Table S1. Oligonucleotides used in this study.

Primer	Sequence 5'->3'*					
VPS21ORFF	TCAGGATCCAGTCAACATCCAGCCCCCGCA					
VPS21ORFR-MLUI	TCATCAACGCGTATTACCTTAACTTCAGTCTCC					
VPS21DETR	GCAACATGTGCTTCTTGGAGC					
YPT52AMPF	TCAGGATCCGAGCTCTGTAGATCTGTGCACGTGACC					
YPT52AMPR	TCAGGATCCGGTACCGCTGAAAAAGTTGGTTCTGCC					
YPT52AMPF2	TCAGGATCCGAGCTCAATCTTTACAACCATTGTTCG					
YPT52DETF	GAAGAGCTTTACCTGTGGACG					
YPT52DETR	TTCTTGACAAAACGGTGTACG					
YPT52DETR2	GTTGCTTTGATTTACTTGACC					
YPT52SEQF	TATATTGTATACCTTCACCTC					
YPT52DISF	TTTATCTTAACTTGTGTAATATATTGTATATGTATACCTTCACCTCATCTATTTATT					
	TAAATTTATTTTCGTGGAATTGTGAGCGGATA					
YPT52DISR	CTTTGATCAAGTAAAAATAGAAGCTCGAATAATGATTAATGAATAATAATAACTATATCA					
	AATTCTAGGTTTTCCCAGTCACGACGTT					
YPT52ORFR-MLUI	TCATCAACGCGTTCAAGTAAAAATAGAAGCTCG					
YPT53DISF	AAAAAAAGCGAGTAAGAAAACTGATACAGTGTTAATTTGCATTAGAATCAAATAGTGCTA					
	TTAAATCACAGTGGAATTGTGAGCGGATA					
YPT53DISR	TTAACAGCAATATGAGTTAGATGTCTGTCTCGTACGTAGCATGTTTCCTATTTGATCAGAAGT					
	ATCACGAGGTTTTCCCAGTCACGACGTT					
YPT53AMPF	TCAGGATCCGAGCTCGAAATCTCAGTATACGAAGGG					
YPT53AMPR	TCAGGATCCGGTACCACTTTTCTGACATGACAGTGG					
YPT53DETF	CAGTTCAAAAGAAGGCACAGG					
YPT53DETF2	ATAGAGATTCGATTGGTAGGG					
YPT53DETR2	GTTAGATGTCTGTCTCGTACG					
YPT53SEQF	TGCATTAGAATCAAATAGTGC					
YPT53ORFF-	TCATCAGGATCCAAATAGTGCTATTAAATCACA					
BAMHI						
YPT53ORFF-CLAI	TCATCAATCGATCAAATAGTGCTATTAAATCAC					
YPT53ORFR-PSTI	TCATCA <u>CTGCAG</u> CAATGATTCAATTCCTGTGCC					
YPT53ORFR-EAGI	TCATCA <u>CGGCCG</u> GATTTGTAATGATGATAAAGG					
YPT53ORFR-MLUI	TCATCAACGCGTGATTTGTAATGATGATAAAGG					
YPT52EAGF	TCCAAGTTAAATTTATTTTC <u>CGGCCG</u> TCGAACAAACAATCTAACCAACG					
YPT52EAGR	CGTTGGTTAGATTGTTTGTTCGA <u>CGG</u> CC <u>G</u> GAAAATAAATTTAACTTGGA					
YPT53EAGF	CAAATAGTGCTATTAAATCACACGGCCGCTGGAAACATCTCACTCA					
YPT53EAGR	TTGATGAGTGAGATGTTTCCAG <u>CGGCCG</u> TGTGATTTAATAGCACTATTTG					
YPT52S26NF	GGAGAAAGTGCAGTTGGTAAAAATTCTATCGTACACCGTTTTGTC					
YPT52S26NR	GACAAAACGGTGTACGATAGAATTTTTACCAACTGCACTTTCTCC					
YPT52Q73LF	GAAATATGGGATACTGCAGGACTTGAGCGTTACAAGTCATTGGC					
YPT52Q73LR	GCCAATGACTTGTAACGCTCAAGTCCTGCAGTATCCCATATTTC					
YPT53T27NF	GGAGATTCTTCCGTGGGAAAAAATTCGCTTGTACACAGATTCAC					
YPT53T27NR	GTGAATCTGTGTACAAGCGAATTTTTTCCCACGGAAGAATCTCC					
YPT53Q75LF	GATATGGGACACAGCAGGCCTAGAAAGGTACCGTTCATTG					
YPT53Q75LR	CAATGAACGGTACCTTTCTAGGCCTGCTGTGTCCCATATC					
VPS21S24NF	GGGAGAAGCTGCAGTAGGAAAGAATTCGTTGGTGTTGCGATTTGTGTCC					
VPS21S24NR	GGACACAAATCGCAACAACGAATTCTTTCCTACTGCAGCTTCTCCC					
VPS21Q69LF	GAAATCTGGGACACTGCTGGGTTAGAGCGTTTTGCTTCTCTTGCC					
VPS21Q69LR	GGCAAGAGAAGCAAAACGCTCTAACCCAGCAGTGTCCCAGATTTC					
VPS21SEQF	AATACTAGTAGTATCACCATC					
YPT72T24NF	AGATTCTGGTGTTGGTAAAAATTCACTTATGCAACAATTTG					
YPT72T24NR	CAAATTGTTGCATAAGTGAATTTTTACCAACACCAGAATCT					
YPT72Q70LF	CAAATCTGGGATACCGCTGGTTTAGAAAGATTTCAAAGTTTAGG					

