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Summary

A cell-based model for the uptake and transport of zinc in roots of Arabidopsis
thaliana and Arabidopsis halleri is derived. The model consists of a coupled sys-
tem of ordinary differential equations describing the regulation of ZIP transporters
and 1-D partial differential equations describing the transport in the symplast and
apoplast. It considers, thus, the internal structure of the root tissue and couples
transport phenomena with regulation networks. A system of ordinary differential
equations for the xylem is also derived from a transport model and coupled via a
boundary condition to the 1-D model of the apoplast.

S.1 Overview

Transport in the root is assumed to be mostly in radial direction. This allows to reduce
the three dimensional problem into coupled one dimensional radially oriented problems.
The structure along the radius is shown schematically in Fig. 1 of the main manuscript.
The root is assumed to be composed of following cell types (from outside to inside):
epidermis (ep), cortex (co), endodermis (en) and pericycle (pc). The cell layers extend
from radius rx to re. Surrounding the endodermis cells, a perfectly unpermeable Cas-
parian strip (cs) at position rc is assumed. Epidermis, cortex and endodermis cells are
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Figure S.1: Schematic drawing of the domains correspoding to apoplast Ω1, Ω2 and Ω4,
and symplast Ω3. The root is assumed to be composed of a periodic assembly
of such domains.

assumed to possibly have ZIP transporters (influx), while pericycle cells have only HMA4
efflux transporters. Following the results of Talke et al. [2006], the expression of HMA4
is assumed to be independent of the zinc concentration and will be included into the
model as a given efflux. Both transporters ZIP and HMA4 are assumed to be saturable
and to follow Michaelis-Menten kinetics. The expression of ZIP in the epidermis, cortex
and endodermis is allowed to adapt to the current internal zinc status based on the
dimerising activator-inhibitor model proposed by Claus and Chavarŕıa-Krauser [2012].
Depending on the average internal zinc concentration, each cell adjusts independently of
the others the expression level of ZIP. The resulting amount of transporters is assumed
to be evenly distributed on the plasma-membrane and will vary in general from cell to
cell (but not within). This assumption is supported by the HMA2 expression pattern
found in A. thaliana, Sinclair et al. [2007] (Fig. 1(c) of that publication). Note that,
the model needs no other type of signal beside the internal zinc concentration. Hence,
coordination is achieved merely by zinc fluxes.

To be able to reduce the problem to a system of 1-D partial differential equations,
some assumptions on the geometry are needed. First, the root is best described by cylin-
drical coordinates and reduction will be achieved by averaging over the axial coordinate
z and the azimuth ϕ. Second, assume that the domain of interest is made up by periodic
repetition of Ω̄ := Ω̄1 ∪ Ω̄2 ∪ Ω̄3 ∪ Ω̄4 in azimuthal and axial direction. Here, Ω3 denotes
the symplast and Ω1, Ω2, and Ω4 different parts of the apoplast respectively as indicated
in Fig. S.1. And third, assume that the contribution of the apoplastic “edges” Ω4 to the
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overall zinc uptake is negligible. This assumption is justified, as Ω4 is thin compared to
Ω1 to Ω3. Each layer of cells presented in Fig. 1 could be described by such a periodic
assembly. We will assume that Ωi, for i = 1, . . . , 4, span over all cell layers from rx to
re.

Cells have a complex internal structure with organelles, such as vacoules, nucleus, etc.
They are also interconnected by plasmodesmata – channels which traverse the cell wall.
To avoid the treatment of these internal structures, we treat the cell content as a porous
medium with a given volume fraction, i.e. the vacoules are not treated as separate
structures. Therefore, we introduce a volume fraction Φ = Φ(r) for the symplast, which
depends only on the radial position. This assumption is valid in view of the periodic
structure of the cell and orientation of cell layers (Fig. 1). Cell walls are also best
described as a porous medium of constant structure and porosity with constant volume
fraction Ψ.

