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Section 1: Derivation of the average arrival time, z,, required for a particle to reach its

target (to accompany Section 2.2 in the main text)

a) b)

Figure S1.Scheme for the calculation of average time needed for a diffusing species, A to meet

and react with an immobile species B in @) 1D, b) 2D and c¢) 3D domains.

1D diffusion

Particles of type A are diffusing on a bounded domain (e.g. a polymer chain of length, L) and
react with immobile targets, type B, when they meet (see Fig. S1). For the simple, one-
dimensional case, the diffusion space can be represented as a line (along r-axis in Fig. 1a), with
B located at the origin, r = 0. B is assumed to occupy a radius of a. Initially (t = 0), A is
uniformly distributed (with concentration cg) at locations r > a. Subsequently, t > 0, reaction
takes place between A and B with the concentration of A is kept at zero at r = a, where the two
species react. Since the space is bounded, there is no flux of A out of the diffusion space atr = L.

Together, these conditions can be expressed mathematically by the following RD equation:
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Initial condition, t = 0: c=cp forr>a

Boundary condition: c=0atr=a and oc/or=0 atr=L

where ¢ denotes the concentration of A. The analytical solution to this problem ist!!
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The average time needed by A to reach its target, B, has been defined by others as:
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where N(t) is the total number of moles of A remaining in the diffusion space at time t. In

general, for a space of any dimension, N (t)= JV dV -c, where V is the volume of the space. Note

that N(0) is simply coV. In a 1D space, N(t) can be simplified to N (t) :IV dv -c= chaLdr-c,

. . . N{(t dr-c . . .
where A is the cross-sectional area. This gives (): g . Using this expression,
N(0) c,(L-a)
together with Eq. S2 and Eq. S3, the final expression for the average arrival time is
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Since most of the biological processes we are concerned with involve a diffusion space of L >> a

(or k << 1), the expression can be further simplified to:
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A comment is due regarding the definition of the average arrival time defined in (Eq. S3).
This formula can be justified by probabilistic arguments. To show this, we define the probability
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density function of the rate of arrival of A at its destination, r = a, as P(t). Once A arrives atr = a

and reacts with B, it is depleted from the a < r < L domain. Therefore, the rate of arrival of A at

its destination is equal to the rate of depletion: —%{N(t)}, which can also be written as:

d
dt

{N(0)— N (t)}. Normalizing this expression with J': P(t)dt=1 gives P(t)= %{1—%}

Therefore, the average time of arrival, or in the language of statistics, the “expected time of

arrival” is E(t)zj':dt-tP(t). Replacing the previous expression for P(t)  gives
- . d N (t) _
=E(t)=| dt-t—<1-—~2%+, which is Eq. S3.
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2D diffusion
For 2D systems, the diffusion space is now a disk (of radius, L), with the immobile species, B, at

its origin. In this case, r is the radial coordinate and the RD equation is as follows:
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Initial condition, t=0: c=c¢p, forr>a
Boundary condition:c=0atr=a and oc/or=0 atr=1L
Using this equation and following the general strategy outlined in the case of 1D, the

approximate value of the arrival time is
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3D diffusion

Finally, for the 3D, the diffusion domain is a sphere of radius L, and the RD equation is:
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The initial and boundary conditions are the same as in the 1D and 2D cases, and the arrival time

IS approximately:

(L
~ L S9
Ta 3D, (a] (S9)

References:

[1] H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, 2nd ed., Oxford University
Press, Oxford, 1959.

[2] G. Adam, M. Delbriick, in Structural Chemistry and Molecular Biology (Eds.: A. Rich,

N. Davidson), Freeman, San Francisco, 1968.