YPT72O70LR	CCTAAACTTTGAAATCTTTCTAAACCAGCGGTATCCCAGATTTG					
YPT72SEOF	GAAGATAATTAAAAGGCTGAC					
APS3DISF	ΑΑΤGATGGTCTTCCGAGACTAATGAAATTCTATACCAAAGTCGATATT					
	CCAACACAGAAATTGCTCTTGCTGTGGAATTGTGAGCGGATA					
APS3DISR	TATACTATTTTGCATAATTCATTTCGTATTTATCGCTTTTACCTACC					
	CAGAACCCTCTATCTCGAGACTTTCCCAGTCACGACGTT					
APS3AMPF2	TCATCAGAGCTCCTTTGCACCAACAATGGGGGC					
APS3AMPR	TCATCAGGATCCAGGAAGCAGAAAGGTTGATGC					
APS3DETF2	CAAGTGCACCTGTTGATATCTAC					
APS3DETR2	GTACTTCCATTGGAGTTGACG					
APS3FRAGF	TCAGTCGACTAATCTACTAGATCAGCACAAGAGTG					
APS3FRAGR2	TCAACGCGTGGTGTCGATCACCATCCCGCC					
ACT1PF	TCATCAGGTACCCCAGCCTCGTTTATAAACTTAGTC					
ACT1PF-BAMHI	TCAGGATCCCCAGCCTCGTTTATAATAAACTTAGTC					
ACT1PR2	TCATCAGAGCTCTCAGTCGACTTTGAATGATTATATTTTTTTT					
ADH1-3'UTRF	TCATCAGTCGACGGTGGTATCGATGGTGGTGGTCGGCCGGGTGGTACGCGTGCATGCTAAGCAAAT					
	AGCTAAATTATATACG					
ADH1-3'UTRR	TCATCAGAGCTCGAAAACTTGAAAACTTGAAAACACC					
ADH1-3'UTRR-	TCATCAGGGCCCATCAATGCCAGAGATCAAACC					
APAI						
ARG4DETF	ATCAATTAACACAGAGATACC					
ARG4DET2	CCGAGCTTGGCGTAATCATGG					
HIS1F1268	CCGCTACTGTCTCTACTTTG					
PGUR	GAATACTCAAGCTATGCATCC					
URA3INTF	TTAGTGTTACGAATCAATGGC					
URA3INTR	CAATTATAAATGTGAAGGGGG					
GFPEAGF	TCA <u>CGGCCG</u> ATGTCTAAAGGTGAAGAATTATTC					
GFPEAGR	TCA <u>CGGCCG</u> TTTGTACAATTCATCCATACC					
GFPSALIF	TCA <u>GTCGAC</u> ATGTCTAAAGGTGAAGAATTATTC					
GFPSEQF	TACTTATCCACTCAATATGCC					
GFPDETR2	AACCAAAATTGGGACAACACC					
MCHORFF	TCA <u>GTCGACCGGCCG</u> ATGGTTTCAAAAGGTGAAGAAG					
MCHORFR	TCA <u>CGGCCG</u> ACCACCACCTTTATATAATTCATCCATACCACC					
LUXINTDETF	CTGACCTTTAGTCTTTCCTGC					
LUXINTDETR	CAGTAGTACTTGTTGTTGTATCG					
MLT1GFPF	ACCTCAAAACTTGTTGAAGAACAAAGACAGTATTTTCTACTCTCTTG					
	CCAAAGAAGGTGGATACATAGATGGTGGTGGTGGTTCTAAAGGTGAAGA					
	ATTATT					
MLT1GFPR	TGTAAACTAAAAAAAATATTATTGTATAAATAAAAAAAATCACTATAT					
	GAATATATATCGCACCGATATATATCTAGAAGGACCACCTTTGATT					
MLT1DETF	GATCTTAGTGTTAGATAGTGG					
TETOAMPF	TCA <u>GGTACC</u> TGGACTTCTTCGCCAGAGG					
TETOAMPR	TCA <u>GTCGAC</u> TTTTCTGAGATAAAGCTGTTTTT					
UME6ORFF-Sall	TCATCA <u>GTCGAC</u> GTATAAATGATTACCCATATGG					
UME6ORFR-MluI	TCA <u>ACGCGT</u> AATTCTTAATTCTTAACTTAGCC					
HWP1DETF	GACICCAGCIGGTTCACAACC					
HWP1DETR	ATACCAATAATAGCAGCACCG					
ACT1DETF	TTGGCTGGTAGAGACTTGACC					
ACT1DETR	GTGGTGAACAATGGATGGACC					

