
1 

 

Global probabilistic annotation of metabolic networks 

enables enzyme discovery 

 
Supplementary information 

 
Germán Plata

1,2,*
, Tobias Fuhrer

3,*
, Tzu-Lin Hsiao

1,4,*
, Uwe Sauer

3
, Dennis Vitkup

1,4,a 

 
1
Center for Computational Biology and Bioinformatics, Columbia University, New York, NY, U.S.A. 

2
Integrated 

Program in Cellular, Molecular, Structural, and Genetic Studies, Columbia University, New York, NY, U.S.A. 
3
Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland. 

4
Department of Biomedical Informatics, 

Columbia University, New York, NY, U.S.A.  

 
*equal contribution 
acommunication should be addressed to DV at dv2121@columbia.edu 

 

 

Table of contents 

 

Page No. 

 

Supplementary Results ................................................................................................. 2 

 Supplementary Figure 1 ..................................................................................... 2 

 Supplementary Figure 2 ..................................................................................... 3 

Supplementary Figure 3 ..................................................................................... 4 

 Supplementary Figure 4 ..................................................................................... 4 

 Supplementary Figure 5 ..................................................................................... 5 

 Supplementary Figure 6 ..................................................................................... 6 

 Supplementary Figure 7 ..................................................................................... 7 

 Supplementary Figure 8 ..................................................................................... 8 

 Supplementary Figure 9 ..................................................................................... 8 

 Supplementary Table  1 ..................................................................................... 9 

Supplementary Methods ................................................................................................. 10 

 Supplementary Table 2 ..................................................................................... 10 

1. The fitness energy function ......................................................................... 11 

A. Sequence homology ..................................................................................... 11 

B. Gene orthology ..................................................................................... 11 

C. Genomic context correlations  ............................................................. 12 

D. EC co-occurrence ..................................................................................... 13 

2. Calculating  marginal probabilities using Gibbs sampler ..................................... 13 

Supplementary Figure 10 ..................................................................................... 15 

3. Cloning, purification and protein identification of SpsI, SpsJ and YkgB . 16 

Supplementary Figure 11 ..................................................................................... 17 

References ......................................................................................................................... 18 

 

 



2 

 

Supplementary Results 
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Supplementary Figure 1 | Conditional probabilities used in the GLOBUS fitness function. 

The context correlations used in GLOBUS (a-c) were first transformed into Z-scores
1
 using the 

distribution of correlations for all pairs of candidate metabolic genes. Then we estimated the 

conditional probability that two genes are direct network neighbors given their context 

association Z-score. The greater the context correlation Z-score, the more likely the two genes 

are network neighbors. The conditional probabilities were estimated based on the iLL672 yeast 

metabolic model
2
. (a) The conditional probabilities for phylogenetic profiles, (b) The conditional 

probabilities for chromosomal gene clustering, (c) The conditional probabilities for mRNA co-

expression. (d) As a sequence homology term in GLOBUS we used the conditional probability 

that a gene performs the assigned function, given the highest sequence identity to a Swiss-Prot
3
 

protein annotated to catalyze the target activity. The conditional probabilities for sequence 

homology were estimated using the well-curated yeast iLL672 metabolic model
2
. 
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Supplementary Figure 2 | Obtaining GLOBUS parameters using different models. (a) 
Maximum likelihood values of the context weight coefficients derived using the iLL672

2
 and 

iMM904
4
 S. cerevisiae models and the iBsu1103

5
 model for B. subtilis. SEQ: sequence identity; 

