
FILE S1

MATERIALS AND METHODS

RELATIVE ABUNDANCE OF INDIVIDUALS’ DNA IN POOLS

The estimation of minor-allele frequency assumes knowledge of the relative abundance of each

individual’s DNA in each pool (implicitly or explicitly). It is therefore important to have a means of

estimating these relative abundances. To do this, we took advantage of the genotype data available

from the GWAS. In each pool, we selected SNVs that had a genotyping success rate of 100%

in the GWAS, which were unambiguously mapped to the genome (using the Varietas portal by

(PAANANEN, CISZEK and WONG 2010); the reference genome used was GRCh37) and that were

observed in at least 30 reads during sequencing. Furthermore, we required that no indels were

found at these sites during the alignment phase. 298,853 such SNVs were available for men, and

298,703 for women. At such SNVs, the proportion of major allele reads out of total reads is

expected to correspond to the number of major alleles carried by individuals in the pool, adjusted

for the individuals’ DNA’s relative abundance in the pool. We found the least-squares estimators

of the relative abundances in the following manner: in a pool with hk/2 individuals and data for m

SNVs, let A be the m × hk/2 matrix corresponding to the minor allele counts times 1/2, so that

Aij = 0, 0.5 or 1 if individual j carries 0, 1 or 2 copies of the minor allele of SNV i, respectively.

Let x be an hk/2 × 1 column vector of relative abundances, so xi equals the relative abundance

of individual i in the pool. Lastly, let b be the m × 1 column vector of the observed minor allele

frequencies in the pool, so that bi equal the proportion of minor alleles read out of total reads of

SNV i. The least-squares estimator of the relative abundances vector x is found by solving the

following optimization problem:

argmin
x

1

2
‖Ax− b‖22

subject to 0 ≤ xi ≤ 1, i = 1, . . . , hk/2

hk/2∑
i=1

xi = 1

(1)
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Using the lsqlin function in MATLAB, we found the least-squares estimators of relative abun-

dances listed in table 1. In both the men and women pools, relative abundances were generally

similar, though not exactly equal.

Individual Males Pool Females Pool

1 0.1684 0.1664

2 0.2148 0.2055

3 0.2066 0.2012

4 0.2039 0.2220

5 0.2062 0.2049

Table 1: Relative abundances in pools of individuals’ DNA.

ESTIMATION OF SEQUENCING ERROR RATE

To estimate the read error rate of the sequencing platform, we leveraged the GWAS data. We

selected a set of 18,163 SNVs in the pool of men (and 16222 in the pool of women) for which the

genotype minor allele counts are 0 for all five individuals in the GWAS, and which had at least

50 sequencing reads. We interrogated the proportion of minor alleles out of total alleles read at

each such position. For a SNV which was correctly genotyped, this proportion is approximately 0,

occasionally with small deviations produced by sequencing error. We discarded 88 SNVs in men

(68 in women) which had a proportion > 0.05, as we suspect they might represent genotyping

errors. At the remaining SNVs, 2489 of the 1084400 reads in men were minor allele (2203 out of

912938 in women). We thus estimated the sequencing error rate to be 0.229% per base per read

in the men’s pool and 0.241% in the women’s pool, assuming a simplistic error model in which

the rate of error is fixed across pools and independent of the position along the read and of the

nucleotide being read. It should be noted that in a more realistic error model of high-throughput

sequencing platforms, error rates do potentially depend on these factors.
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ESTIMATION OF MINOR ALLELE FREQUENCY FROM SEQUENCING

DATA WITH ERRORS

The methods presented in this work rely on the estimated minor allele frequencies from sequenc-

ing data. To estimate these frequencies, we use a maximum likelihood approach with a sim-

ple error model. Note that more sophisticated models are possible, using error patterns spe-

cific to the sequencing platform, for example (e.g., (DEPRISTO, BANKS, POPLIN, GARIMELLA,

MAGUIRE et al. 2011; BANSAL 2010; MCKENNA, HANNA, BANKS, SIVACHENKO, CIBULSKIS

et al. 2010)). If necessary, such models can be readily substituted for the one presented in this

section.