* Engineered restriction enzyme sites are underlined. Glycine encoding linkers are italicized.

Table S2. Percent identity* and similarity between S. cerevisiae and C. albicans

endosomal GTPases.

	ScVps21p	ScYpt52p	ScYpt53p	CaVps21p	CaYpt52p	CaYpt53p
ScVps21p	100					
ScYpt52p	46.4(62.8)	100				
ScYpt53p	54.3(70.6)	43.8(57.8)	100			
CaVps21p	66.8(78.2)	45.7(59.1)	50.4(67.2)	100		
CaYpt52p	48.9(63.3)	48.6(60.1)	43.4(58.3)	48.1(59.7)	100	
CaYpt53p	37.6(56.0)	33.9(51.0)	34.6(53.0)	37.3(53.4)	35.1(50.4)	100

* Protein sequences were aligned by using the EMBOSS pairwise align algorithm (http://www.ebi.ac.uk/emboss/).

Figure S1. Vps21p and Ypt72p Rab GTPases are required to be in their active conformation to support *C. albicans* hyphal growth. Inactive (*VPS21^{S24N}* and *YPT72^{T24N}*) and active (*VPS21^{Q69L}* and *YPT72^{Q70L}*) conformational mutant alleles of either GTPase were introduced into their respective *vps21* Δ/Δ and *ypt72* Δ/Δ gene deletion strains. Cell suspensions of each strain were applied as spots to M199 agar and incubated at 37°C for 4 days. Similar results were found on 10% FBS agar at 37°C (data not shown). WT = YJB6284. Data representative of three independent experiments is shown.

Figure S2. Detection of *VPS21*, *YPT52* and *YPT53* transcripts. RNA was extracted from each strain grown in YPD broth at 30°C (yeast) overnight, and subject to northern blot analysis with *VPS21*, *YPT52* and *YPT53* specific probes, or an *ACT1* probe as a loading and RNA integrity control. WT = YJB6284. Exposure times with the non-isotypic detection system were 5 minutes for *VPS21*, overnight for *YPT52* and *YPT53*, and 3 minutes for the *ACT1* probe.