PC: phylogenetic correlation; GC: gene clustering; EX: co-expression; ORT: Orthology; EC: EC 

co-occurrence; OUT: not in the network (b) The correlation of probabilities with values higher 

than 0.1 in S. aureus based on GLOBUS parameters obtained by training with the two different 

yeast models (Pearson’s r = 0.94, median probability difference = 0.04, maximum probability 

difference = 0.33). (c) The correlation of probabilities with values higher than 0.1 in S. aureus 

based on GLOBUS parameters obtained by training with the yeast iLL672 and the iBsu1103 

metabolic models (Pearson’s r = 0.96, median probability difference = 0.05, maximum 

probability difference = 0.35). 
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Supplementary Figure 3 | Comparison of the precision-recall relationships obtained using 

homology information established by BLAST and PSI-BLAST. Using PSI-BLAST, instead 

of regular BLAST, does not improve the performance significantly because additional sequences 

with low identity (detected by PSI-BLAST) only rarely have the target function. 
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Supplementary Figure 4 | Distribution of sequence identities. Fractions of potential metabolic 

genes in S. cerevisiae (green) and B. subtilis (grey) are shown as a function of sequence identity 

to annotated enzymes in other species. Over half of potential metabolic genes have relatively 

small sequence identity (<40%) to known enzymes in both model organisms. 
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Supplementary Figure 5 | Contribution of individual context correlations to the GLOBUS 

performance. Different columns in the figure represent precision/recall values - across sequence 

identity bins - achieved by GLOBUS without using individual context correlations. The 

corresponding GLOBUS parameters were determined by simulated annealing optimizations 

performed without using each of the context correlations. The results show that at the same level 

of precision (70%) (a) and recall (90%) (b), there is a marked reduction in performance 

compared to the results using the full fitness function; such reduction is most apparent for cases 

with low sequence identity. Error bars represent the s.e.m. 
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Supplementary Figure 6 | Potential utility of GLOBUS in refining manually curated 

metabolic models. (a) Annotations with non-zero GLOBUS probabilities that were not included 

in the older iYO844
6
 B. subtilis model were subdivided into those included (black) and those that 

were not included (red) in the newer iBsu1103 model. Results show that, for different bins of 

sequence identity, higher GLOBUS probabilities correspond to higher likelihoods that 

annotations were included in the newer model. (b) A similar result is observed for yeast. 

Annotations with non-zero GLOBUS probabilities that were not included in the older iLL672
2
 S. 

cerevisiae model were subdivided into those included (black) or not included (red) in the updated 

iMM904
4
 model. Error bars represent the s.e.m. 
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Supplementary Figure 7 | GLOBUS predictions for sps genes in B. subtilis. (a) Genomic 

positions of the sps genes, as well as gene mapping (dashed arrows) to the dTDP-L-rhamnose 

biosynthesis pathway. The expression of sps genes is controlled by the σ
K
 transcription factor

7
. 

(b) GLOBUS-derived probabilities for potential functions of spsI, spsJ, spsK, and spsL.  
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Supplementary Figure 8 | Substrate consumption at different spsI concentrations. Mass 

spectrometry intensities of α-D-glucose-1-phosphate (left panel) and dTTP (right panel) are 

shown as a function of the SpsI concentration. As negative control (n.c.), the protein free filtrate 

of 6.99 µM spsI solution was used. Error bars represent standard deviations from two 

independent assays. 

 

 

 

 
 

Supplementary Figure 9 | Product accumulation at different YkgB concentrations. Mass 

spectrometry intensities of 6-Phosphogluconic acid (left panel) and relative intensity increase 

(right panel) comparing final to initial values are shown as a function of the YkgB concentration. 

As negative control (n.c.), the protein free filtrate of 232 µM YkgB solution was used. Error bars 

represent standard deviations from two independent assays. 
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Supplementary Table 1 | Prediction of gene function in S. aureus.  