S.2 Regulation

Regulation is described by the dimerizing activator-inhibitor model proposed in Claus
and Chavarŕıa-Krauser [2012]. This leads to a system of five ordinary differential equa-
tions per cell type listed in Fig. 1

dGα

dt
= γG

(
K A2

α (1−Gα)−Gα

)
,

dMα

dt
= γM (Gα −Mα) ,

dTα

dt
= γT (Mα − Tα) ,

dAα

dt
= γA

(
1− ΓAα Iα −Aα

)
,

dIα
dt

= γI
(
ΓI ζα − Γ′Aα Iα − (1 + ΓI ζα) Iα

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

for t ∈ (0,∞) ,

α = en, co, ep ,
(S1)

where Gα is the gene expression level, Mα the transcript level, Tα the transporter level,
Aα an activator and Iα an inhibitor, and ζα the internal zinc concentration. The factors
γi, for i = G,M,T,A, I, are related to the time scales of each single reaction step. This
system was non-dimensionalized in such a way that all variables take values between 0
and 1. Pericycle cells are not included, because these efflux cells can be assumed to not
express an influx transporter. Fig. 3 in the main manuscript presents a diagram of the
processes modelled by Eq. (S1).

The model expects one single value for the internal zinc concentration ζα(t), while
the transport model delivers a distribution Z = Z(x, t) with x ∈ Ω3. Thus, the zinc
concentration varies inside a single cell. To circumvent this issue, we assume that a cell
senses the average zinc concentration inside it

ζα(t) = ζ−1
0

1

μ(Cα)

∫
Cα

Z(x, t) dx for t ∈ [0,∞), α = en, co, ep , (S2)
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where ζ−1
0 is a scaling factor (ζα is non-dimensionalized), integration is over the cell

Cα ⊂ Ω3 and μ(Cα) is its volume. The transporters regulated by Eq. (S1) are assumed
to be distributed evenly on the surface ∂Cα of the cell, and a distribution of transporters
is constructed as follows

T (x, t) =
∑

α∈{en,co,ep}
Tα(t)χ∂Cα(x) , for (x, t) ∈ Ω3 × [0,∞) (S3)

with the characteristic function

χ∂Cα(x) =

{
1 if x ∈ ∂Cα ,
0 if x /∈ ∂Cα .

HMA4 efflux transporters at the pericycle are included in a similar manner

H(x) = Hpc χ∂Cpc(x) , x ∈ Ω3 , (S4)

where the assumption that the level Hpc of HMA4 is constant was used, Talke et al.
[2006].

S.3 Water flow

Before treating our main topic of zinc transport in the root, we construct a simple model
for water flow. Membranes restrict the movement of zinc, but water carries it along the
flow path (advection). This process influences the distribution of zinc and determines
how fast variations in external zinc concentration spread in the system. Ultimatelly,
advection is essential to the regulation patterns.

To avoid a complete treatment of water fluxes in root tissues, we focus only on mass
conservation delivering the flow speed by consideration of effective flow cross sections.
Variation of cross section in the symplast is included through the volume fraction Φ(r).
Water fluxes in the apoplast are assumed to be small compared to those in the symplast
and will be neglected here. This includes the assumtpion that there is no exchange
between symplast and apoplast, although the apoplast is believed to contribute to the
total flux, Steudle [2000]. We assume that epidermal cells take up water from the medium
with a constant flux density q0. During its pathway to the xylem, water is assumed to be
conserved and to have a flow speed that depends only on volume fraction and geometry
(radial convergence). This approach is very simplistic and other more sophisticated
models have been proposed, for example Katou and Furumoto [1986], Katou et al. [1987],
Taura et al. [1988], Katou and Taura [1989], Murphy [2000]. Modeling water fluxes in
plant tissues is a complex problem which deserves treatment of its own and is out of
scope of this manuscript.

