Algorithm 1 An iterative algorithm to solve the MDGP with inaccurate data

1: procedure lsbuild(V, E, l, u) $\begin{aligned} D &= [d_{ij}] = [t_{ij}l_{ij} + (1 - t_{ij})u_{ij}], \forall (i, j) \in E; \\ \mathcal{B} &= \mathbf{cliquer}(G(V, E)); \end{aligned}$ ▷ Approximated EDM with $t_{ij} \in [0, 1]$ 2: \triangleright Initial base (clique). 3: $U\Sigma U^t = svd(D')$, where $D' = [d_{ij}], \forall (i, j) \in \mathcal{B}$; 4: Define $\tilde{\Sigma}$ as the diagonal matrix with the three biggest eigenvalues of Σ ; 5:Define \tilde{U} as the matrix with the columns of U associated to the eigenvalues in $\tilde{\Sigma}$; 6: $x_j = [\tilde{U}\Sigma^{1/2}]_j, j \in \mathcal{B};$ 7: $\triangleright [M]_j$ represents the *j*-th row of the matrix M. Refine $x = [x_j], j \in \mathcal{B}$ using the model given by the eq. (3); 8: $L = V - \mathcal{B};$ \triangleright List of non fixed coordinates. 9: while L is not empty do 10: $K = \{j \in L : \text{node } j \text{ has at least four neighbors in } \mathcal{B}\};$ 11:for $j \in K$ do 12:Solve the linear system given by the eq. (4); 13:end for 14: \triangleright Update L L = L - K;15: $\mathcal{B}=\mathcal{B}\cup K;$ $\triangleright \text{ Update } \mathcal{B}$ 16:Refine $x = [x_j], j \in \mathcal{B}$ using the model given by the eq. (3); 17:18: end while 19: end procedure