 

Gene 
EC 

number 
Enzyme name Probability 

Identity 

(%) 

Average 

Context 

Z-score 

bioD 6.3.3.3 dethiobiotin synthase 0.99 31.2 7.9 

hisG 2.4.2.17 ATP phosphoribosyltransferase 0.99 39.6 6.3 

murE 6.3.2.13 UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-2,6-diaminopimelate ligase 0.96 39 7.0 

thrB 2.7.1.39 homoserine kinase 1.00 42.4 7.0 

mvaA 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 0.95 40.1 5.9 

hemD 4.2.1.75 uroporphyrinogen-III synthase 0.76 27.4 6.4 

SA2374 1.3.3.1 dihydroorotate oxidase 0.84 37.8 2.2 

murF 6.3.2.10 UDP-N-acetylmuramoyl-tripeptide-D-alanyl-D-alanine ligase 1.00 46 7.2 

mvaK1 2.7.1.36 mevalonate kinase 0.73 35.1 6.7 

ribB 2.5.1.9 riboflavin synthase 0.91 43.3 8.3 

ribC 2.7.1.26 riboflavin kinase 0.96 45.5 2.3 

lysC 2.7.2.4 aspartate kinase 0.86 41.6 5.4 

scrB 3.2.1.26 beta-fructofuranosidase 0.82 40.5 5.9 

folA 1.5.1.3 dihydrofolate reductase 0.89 42.8 9.6 

SA1288 6.3.4.15 biotin-[acetyl-CoA-carboxylase] ligase 0.56 33.1 2.0 

aroK 2.7.1.71 shikimate kinase 0.66 34.9 2.0 

coaW 2.7.1.33 pantothenate kinase 0.71 36.6 2.1 

nagA 3.5.1.25 N-acetylglucosamine-6-phosphate deacetylase 0.95 45.5 8.1 

ansA 3.5.1.1 asparaginase 0.66 36 2.2 

SA2317 4.3.1.17 L-Serine ammonia-lyase 0.90 43.9 2.8 

bioA 2.6.1.62 adenosylmethionine-8-amino-7-oxononanoate transaminase 0.97 48.2 9.3 

asd 1.2.1.11 aspartate-semialdehyde dehydrogenase 0.98 48.9 5.8 

gcvPB 1.4.4.2 glycine dehydrogenase (decarboxylating) 0.81 42.3 9.2 

thiD 2.7.4.7 phosphomethylpyrimidine kinase 0.89 44 8.9 

hemY 1.3.3.4 protoporphyrinogen oxidase 0.94 47 4.1 

trpG 4.1.3.27 anthranilate synthase 0.68 40.6 6.6 

SA2006 4.1.1.5 acetolactate decarboxylase 0.90 46.6 4.9 

alr1 5.1.1.1 alanine racemase 0.82 43.6 3.3 

SA0511 1.1.1.103 L-threonine 3-dehydrogenase 0.78 43.5 2.2 

SA2318 4.3.1.17 L-Serine ammonia-lyase 0.83 45.6 9.3 

 

In the table we show predictions without experimental validation that have GLOBUS-assigned 

probabilities above 0.5 and protein sequence identity to known enzymes below 50%. The 

annotations in the table are ordered by averaging the prediction ranks sorted by decreasing 

annotation probability and the prediction ranks sorted by decreasing identity distance to known 

enzymes. The last column shows the average Z-score of phylogenetic correlations, gene 

clustering, and gene co-expression when all sequences are assigned to their most probable 

locations.  
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Supplementary Methods 

 

Supplementary Table 2 | Highly connected metabolites that were not used in establishing 

connections between metabolic activities (EC numbers). 
 

Metabolite Number of connected EC numbers 

H2O 1224 

H+ 703 

NADP+ 435 

NADPH 433 

NAD+ 422 

NADH 412 

Oxygen 379 

ATP 375 

Orthophosphate 306 

ADP 294 

CO2 254 

CoA 230 

Pyrophosphate 185 

NH3 183 

UDP 150 

S-Adenosyl-L-methionine 115 

Reduced acceptor 115 

AMP 111 

Pyruvate 109 

S-Adenosyl-L-homocysteine 107 

Acetyl-CoA 103 

H2O2 102 

L-Glutamate 100 

2-Oxoglutarate 96 

UDP-glucose 76 

Acetate 73 

D-Glucose 56 

Carboxylate 48 

Succinate 43 

Oxaloacetate 41 

Glycine 41 
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1. The fitness (energy) function 

 

The fitness (energy) function over all metabolic genes, E(g1, g2, …., gn), was defined to 

reflect the hypotheses that a particular global assignment of genes into their network locations 

will be more probable if genes have significant homologies to the assigned locations, and also 

exhibit strong context correlations with their network neighbors. Accordingly, in GLOBUS 

calculations we used the following fitness function for genes included in the network: 

soccurrenceECco soccurrence-ECco context context orthology orthology homology homology 21 ),....,,(
−

−−−−= fbfbfbfbgggE n
 

where, b(s) are positive coefficients representing weights of each functional feature, and f(s) are 

various functional features described below. 

