The angle θ is measured independently via contact angle ex-
periments on a flat PDMS slab, whereas the angle ϕ is mea-
sured by averaging angles from line scans of the vertical
deflection at the contact line. Based on known values of the
liquid surface tension of the liquids used in this work (1), Eq.
S6 provides the tension in the region where the solid film is
in contact with the liquid drop, σII . The radial equilibrium
(Eq. 1) then gives us the tension in the film just outside the
contact line, σI .

Shear Force Calculation
To compute the local shear force in the thin film, Q, we use the
following expression (2):
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We compute the derivatives in Eq. S7 using a fourth-order
central finite difference scheme.
In Fig. S2, we show the local shear force values for three film

thicknesses. As expected, the local shear force becomes smaller as
the film becomes thinner, and it is then negligible compared with
the measured tensions in the film.

Contribution of Stretch to the Tension
Fig. S6 shows that the film stretches due to its deformation. As
a result, tension values σI and σII include terms due to stretch in
addition to their different surface stresses, σOII and σOI . In the
main text, we have relied on the intuitive assumption that the
stretch contributions vanish as the film thickness reduces to
zero. To support this assumption, we have constructed a theo-
retical model of the in-plane stretching deformation. Analysis of
this model confirms that the stretch contribution to tension
vanishes as thickness is reduced, supporting the procedure of
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extrapolating the experimental measurement of tension to zero
thickness. Here, we briefly outline our model; details will be
presented elsewhere.
We begin with the force equilibrium of the Neumann’s triangle:

σI = σII cosϕ+ σlv cos ðθ−ϕÞ; [S8]

σII sinϕ= σIIc=R= σlv sinðθ−ϕÞ: [S9]

Geometric quantities ϕ, θ, c, and R are illustrated in Fig. S5,
and σlv is the surface tension of the liquid droplet. We solve
separately the mechanics of deformation in two regions: an
inner region, where the liquid is in contact with the membrane,
and an outer flat region. In both, equilibrium in the radial
direction and strain displacement relations are given by the
following:

dσr
dr

+
σr − σθ

r
= 0; [S10]
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u
r
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where u is the displacement (Fig. S6). Combining Eqs. S10 and
S11, as well as stress–strain relations (including a surface ten-

sion), we obtain the governing differential equation for the radial
displacement u in region I:
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and obtain its solution. For region II, we assume that the deformed
shape is a spherical cap under equal biaxial stress and strain.
Finally, we impose the condition that the displacement u at r =
c be continuous. After some manipulation, we obtain the following
equations that relate total measured tensions to surface tension:
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[S13]

As film thickness t reduces, both h and u increase, but they
remain bounded (by the solution in the membrane limit). There-
fore, in the limit of vanishing thickness:

σI = σoI ;   σII = σoII ; [S14]

which supports the interpretation of tension extrapolated to zero
thickness as the surface tension.
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Fig. S1. Calculated deflection of an 11.0-μm thick membrane with radius of 4 mm with a deionized water (DI) drop with a radius of 0.3 mm placed under it.
The deflected shapes have been shifted vertically to match at the axis of symmetry to permit easier comparison of the shape in its vicinity. The curve in blue is
the deflection based on membrane theory with negligible bending and gravity. The curve in green includes bending but neglects gravity. Finally, the curve in
red includes gravity as well. Note that the shape of the membrane near its axis of symmetry is essentially indistinguishable between the three cases. Other
parameters for this calculation are as follows: Young’s modulus = 2.85 MPa, tension = 0.3 N/m, and liquid surface tension = 72.5 mN/m.
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Fig. S2. Local shear force for three film thicknesses. The shear force decreases for smaller film thicknesses, as expected.

Fig. S3. Data of the deformed shape near its axis of symmetry (red points) are fitted by a spherical surface to estimate the local radius of curvature.

Fig. S4. Measured tension is substantially independent of the contact radius for several film thicknesses. However, for a sufficiently thick film, bending
becomes important and the measured tension no longer remains approximately constant as the drop dries.
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Fig. S5. Schematic of deformation due to a liquid droplet on a thin film. (A) Liquid droplet on a thin film, where c denotes the radius of the contact line. (B)
Schematic shows relevant geometric parameters, as well as the tension in the thin film and the liquid surface tension. We split the geometry into two regions,
region I (outside the contact line) and region II (inside the contact line). (C) Schematic shows the stretch due to droplet-driven deformation. (D) View of the thin film
near the droplet from above. The radius of region I is much greater than the radius of the contact line. The arrows inside region II indicate the tension there.

Fig. S6. Difference scan shows the displacement of silica marker particles (∼8 μm) due to deformation. The undeformed case (darker particles), where there is
no droplet, is subtracted from the case where there is droplet-driven deformation. The DI droplet is in contact with the thin film to the left of the black curve
(region II). Deformation of the thin film over the droplet causes the silica particles to move toward the center of the drop (to the left).
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