Mass conservation for an incompressible fluid reads in the symplast

div(Φv) = 0 in Ω3 , (S5)
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where Φ is the volume fraction and v is the flow velocity. Eq. (S5) is expressed in
cylindrical coordinates (r, ϕ, z) to reflect the geometry of roots

1

r
∂r(rΦ vr) +

1

r
∂ϕ(Φ vϕ) + ∂z(Φ vz) = 0 . (S6)

where vr, vϕ, and vz denote the radial, azimuthal, and axial component of the velocity
v. To the end of reducing the model to 1-D we consider the surfaces

Γi (r) :=
{
x ∈ Ωi

∣∣ x21 + x22 = r2
}

for i = 1, 2, 3 , (S7)

which can be described in cylindrical coordinates by

(r, ϕ, z) ∈ {r} × (0, ϕ0,i)× (0, z0,i) for i = 1, 2, 3 ,

with azimuth ϕ0,i and height z0,i of the considered domain. Note the use of different
polar coordinate systems for Ω1, Ω2, and Ω3. Let μi (r) = r ϕ0,i z0,i denote the area of
Γi (r). Introduce the averaged radial velocity in the symplast Ω3

v(r) :=
1

μ3 (r)

∫
Γ3(r)

vr(r, ϕ, z) dγ , for r ∈ [rx, re] ,

and consider the corresponding average of Eq. (S6) over Γ3 (r):

1

μ3(r)

∫
Γ3(r)

1

r
∂r(rΦ vr) dγ = − 1

μ3(r)

∫
Γ3(r)

(
1

r
∂ϕ(Φ vϕ) + ∂z(Φ vz)

)
dγ ,

where the second and third terms in Eq. (S6) were moved to the right hand side. With
the surface element dγ = r dϕdz the left hand side of the equation is

1

μ3(r)

∫
Γ3(r)

1

r
∂r(rΦ vr) dγ =

1

r
∂r(rΦ v) ,

while the terms on the right hand side correspond to a two dimensional divergence and
can be transformed into an integral over the boundary ∂Γi(r). This boundary integral
is zero, based on the assumption that the apoplast and symplast do not exchange water
(consequence of assuming no water fluxes in the apoplast). We obtain an equation for
the average flow velocity in the symplast

∂r(rΦ v) = 0 for rx < r < re , (S8)

Φv
∣∣
r=re

= q0 , (S9)

where the water influx q0 was prescribed on the root surface (r = re). This system can
be solved by integration rendering

v(r) =
re
r

q0
Φ(r)

for rx ≤ r ≤ re . (S10)
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Fig. 2 in the main manuscript shows the flow velocity used in the simulation. The
volume fraction in the symplast Φ(r) considers the periodic space restriction produced
by vacoules and plasmodesmata. An estimate based on Rutschow et al. [2011] delivers a
volume fraction in plasmodesmata of the order of 0.15, while the vacoule was assumed to
make up 80% of the cell volume (Φ3 = 0.2). Table S.2 presents the geometry parameters
on which the calculations were based. This parameter set represents a typical A. thaliana
root.

S.4 Zinc transport

Having determined the flow velocities in the compartments considered, we are able to
move on to the task of finding a model for zinc. Its transport can be modelled by a
diffusion advection problem, that states the conservation of zinc

∂t(ΨZi)− div (ΨD gradZi) = 0 in Ωi × (0,∞) , i = 1, 2 , (S11a)

∂t(ΦZ3) + div (ΦvZ3 − ΦD gradZ3) = 0 in Ω3 × (0,∞) , (S11b)

where Ψ is the volume fraction of the apoplasts Ω1 and Ω2, Zi is the zinc concentration
and D a diffusion coefficient. Transport in the apoplast is assumed to take place only
by means of diffusion, as the water flow velocity was assumed to be zero.

S.4.1 Reduction to 1-D

Define Zi as the average of Zi over Γi (r):

Zi(r, t) :=
1

μi(r)

∫
Γi(r)

Zi(x, t) dγ , for (r, t) ∈ [rx, re]× [0,∞) .

We proceed to average Eqs. (S11a) and (S11b). We will average exemplarily Eq. (S11b).
The result will apply also to Eq. (S11a) by exchanging Φ with Ψ and setting v = 0.
Treatment of the time derivative term is straightforward

1

μ3(r)

∫
Γ3(r)

∂t (ΦZ3) dγ = ∂t (ΦZ3)

The contribution of the advection term in Eq. (S11b) is

1

μ3(r)

∫
Γ3(r)

div(ΦvZ3) dγ =
1

r
∂r

(
rΦ

1

μ3(r)

∫
Γ3(r)

vr Z3 dγ

)
+

1

μ3(r)