  

A. Sequence homology 

The term, f homology, represents the descriptor of sequence homology. The higher the 

sequence identity between a protein and enzymes in other species known to catalyze the assigned 

activity, the more likely is the assignment to be correct
8,9

. As the sequence homology descriptor 

we used the logarithm of the conditional probability that the gene performs the assigned 

function, given the highest sequence identity to a Swiss-Prot
3
 protein annotated to catalyze the 

target activity: 

 

��������� = 	log�gene	performs	target	function|highest	sequence	identity	to	annotated	SwissProt	protein$
%

&'(
 

 

We only considered Swiss-Prot sequences with protein-based BLAST
10

 E-values < 5*10
-

2
 to the target. We also excluded from consideration Swiss-Prot proteins that were: 1) from the 

query or closely related genomes (from species in the same taxonomic genus) or 2) likely to be 

annotated based exclusively on computational methods, i.e., genes with annotation keywords 

such as probable, like, by similarity, hypothetical, or putative. The conditional probabilities were 

estimated using the well-curated yeast iLL672 metabolic model
2
 (Supplementary Fig. 1d). If 

non-overlapping regions of a considered gene had homologies to separate Swiss-Prot sequences 

performing different enzyme activities, these regions were treated independently and assigned to 

different locations of the EC network using f homology as defined above. 

 

B. Gene orthology 

An additional binary descriptor related to sequence homology was the possible gene 

orthology to a gene from another species annotated with the target activity. The orthology 

descriptor was based on bi-directional best hits by protein BLAST; in these calculations we used 

the bi-directional best hits in the KEGG SSDB database
11

 (http://www.genome.jp/kegg/ssdb/). 

For each gene, the orthology term was either 1, if at least one possible ortholog was annotated in 

Swiss-Prot to perform the target activity, or 0, if no orthologs with the target activity could be 

identified. Again we excluded annotations based exclusively on computational methods, and 

treated separately non-overlapping regions with homology to different activities (see above). 

 

C. Genomic context correlations 

Gene pairs that share similar biological functions tend to be either present or absent 

together in genomes of sequenced species (phylogenetic profiles), tend to be co-localized on 
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chromosomes across multiple genomes (gene clustering), and tend to be co-regulated. These 

context-based correlations were initially developed to infer gene functions and provide 

complementary information to sequence homology data
12,13

. Multiple studies have also 

demonstrated that genes located close to each other in a metabolic network tend to have 

significantly stronger context associations
14,15

. Previously, we and others used context 

associations in combination with local structure of the metabolic network to identify genes 

responsible for orphan metabolic activities
16-19

. 

In GLOBUS we used the context correlations by first transforming them into Z-scores
1
 

using the distribution of correlations between all pairs of candidate metabolic genes, and then 

estimating the conditional probability that two genes are direct network neighbors given their 

context association Z-score. The conditional probabilities were derived based on the iLL672 

yeast metabolic model (Supplementary Fig. 1a-c). In the GLOBUS fitness function for each 

assigned gene we considered the maximum log probability among all network neighbors of the 

gene: 

�)�%*+,* = 	-./�log �two	genes	are	network	neighbors|context	correlation		Z-score	between	the	genes$$
%

&'(
 

 

C.1 Phylogenetic correlation 

Phylogenetic correlation
20,21

 measures the co-occurrence (co-presence) of homologues for 

a pair of genes across genomes. Phylogenetic profiles were constructed using protein BLAST 

searches against a collection of 70 diverged genomes
16

. We used the binary phylogenetic 

profiles, i.e. 70-dimensional binary vectors representing the presence or absence of homologues 

in the target genomes. Pearson’s correlation between the profile vectors was calculated using the 

following equation: 

))((
22

yNyxNx

xyNz
r

−−

−
=  

, where N is the total number of target genomes. For genes X and Y, x is the number of genomes 

in which any homologue of X is present, y is the number of genomes in which any homologue of 

Y is present, and z in the number of genomes in which homologues of both X and Y are present. 

