Supplemental Material

Dormancy is not necessary or sufficient for bacterial persistence

Mehmet A Orman and Mark P Brynildsen*

Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America.

*E-mail: mbrynild@princeton.edu.

Running title: Persister dormancy

Table S1. Primer list.

Forward primer (5`3`)	Reverse primer(5`3`)	Explanation
TCTGGTGGCCGGAAGGCGAAG	TGCCTAATGAGTGAGCTAACTCAC	Primers for using Datsenko and Wanner method to knock-out chromosomal LacI
CGGCATGCATTTACGTTGATGC	ATTAATTGCGTTGCGC CAAGATCC	including promoter. Primers amplified <i>Kan^R</i> cassette from pKD4 plasmid, and have 40-nt
AGCATTACACGTCTTGA	GCAGTTCAACCT	homology regions (bold).
TCTGGTGGCCGGAAGGCGAAG	TCCAGCCTACACAATCGCTCTCAC	Primers for amplifying LacI ^q gene from pQE80L plasmid (Qiagen). The forward primer
CGGCATGCATTTACGTTGACAC	TGCCCGCTTTCCAGTC	has a 40-nt homology extension (bold) for up-stream sequence of chromosomal <i>LacI</i> gene,
CATCGAATGGTGCAAAA		and the reverse primer has a 20-nt homology extension (bold) to append Kan^R cassette to
		the 3` end of <i>LacI</i> ^q coding strand.
GAGCGATTGTGTAGGCTGGA	TGCCTAATGAGTGAGCTAACTCAC	Primers for amplifying Kan ^R cassette from pKD4 plasmid. Forward primer is homologous
	ATTAATTGCGTTGCGC TTAACGGC	to reverse primer of $LacI^q$ for overlap extension, and reverse primer has a 40-nt homology
	TGACATGGGAAT	extension (bold) for down-stream sequence of chromosomal <i>LacI</i> gene. <i>LacI</i> ^q + <i>Kan</i> ^R DNA
		fragment was chromosomally integrated in place of LacI using Datsenko & Wanner
ATTAATGTGAGTTAGCTCACTC	TCCTCGCCCTTGCTCACCATAGTT	method. Primers for amplifying <i>T5</i> promoter from pQE-80L plasmid. The forward primer has a 40-
ATTAGGCACCCCAGGCTTCTCG	AATTTCTCCTCTTTAA	nt homology extension (bold) for up-stream sequence of <i>Lac</i> operon, and the reverse
AGAAATCATAAAAAAT	AATTICICCICITIAA	primer has a 20-nt homology extension (bold) to append <i>mCherry</i> gene to the 3' end of
AGAAATCATAAAAAT		T5p coding strand.
ATGGTGAGCAAGGGCGAGGA	CGATCCTCATCCTGTCTCTTGATC	Primers for amplifying <i>mCherry</i> gene from pAS08.3 plasmid. Forward primer is
AIGGIGAGCAAGGCGAGGA	TTCTACTTGTACAGCTCGTCCATG	homologous to reverse primer of $T5p$ (overlap extension), and reverse primer has a 23-nt
		homology extension (bold) to append Kan^R gene to the 3' end of mCherry coding strand.
ATCAAGAGACAGGATGAGGAT	TGTAGATCGCTGAACTTGTAGGC	Primers for amplifying Kan^R gene. Forward primer is homologous to reverse primer of
CG	CTGATAAGCGCAGCGTATCAGGC	mCherry for overlap extension, and reverse primer has a homology region (bold) for
	AATT TCAGAAGAACTCGTCAAGAA	down-stream sequence of chromosomal <i>Lac</i> operon. $T5p+mCherry+Kan^R$ DNA fragment
	GG	was chromosomally integrated in place of <i>Lac</i> operon using Datsenko & Wanner method.
ATCGAATGGCGCAAAACCT	TTCCAGTCGGGAAACCTGT	Internal primers for LacI to confirm the absence of duplicate gene after knocking out
		chromosomal LacI.
GGGATCAGGAGGAGAAGATCG		Forward primer for upstream sequence of the <i>LacI</i> gene. This primer and a Kan ^R reverse
		primer (see below) were used to confirm the presence of the kanamycin resistance cassette
		in the proper chromosomal location.
AGGACAGTCGTTTGCCGTCT	ATCGACAGATTTGATCCAGCG	Internal primers for LacZ to confirm the absence of duplicate gene after knocking out
		chromosomal <i>Lac</i> operon.
CCGATTTGGCTACATGACATC	AAACAGACCAGATAAATCGTCGC	Internal primers for LacY to confirm the absence of duplicate gene after knocking out
		chromosomal <i>Lac</i> operon.
GCCAATGACCGAAAGAATAAGA	GAAATAATAGTGCTTATCCCGGTC	Internal primers for LacA to confirm the absence of duplicate gene after knocking out
		chromosomal <i>Lac</i> operon.
CGGTAGTGGGATACGACGATAC		Forward primer for upstream sequence of the <i>Lac</i> operon. This primer and <i>Kan^R</i> or
		<i>mCherry</i> reverse primer were used to confirm the presence of the kanamycin resistance
	A MO A MO CA MA COMPANDO CO	cassette or <i>mCherry</i> gene in the proper chromosomal location.
	ATGATGGATACTTTCTCGGCAGGAG	Kan ^R reverse primer