∫
∂Γ3(r)

Φ vn Z3 ds ,

where vn is the normal velocity on ∂Γ3(r). For the sake of generality the integral over
∂Γ3(r) is kept, although it is zero by the assumption of no water exchange between the
apoplast and symplast (vn = 0). By the mean value theorem, there exists a ṽ (r) so that∫

Γ3(r)
vr Z3 dγ = ṽ (r)

∫
Γ3(r)

Z3 dγ .
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This renders the approximation

1

μ3(r)

∫
Γ3(r)

div(ΦvZ3) dγ ≈ 1

r
∂r (rΦ v Z3) +

1

μ3(r)

∫
∂Γ3(r)

Φ vnZ3 ds ,

where ṽ ≈ v was assumed. In the last step we had to make a somewhat crude approx-
imation. However, without explicitely solving the whole 3-D problem, this is the best
that can be done. The contribution of diffusion is obtained by expressing the divergence
and gradient operators in cylindrical coordinates. The terms containing an r-derivative
are

− 1

μ3(r)

∫
Γ3(r)

1

r
∂r(ΦD r ∂rZ3) dγ = −1

r
∂r (ΦDr ∂rZ3) .

The term containing ϕ- and z-derivatives are transformed into an integral over the
boundary of Γ3(r)

− 1

μ3(r)

∫
Γ3(r)

(
1

r
∂ϕ

(
ΦD

r
∂ϕZ3

)
+ ∂z(ΦD∂zZ3)

)
dγ = − 1

μ3(r)

∫
∂Γ3(r)

ΦD∂nZ3 ds ,

where ∂nZ3 is the normal derivative of Z3 on ∂Γ3(r). Summation of this boundary
integral with the one obtained from the advection term delivers the average flux through
the boundary

1

μ3(r)

∫
∂Γ3(r)

Φ (vnZ3 −D∂nZ3) ds = −Q3 ,

Qi :=
2∑

j=1

σij(r)Jj(r)

(S12)

where the flux densities Jj(r) represent the transport through ZIP and HMA4 (developed
in next section), Q3 denominates the source of zinc, and σij is

(σij)(r) :=

⎛
⎝ −2/z0,1 0

0 −2/rϕ0,2

2/z0,3 2/rϕ0,3

⎞
⎠ . (S13)

The sign convention of Ji is as follows: positive for a flux from the apoplast into the
symplast and negative vice versa. σij is related to the ratio of the length of the pieces
composing the boundary ∂Γ3(r) to the area of Γ3(r) and weights, thus, the flux densities
Jj to account correctly the change in average concentration.

Putting everything together, the following reduced model for the symplast Ω3 is ob-
tained

∂t(ΦZ3) +
1

r
∂r (rΦ v Z3 − ΦD r ∂rZ3) = Q3 in (rx, re)× (0,∞) . (S14)
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It is practical for the implementation of a numerical method to rewrite the equation into
a conservative form by introducing r Zi as a variable. Applying the results for Ω3 to Ω1

and Ω2, the following system is obtained

∂t(Ψ rZ1) + ∂r
(
(D/r)Ψ rZ1 −ΨD∂r(rZ1)

)
= r Q1 ,

∂t(Ψ rZ2) + ∂r
(
(D/r)Ψ rZ2 −ΨD∂r(rZ2)

)
= r Q2 ,

∂t(Φ rZ3) + ∂r
(
(v +D/r) Φ rZ3 − ΦD∂r(rZ3)

)
= r Q3 ,

in (rx, re)× (0,∞) . (S15)

Initial values and boundary conditions are developed in Section S.4.3.

S.4.2 Flux densities Jj

The zinc sources Qi on the right hand side of Eq. (S15) depend on the flux densities Jj ,
which still need to be specified. The zinc flux through transporters can be modelled by
a saturable pointwise reaction mechanism

Zi + T −⇀↽− Z−T −→ Z3 + T , for i = 1, 2 ,

Z3 +H −⇀↽− Z−H −→ Zi +H .