Consider a set of P pools, each containing a mixture of DNA from several individuals (in

the case of low coverage sequencing without pooling, the size of each pool is 1). Let hk denote

the number of haplotypes in pool k (thus, pool k contains DNA from hk/2 individuals), and let

αi denote the relative abundance of individual i’s haplotypes in the pool, so that
∑hk/2

i=1 αi = 1

(the relative abundances are assumed to be known, and a method to estimate them is described

above). The pools undergo sequencing, generating observations of the minor and major alleles at

each genomic position. Our goal is to estimate p, the minor allele frequency across all pools, for

each genomic position.

Let e be the known (or estimated) error rate of the sequencing platform, and for pool k let xk

be the observed counts of the minor allele, yk the observed counts of the major allele, and zk =

xk + yk. For individual i in pool k, let tki be the number of i’s chromosomes that carry the minor

allele, so that tki ∈ {0, 1, 2}. Finally, let ~tk denote the minor allele count vector (tk1, . . . , t
k
hk/2

). To

estimate p, we observe that tki ∼ B(2, p), and that

Pr(~tk | p) =
hk/2∏
i=1

Pr(tki | p) =
hk/2∏
i=1

(
2

tki

)
pt

k
i (1− p)2−tki (2)

Furthermore, when reading a single base from a pool k with the minor allele vector ~tk, the chance
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to observe a minor allele, denoted by fk(~tk) is

fk(~tk) , (1− e)
hk/2∑
i=1

αi
tki
2
+ e

hk/2∑
i=1

αi
(2− tki )

2
(3)

(to see this, note that we observe a minor allele if we either sample and read a minor allele without

error or sample and read a major allele with error). Therefore xk, the observed minor allele count

in pool k, follows a Binomial distribution:

xk ∼ B(zk, fk(~tk)) (4)

The likelihood of p for a particular pool k is then:

L(p;xk, yk) = Pr(xk, yk | p)

=
∑

~tk∈{0,1,2}hk/2

Pr(xk | zk,~tk) · Pr(~tk | p)

=
∑

~tk∈{0,1,2}hk/2

{(
zk

xk

)
(fk(~tk))x

k

(1− fk(~tk))z
k−xk ·

hk/2∏
i=1

(
2

tki

)
pt

k
i (1− p)2−tki

}
(5)

And the full likelihood function is simply the product of the above across all P pools. Note that

we can write ak~tk ,
(
zk

xk

)
(fk(~tk))x

k
(1− fk(~tk))z

k−xk , and then the likelihood function is

L(p; ~x, ~y) =
P∏

k=1

∑
~tk∈{0,1,2}hk/2

ak~tk

hk/2∏
i=1

(
2

tki

)
pt

k
i (1− p)2−tki (6)

in which ak~tk does not depend on p, and can therefore be pre-calculated to speed up calculations.

We also denote

S~tk ,
hk/2∑
i=1

tki and I~tk ,
hk/2∑
i=1

[tki ∈ {2, 0}] (7)

(so that I~tk is the count of tki ’s which equal 2 or 0), and note that

hk/2∏
i=1

(
2

tki

)
pt

k
i (1− p)2−tki = 2I~tkpS~tk (1− p)hk−S~tk (8)

To find the value of p which maximizes L, we calculate the natural logarithm of the likelihood

function, and take its first derivative:

d

dp
lnL(p; ~x, ~y) =

P∑
k=1

∑
~tk a

k
~tk
2I~tkpS~tk

−1(1− p)hk−S~tk
−1(S~tk − hk · p)∑

~tk a
k
~tk
2I~tkpS~tk (1− p)hk−S~tk

(9)
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It is easy to verify that the likelihood is a concave function of p, and therefore its maximal value

can be found using various optimization procedures.
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