 

C.2 Gene chromosomal clustering 

For a pair of genes, chromosomal gene clustering
22-24

 measures the degree of co-

localization of their orthologues across a set of genomes. We considered gene order statistics 

instead of the exact nucleotide positions of genes, i.e. we defined a gene order distance d(X,Y) as 

the minimum number of genes separating genes X and Y. Under the null hypothesis that genes 

are distributed randomly within a genome, P(dγ(X, Y)) is the probability of observing gene order 

distance equal or less than dγ(X, Y) between a pair of genes X and Y in a genome γ. P(dγ(X, Y)) 

can be calculated directly as the fraction of gene pairs in genome γ that are separated by gene 

order distance dγ(X, Y) or smaller. Assuming gene order distances are independent across a set of 

108 evolutionary divergent organisms Γ, and given that X and Y are orthologues of genes A and 

B from the target genome, we calculated the clustering of genes A and B: 
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5Γ�6, 8$ = −:;<=>?@A�B, C$ADE
A∈Γ

 

For a given set of genomes, this clustering measure can be biased by the variable phylogenetic 

proximity between different organisms. Therefore we deliberately filtered the genome set to 

eliminate species closely related to the target genome using a mutual information threshold of 

0.9 for ortholog occurrences
17

. Orthology mapping required for the chromosomal clustering 

calculations was established using best bi-directional hits in the KEGG SSDB database
11

 

(http://www.genome.jp/kegg/ssdb/). 

 

C.3 Co-expression 

Numerous studies
25,26

 demonstrated that genes with similar mRNA expression profiles 

usually have related biological functions. Descriptors of mRNA co-expression used in GLOBUS 

were calculated as Spearman’s rank correlation between expression profiles obtained from the 

Rosetta “compendium” dataset
27

 for S. cerevisiae and the GEO database
28

 for B. subtilis and S. 

aureus. In all calculations Log10 intensity ratio values were used. 

 

D. Co-occurrence of metabolic activities (EC number) across species 

In addition to phylogenetic gene profiles, we used in GLOBUS a functional descriptor 

based on likely co-occurrence between different metabolic activities (EC numbers) across 

species. This descriptor measures the correlation between the occurrence vectors for different 

activities across a set of organisms, without considering genes assigned to the activities. To 

calculate the correlation between different metabolic activities (EC numbers) we used a 70-

dimentional binary vector for each EC number representing its presence or absence in a set of 70 

genomes (see section C.1) according to the KEGG database
11

 (http://www.genome.jp/kegg). For 

every pair of EC numbers the Pearson’s correlation between their profile vectors was calculated 

(see section C.1).  

In the GLOBUS fitness function for each assigned gene we considered the EC co-

occurrence descriptor equal to the average correlation between the EC activity of the assigned 

gene and the EC activities for all its network neighbors. 

 

2. Calculating marginal probabilities using Gibbs sampler 

 

The marginal probability, P(gi), represents the probability that a gene is responsible for a 

metabolic activity (EC number) consistent with all possible assignments of other genes into the 

network. Formally, given all parameters of the GLOBUS fitness function, b homology, b orthology, b 

context, and b EC co-occurrence, P(gi) can be calculated by summation: 

 

∑∑ ∑∑ +−
−=

− + ni i g

niii

g g g

i gggggEEXP
Z

gP )},...,,,,...,({
1

......)( 111

1 1 1  
 

, where Z is normalizing partition function. Suppose that there are n metabolic genes in the 

genome and each metabolic gene has m potential network assignments, obtaining P(gi) then 

requires summing over m
n
 possible terms. Because a typical genome contains many hundreds to 

thousands of metabolic genes, this summation is computationally intractable. Nevertheless, the 

success of the GLOBUS approach is due to the fact that the vast majority of all possible gene 
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assignments have very low probabilities. Consequently, it is possible to recover correct marginal 

probabilities for each gene using an efficient sampling of high probability configurations 

(assignments). 