We will assume that the above reactions follow Michaelis-Menten kinetics and introduce
as in Claus and Chavarŕıa-Krauser [2012] a saturation function

f(Z,K) =
Z

Z +K
, (S16)

where K is the corresponding Michaelis-Menten constant. We introduce versions of
T (x, t) and H(x) which depend on the radius by averaging over ∂Γ3(r)

T (r, t) :=
1

μ
(
∂Γ3(r)

) ∫
∂Γ3(r)

T (x, t) ds , for (r, t) ∈ [rx, re]× [0,∞) , (S17a)

H(r) :=
1

μ
(
∂Γ3(r)

) ∫
∂Γ3(r)

H(x) ds , for r ∈ [rx, re] . (S17b)

Note that, T (r, t) is equal to Ten(t), Tco(t) and Tep(t), respectively, for an r inside one
of these cells, zero elsewhere. H(r) is equal to Hpc for an r inside the pericycle and zero
elsewhere. The reaction probability depends on ΨT (r, t) instead of only T (r, t), because
Ω1 and Ω2 are porous media and only the reduced amount ΨT (r, t) has actually contact
to Z1 and Z2. No correction is needed for H(r), as the cytoplasm can be assumed to
have direct contact with the membrane, so that the complete H(r) can react with Z3.

In total, the flux densities Jj are modelled as

Jj(r, t) = ΦT0 T (r, t) f
(
Zj(r, t),K

t
)
−H0H(r) f

(
Z3(r, t),K

h
)
, j = 1, 2 , (S18)

where T0 and H0 are constants that characterize the true amount of transporters (non-
dimensionalized regulation).
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S.4.3 Initial values and boundary conditions

Equation (S15) needs initial values and suitable boundary contions to obtain a well
posed (solvable) problem. The apoplast is assumed to have access to a perfectly stirred
medium of concentration Ze. A concentration Zx(t) is prescribed at the xylem. This
concentration depends on the flux of zinc through HMA4 and a model will be developed
in the next section. The impermeability of the Casparian strip is considered by setting
a no-flux condition. In total, we prescribe for the apoplasts Ω1 and Ω2

Zi

∣∣∣
r=rx

= Zx(t) ,

(D/r)Ψ rZi −ΨD∂r(rZi)
∣∣∣
r↗rc

= 0 ,

(D/r)Ψ rZi −ΨD∂r(rZi)
∣∣∣
r↘rc

= 0 ,

Zi

∣∣∣
r=re

= Ze ,

for t ∈ [0,∞), i = 1, 2 . (S19)

The zinc flux is prescribed at the boundary of the symplast Ω3

(v +D/r) Φ rZ3 − ΦD∂r(rZ3)
∣∣∣
r=rx

= r H0Hpc f
(
Z3(rx),K

h
)
, (S20a)

(v +D/r) Φ rZ3 − ΦD∂r(rZ3)
∣∣∣
r=re

= −rΦT0 Tep f
(
Ze,Kt

)
, (S20b)

for t ∈ [0,∞) .

Published experimental results that capture the dynamics of regulation, focus on
changes from one steady state at a given external concentration to another steady state
for a different concentration (e.g. zinc resupply). Therefore, the initial conditions used
here are solutions of the stationary version of Eq. (S15)

Zi(r, t)
∣∣∣
t=0

= Zi(r) for r ∈ [rx, re] , i = 1, 2, 3, (S21)

where the Zi fulfill the following equations

∂r
(
(D/r) Ψ rZi −ΨD∂r(rZi)

)
= r Qi , in (rx, re)× (0,∞) , i = 1, 2 , (S22)

∂r
(
(v +D/r) Φ rZ3 − ΦD∂r(rZ3)

)
= r Q3 in (rx, re)× (0,∞) , (S23)

with boundary conditions Eqs. (S19), (S20a) and (S20b). In general, the steady state for
given Ze and q0 will be determined, used as a initial condition, one of these parameters
changed, and the dynamics of the transition captured.

S.4.4 Xylem

A calculation of the apoplastic zinc concentration in the region enclosed by the Casparian
strip (rx ≤ r ≤ rc) needs the concentration of zinc in the xylem. For simplicity, we will
pose a model for the central cylinder 0 ≤ r < rx (i.e. stele without the pericycle) and
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account the true size of the xylem by a constant volume fraction Ψx. The domain
describing this tissue will be denoted as Ωx, where the x stands for xylem.

