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Section 1: Derivation of the average arrival time, Aτ , required for a particle to reach its 

target (to accompany Section 2.2 in the main text) 

 

 

 

 

 

 

Figure S1.Scheme for the calculation of average time needed for a diffusing species, A to meet 

and react with an immobile species B in a) 1D, b) 2D and c) 3D domains.  

 

1D diffusion 

Particles of type A are diffusing on a bounded domain (e.g. a polymer chain of length, L) and 

react with immobile targets, type B, when they meet (see Fig. S1). For the simple, one-

dimensional case, the diffusion space can be represented as a line (along r-axis in Fig. 1a), with 

B located at the origin, r = 0. B is assumed to occupy a radius of a. Initially (t = 0), A is 

uniformly distributed (with concentration c0) at locations r > a. Subsequently, t > 0, reaction 

takes place between A and B with the concentration of A is kept at zero at r = a, where the two 

species react.  Since the space is bounded, there is no flux of A out of the diffusion space at r = L. 

Together, these conditions can be expressed mathematically by the following RD equation: 



 2

2

1 2

c cD
t r

∂ ∂
=

∂ ∂
,         (S1) 

Initial condition, t = 0:  c = c0, for r > a  

Boundary condition:  c = 0 at r = a  and / 0c r∂ ∂ =  at r = L 

where c denotes the concentration of A. The analytical solution to this problem is[1] 
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The average time needed by A to reach its target, B, has been defined by others[2] as: 
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where N(t) is the total number of moles of A remaining in the diffusion space at time t. In 

general, for a space of any dimension, ( )
V

N t dV c= ⋅∫ , where V is the volume of the space. Note 

that N(0) is simply c0V. In a 1D space, N(t) can be simplified to ( )
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where Ac is the cross-sectional area. This gives ( )
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together with Eq. S2 and Eq. S3, the final expression for the average arrival time is 
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Since most of the biological processes we are concerned with involve a diffusion space of L >> a 

(or k << 1), the expression can be further simplified to:  
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A comment is due regarding the definition of the average arrival time defined in (Eq. S3). 

This formula can be justified by probabilistic arguments. To show this, we define the probability 
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density function of the rate of arrival of A at its destination, r = a, as P(t). Once A arrives at r = a 

and reacts with B, it is depleted from the a < r < L domain. Therefore, the rate of arrival of A at 

its destination is equal to the rate of depletion: ( ){ }d N t
dt

− , which can also be written as: 
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Therefore, the average time of arrival, or in the language of statistics, the “expected time of 

arrival” is ( ) ( )
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2D diffusion 

For 2D systems, the diffusion space is now a disk (of radius, L), with the immobile species, B, at 

its origin. In this case, r is the radial coordinate and the RD equation is as follows: 
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Initial condition, t = 0:  c = c0, for r > a  

Boundary condition: c = 0 at r = a  and / 0c r∂ ∂ =  at r = L 

Using this equation and following the general strategy outlined in the case of 1D, the 

approximate value of the arrival time is  

2

2

ln
2A
L L
D a

τ ⎛ ⎞≈ ⎜ ⎟
⎝ ⎠

         (S7) 

3D diffusion 

Finally, for the 3D, the diffusion domain is a sphere of radius L, and the RD equation is: 
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The initial and boundary conditions are the same as in the 1D and 2D cases, and the arrival time 

is approximately:  
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