To sample probable gene assignments we applied a widely used algorithm, the Gibbs 

sampler
29-31

. The Gibbs sampler is a special case of Markov Chain Monte Carlo (MCMC) and 

the Metropolis-Hasting algorithm
32,33

. The Gibbs sampler allows obtaining marginal probabilities 

using sampling based on conditional probabilities. Starting with a random initial assignment of n 

metabolic genes to a network, a Gibbs chain of t steps: G
1
,G

2
,…,G

t
 is obtained iteratively by 

selecting a random gene i and re-assigning to a location gi according to: 

 

G&HI(~�<&	|	<( = G(H, … , <&L( = G&L(H , <&I( = G&I(H , <% = G%H$ 
 

Where Gi
k 

represents the location of gene i at step k of the Gibbs chain G. If at each iteration the 

location of every gene was recorded; it can be proven that the distribution of Gi converges to 

P(gi) as the number of iterations t → ∞. 

The conditional probability used in the iterative sampling, P(gi| g1,…,gi-1, gi+1,…,gn), is: 

 

),...,,,...,(

),...,,,...,(
),...,,,...,|(

111

111
111

nii

niii
niii

ggggP

gggggP
gggggP

+−

+−

+−
=  

 

Since in each iteration the denominator of the equation and Z (the partition function) are 

constant, the conditional probability can be derived from the fitness function, E(g1, g2, …., gn): 

 

)},...,,,,...,({                                           

),...,,,,...,(),...,,,...,|(

111

111111

niii

niiiniii

gggggEEXP

gggggPgggggP

+−

+−+−

−∝

∝

 
 

 A schematic illustration of a Gibbs sampler chain generating iterative gene assignments is 

shown in Supplementary Figure 10.  
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Supplementary Figure 10 | Illustration of Gibbs sampler used to derive marginal 

probabilities, P(gi), in GLOBUS. A marginal probability for a gene assignment reflects the 

likelihood of the gene to catalyze the corresponding activity consistent with (i.e. integrated or 

summed over) all possible assignment of other genes in the network. Starting from a random 

assignment of candidate metabolic genes, every gene is then iteratively re-assigned to one of its 

possible locations; the likelihood for re-assignment at each location is proportional to the global 

fitness function with the gene assigned to the corresponding EC number, given the current state 

for the rest of the network. Each time a gene is re-assigned a record is kept, such that 

probabilities can be calculated directly from the Gibbs chain counts. 

 

3. Cloning, purification and protein identification of SpsI, SpsJ and YkgB.  

 

The sequences of B. subtilis genes spsI, spsJ and ykgB were retrieved from SubtiList
34

 

and synthesized by Geneart (http://www.invitrogen.com) with codon usage specifically 

optimized for E. coli. The genes were then amplified from the plasmids provided by Geneart by 

attaching 6x His-Tag to the C-terminal end using following primer pairs: 

 

Gene Strand Primer sequence (5’->3’) 

spsI Forward ATCCGCTCTAGAATGAAAGGTGTTATTCTGGCAGGCGG 

Reverse CATGATAAGCTTTTAATGATGATGATGATGATGTTTTTCATCCTGACCTTTACG 

spsJ Forward GCGCGTCTAGAATGGCAAAAAGCTATCTGATTACCGGTGG 

Reverse ATATGAAGCTTTTAATGATGATGATGATGATGACGATCATTATCGGTATACCACTGAATGG 

ykgB Forward GCCGCCTCTAGAATGACCAAATATATTGGTTATGTGGGCACC 

Reverse ATTATTAAGCTTTTAATGATGATGATGATGATGCACCTGATGCAGAAATTTAACACAAACC 

 

PCR products were digested by XbaI/HindIII and ligated into IPTG-inducible pTrc99α protein 

expression vector
35

. 