Eqs. (S5) and (S11b) apply also to this tissue

div(Ψxvx) = 0 in Ωx , (S24)

∂t(ΨxZx) + div (Ψx vxZx −ΨxD gradZx) = 0 in Ωx × (0,∞) , (S25)

where vx is the flow velocity and Zx is the zinc concentration in the central cylinder
Ωx. An average can be obtained as in Secs. S.3 and S.4. The main difference is that the
surface over which the average is created is here

Γx (z) := {x ∈ Ωx | x3 = z } .

Conservation of water delivers

∂z(Ψx vx) = − 2

rx
Φ(rx) v(rx) , (S26)

where Φ(rx)v(rx) is the flow velocity of the water being delivered from the symplast,
and the average velocity in the xylem is defined as

vx(z) :=
1

μ
(
Γx(z)

) ∫
Γx(z)

vz,x(r, ϕ, z) dγ , for z ∈ [0, L] ,

where L is the length of the root portion considered. Expression of Φ(rx) v(rx) by Eq.
(S10), integration of Eq. (S26), and assumption of vx(0) = 0 delivers

vx(z) = − 2

rx

re
rx

q0
Ψx

z for z ∈ [0, L] , (S27)

which is a linear function of z. Remeber that q0 < 0 so that vx(z) ≥ 0 for z ≥ 0. Eq.
(S27) is based on the assumption that q0 is constant, which will not be true in reality.
The pressure gradient between the xylem and the medium will fall with z and, hence,
vx(z) cannot grow linearly indefinitelly and will stagnate at a constant value. However,
vx(z) will behave similar to Eq. (S27) in a region near z = 0. We focus on this region
and assume validity of Eq. (S27).

An average for the equation describing the conservation of zinc is obtained readily

∂t(ΨxZx) + ∂z(Ψx vx Zx −ΨxD∂zZx) =
2

rx
H0Hpc f

(
Z3(rx, t),K

h
)
, (S28)

where the boundary condition Eq. (S20a) divided by r was used and the average zinc
concentration is defined as

Zx(z, t) :=
1

μ
(
Γx(z)

) ∫
Γx(z)

Zx(x, t) dγ for (z, t) ∈ [0, L]× [0,∞) .
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A preliminary simulation of this equation with no-flux and open vessel conditions at
z = 0 and z = L, respectivelly, shows that Zx is almost constant in space. Hence, we set
Zx(z, t) ≈ Zx(t), use that Ψx is constant and express vx by Eq. (S27) to obtain

dZx

dt
=

1

Ψx

2

rx

(
re
rx

q0 Z
x +H0Hpc f

(
Z3(rx, t),K

h
))

for t ∈ (0,∞) ,

Zx
∣∣
t=0

= Zx
0 .

(S29)

Note again that q0 < 0, so that this equation has a non-trivial positive steady state
solution

Z
x
= −rx

re

H0 Hpc

q0
f
(
Z3(rx),K

h
)
. (S30)

11



References
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Figure S.2: Diagram of the steps involved in coupling the numerical schemes.
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Figure S.3: Schematic diagram of effect of cylindrical geometry on water flow velocity.
The flow cross section becomes smaller for smaller radii resulting in acceler-
ation of the flow: v = A1

A2
q0 > q0 for A1 > A2.

Table S.1: Parameters used in the regulation model. Values taken
from Claus and Chavarŕıa-Krauser [2012]

Parameter Kt∗ K Γ Γ′ ΓI γG γM γT γA γI
Value 13μM 20 38 167.2 1000 4 4 1 1 1

* Value for ZIP1, Grotz et al. [1998]

Table S.2: Geometry parameters used in the simulation. These cor-
respond to a typical Arabidopsis thaliana root.

Parameter rx rc re z0,1 z0,3 φ0,3

Value 6μm 12.5μm 40μm 0.5μm 135μm π/10

Table S.3: Further parameters used in the simulation.

Parameter Value Description
Kh 1μM Michaelis-Menten constant for HMA4
ζ0 166.67μM Scaling factor that dimensionalizes the internal zinc concentration
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