Figure S3. Fluorescent Ypt52p and Ypt53p fusion proteins retain biological function. (A) Cell suspensions of each strain were applied as spots to M199 agar plates and incubated at 37°C for 5 days. (B) Cell suspensions of each strain were prepared by serial dilution, applied to YPD agar or to YPD agar supplemented with 0.02% SDS, 25 μ g/ml congo red or 5 nM rapamycin and incubated at 30°C for 2 days. WT = YJB6284. Each experiment was performed at least twice with similar results. Data representative of 2 independent experimental replicates is shown.

Figure S4. Ypt52p localizes to a sub-vacuolar compartment. A *GFP-YPT52* fusion construct was introduced into the *ypt52* Δ/Δ mutant (transcription of the *GFP-YPT52* fusion was dependent upon *YPT52* 5' and 3' UTR sequences). Each strain was pulse-chase labeled with FM4-64 to label the vacuole (red), and cells imaged using phase contrast (PC) and epifluorescence microscopy with Texas-red and FITC (green) filter sets and 100X objective. Data representative of three independent experimental replicates is shown.

Figure S5. Ypt52p affects vacuole morphology in *C. albicans* **yeast.** Each strain was grown as yeast in YPD broth at 30°C, and vacuoles stained with CMAC. Live cells were then observed by phase contrast and epifluorescence microscopy. Merged images are shown. Data is representative of 2 or more experimental replicates for each genotype.

A.

Figure S7. Loss of *VPS21* **and** *YPT52* **causes synthetic stress phenotypes.** Cell suspensions of each strain were prepared by serial dilution, applied to YPD agar or to YPD agar supplemented with each of the indicated stress inducing agents. Plates were incubated for 2 days at 30°C, then imaged. Data from a representative experiment are shown, and the experiment repeated with similar results.

Figure S8. *vps21* Δ/Δ and *vps21* Δ/Δ *ypt52* Δ/Δ mutants are delayed in the initiation of hyphal growth and have reduced apical extension rates. (A) Each strain was induced to form hyphal in M199 liquid culture at 37°C. Samples taken at the indicated time points were fixed and examined microscopically. The length of individual hyphae from the base of the germ-tube neck to the hyphal apex was measured from image analysis using CellSens DimensionsTM software (Olympus). Only cells in the true hyphal form were included in the analysis, yeast or pseudohyphal forms were excluded. The mean and standard deviation of at least 10 hyphae are shown for each strain at each time point, from a representative experiment. (B) *C. albicans* strains carrying *GFP-VPS21*, *GFP-YPT52* or *GFP-YPT53* fusions with the respective genes native 5' and 3' UTR sequences were grown as yeast (YPD 30°C) or hyphae (M199 37°C) for 4 hours, extracts prepared, and immunoblotted with anti-GFP or anti-GAPDH.

 $vps21\Delta/\Delta ypt52\Delta/\Delta$

 $vps21\Delta/\Delta ypt53\Delta/\Delta$

ypt52Δ/Δypt53Δ/Δ

vps21Δ/Δypt52Δ/Δ ypt53Δ/YPT53^{T27N}

Figure S9. Ume6p overexpression does not suppress the hyphal growth defects of the endosomal GTPase mutants. An *ACT1-UME6* expression construct was introduced into each of the endosomal GTPase deletion mutants. Transformants of each genotype were then streaked to YPD agar and incubated at 30°C for 2 days. At least four independent transformants were examined for each GTPase mutant genotype. Representative are shown for each genotype.

Figure S10. PVC Rab GTPase encoding genes are transcriptionally regulated during *C*. *albicans* hyphal growth. (A) *C. albicans* strain SC5314 was grown as yeast (YPD 30°) or hyphae (M199 37°C), RNA extracted, and northern analysis performed with the indicated gene specific probes. (B) *C. albicans* carrying a doxycycline repressible *TETO-UME6* construct, or an isogenic control strain carrying vector alone (*TETO*), were grown in YPD 30°C $\pm 1 \mu$ g/ml doxycycline for 4 hours, RNA extracted, and northern analysis performed as in part(A).

Figure S11. Loss of Ypt52p and AP-3 mediated trafficking causes hyphal growth defects.

Vacuole morphology was determined using CMAC with yeast cells grown in YPD at 30°C (top panel), or hyphal cells grown in M199 medium at 37°C (bottom panel). Hyphal growth was also compared on 10% FBS agar (center panel).