The genes were overexpressed in E. coli BL21 by induction with 0.1 mM IPTG. After 

growing for 16 hours in 200 ml LB medium at 25°C and 250 rpm, cells were harvested by 

centrifugation, washed with 0.9% NaCl and 10 mM MgSO4, resuspended in 20 mM sodium 

phosphate buffer (pH 7.4) with 2 mM DTT, 4 mM PMSF, 0.5 M NaCl, 20 mM imidazole, 1% 

Triton X-100, 0.2 mg/ml lysozyme, 20 µg/ml DNAse, and lysed by freeze-thaw cycles. Cell 

debris was separated from lysate by centrifugation at 15’000 rpm and 4°C for 30 minutes, and 

clear cell extract was loaded onto His Gravi-Trap columns (GE Healthcare Life Sciences). 

Fractions from imidazole gradient elution containing desired proteins were identified by SDS-

PAGE (Supplementary Fig. 11), elution buffer was replaced by 20 mM potassium phosphate 

buffer (pH 7.4) with 30 mM NaCl using filter columns with 10 kD cutoff (Millipore) and 

fractions were subsequently loaded onto a 1.5 ml Q Sepharose High Performance anion 

exchange column (Amersham Biosciences Limited). Fractions from NaCl gradient elution 

containing desired proteins were identified by SDS-PAGE (Supplementary Fig. 11) and elution 

buffer was replaced by 50 mM potassium phosphate buffer (pH 7.4) with 2.5 mM MgCl2 using 

filter columns with 10 kD cutoff (Millipore). Protein concentrations of selected fractions were 

determined in 20 x concentrated samples by Bradford assay for SpsJ and YkgB. The low 

abundant SpsI was below detection limit and therefore its concentration was estimated based on 

comparison of the band intensities on the SDS-PAGE gels.  

The correct identity of the protein-bands in the used fractions was confirmed by tryptic 

in-gel digestion as described by a published protocol
36

. The resulting peptide mixes were purified 

using Ultra Micro Spin Columns (C18, The Nest Group Inc.) and subsequently analyzed on a 
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LTQ-Orbitrap XL instrument (Thermo Fisher) using published settings
37

. Peptides were assigned 

to MS/MS spectra by SEQUEST
38

 search and subsequent protein assignments were validated by 

PeptideProphet
39

 with 1% error rate cutoff (Supplementary Dataset 1). 

 

 
 

Supplementary Figure 11 | SDS-PAGE. Gels show purification of the His-tagged SpsI, SpsJ 

and YkgB by a imidazole gradient on a Ni Sepharose column followed by a NaCl gradient on a 

Q Sepharose column. Numbers above lanes indicate increasing imidazole or NaCL 

concentrations (mM). Left panel: Purified SpsI with predicted molecular mass, including His-

Tag, of 28.6 kDa. Imidazole elution fractions of 100 and 120 mM were selected for subsequent 

anion exchange purification. NaCl elution fractions of 150, 200 and 250 mM were identified by 

eye due to the very low amount (not visible by gel scanner pictures, well visible after 

concentration). The 150 mM elution fraction was finally used for further experiments. Middle 

panel: Purified SpsJ with predicted molecular mass, including His-Tag, of 36.4 kDa. Imidazole 

elution fractions of 100 and 120 mM were selected for subsequent anion exchange purification. 

The 100 mM elution fraction was used for further experiments. Right panel: Purified YkgB with 

predicted molecular mass, including His-Tag, of 39.2 kDa, imidazole elution fractions of 60 and 

80 mM were selected for subsequent anion exchange purification. The 100 mM NaCl elution 

fraction was used for further experiments. 
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