Table S2. Persister Frequencies.

Persister frequencies of mCherry expressing cells			
	Ampicillin	Ofloxacin	
A *	$4.47E-05 \pm 1.17E-05$	$6.93\text{E}-05 \pm 9.33\text{E}-06$	
B *	$5.80\text{E-}05 \pm 1.59\text{E-}05$	$9.60\text{E-}05 \pm 1.33\text{E-}05$	
C *	$4.27\text{E-}03 \pm 4.81\text{E-}04$	$7.40E-03 \pm 6.43E-04$	
Persister frequencies of RSG stained cells			
A	7.19E-04 ± 1.55E-04	$1.52\text{E-}03 \pm 1.03\text{E-}04$	
В	$2.05\text{E}-05 \pm 4.99\text{E}-06$	$5.00\text{E-}05 \pm 8.29\text{E-}06$	
C	$2.00\text{E-}05 \pm 4.24\text{E-}06$	$3.80\text{E-}05 \pm 1.17\text{E-}05$	
D	$2.30\text{E-}05 \pm 7.14\text{E-}06$	$3.65E-05 \pm 6.95E-06$	
Persister frequencies of RSG stained-mCherry expressing cells			
NGI	$3.93E-03 \pm 3.33E-04$	$7.40E-03 \pm 5.77E-04$	
NGII	$3.67E-03 \pm 7.51E-04$	$5.07\text{E-}03 \pm 8.11\text{E-}04$	
GI	6.93E-05 ± 1.57E-05	9.93E-05 ± 1.64E-05	
GII	$5.33E-05 \pm 9.96E-06$	$9.53E-05 \pm 1.34E-05$	

Figure S1. MO001 background fluorescence is as low as that of the parent strain (without *mCherry*). MO001 was incubated without IPTG during the overnight and both with and without IPTG during the exponential growth (A, B), and fluorescence intensities were measured by flow cytometry. Exponential wild-type cells were used to determine the background fluorescence (C).

Figure S2. mCherry was not degraded during the time-frame of the experiment. After accumulation of mCherry protein during the overnight culture (t=0 h) (A), cells were inoculated in fresh media (without IPTG) with 50μg/mL chloramphenicol (B) or without chloramphenicol (C). Exponential-phase samples (2.5 h after the inoculation) were analyzed by flow cytometry.

Figure S3. The number of non-growing cells that were improperly sorted into the fastest-growing quantile was measured. After sorting approximately $5x10^5$ cells from the A* or C* regions (A), the cells from A* and C* were separately reanalyzed by the same sorter (B and C, respectively). It was found that $0.19\pm0.1\%$ of cells in A* were non-growing cells.

Figure S4. Growth of MO001 cells. After inoculation of overnight culture in fresh media (1:1000), OD_{600} was monitored every 30 minutes, and the growth rate was calculated using exponential fit between 60 to 150 minutes time points.