
A Semiparametric Approach to Dimension Reduction:

Supplementary Materials

Yanyuan MA and Liping ZHU

1 Statement and Proof of Lemma 1

Lemma 1. Assume Λ is a p× p symmetric matrix of rank d. If and only if β satisfies

Λ−PΛP = 0,

then the span of the columns in β is the eigen-space of Λ corresponding to the d nonzero

eigenvalues.

Proof: First we assume Λ−PΛP = 0. By the definition of P, we have

Λ = β0(β
T
0 β0)

−1βT
0 Λβ0(β

T
0 β0)

−1βT
0 .

Thus, Λβ0 = β0(β
T
0 β0)

−1βT
0 Λβ0. Denote A = (βT

0 β0)
−1βT

0 Λβ0. A is a d × d full rank

matrix. Thus, we can write the eigen-decomposition of A as AU = UD, where D is a

diagonal matrix. Thus we have Λβ0U = β0AU = β0UD, indicating that β0U is a matrix

of d eigenvectors of Λ corresponding to the d non-zero eigenvalues. Thus, the column space

of β0 is indeed the d dimensional eigen-space corresponding to the d nonzero eigenvalues

of Λ.

On the other hand, assume now the column space of β0 is the d dimensional eigen-space

corresponding to the d nonzero eigenvalues of Λ. Denote b the p × d matrix formed by

the d eigenvectors of Λ corresponding to the d non-zero eigenvalues of Λ. Denote c the

p× (p−d) matrix formed by the p−d eigenvectors of Λ corresponding to the remaining zero

eigenvalues. Because Λ is symmetric, we can assume (b, c) to be an orthonormal matrix.

This means bTb = Id and bTc = 0. We now have Λb = bD and Λc = 0, where D is the

diagonal matrix with the d nonzero eigenvalues on the diagonal. In addition, we can also



find a full rank d× d matrix U so that β0 = bU. We have

PΛP−Λ = β0(β
T
0 β0)

−1βT
0 ΛbU(βT

0 β0)
−1βT

0 −Λ

= β0(β
T
0 β0)

−1βT
0 bDU(βT

0 β0)
−1βT

0 −Λ

= β0U
−1DU(βT

0 β0)
−1βT

0 −Λ

= Λb(bTb)−1bT −Λ.

Thus, we can obtain (PΛP − Λ)b = 0 and (PΛP − Λ)c = 0 − 0 = 0. Because (b, c) is

orthonormal, hence PΛP−Λ = 0.

2 Statement and Proof of Lemma 2

Lemma 2. Assume Λ is a p × p symmetric non-negative definite matrix of rank d. If and

only if β satisfies

QΛQ = 0,

then the span of the columns in β is the eigen-space of Λ corresponding to the d nonzero

eigenvalues.

Proof: We first show that assume Λ is a p × p non-negative definite symmetric matrix of

rank d, then Λ = PΛP if and only if QΛQ = 0.

Assume Λ = PΛP, then ΛP = PΛP2 = PΛP and PΛ = P2ΛP = PΛP. So we have

QΛQ = Λ−PΛ−ΛP + PΛP = Λ−PΛP = 0.

On the other hand, assume QΛQ = 0. Because Λ is non-negative definite, hence ΛQ = 0

and QΛ = 0. Thus, PΛP = (Ip −Q)Λ(Ip −Q) = Λ−QΛ−ΛQ + QΛQ = Λ.

Lemma 2 is a direct consequence of Lemma 1 and the above result.

3 SIR for Non-Elliptical Predictors

The first attempt to remove the linearity condition within the inverse regression family is

Li and Dong (2009). With a slight modification of the classic SIR, they proposed to recover

SY |x through minimizing

E
(∥∥E(x | Y )− E

{
E(x | xTβ) | Y }∥∥2

)
,
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where ‖ · ‖ denotes the Frobenius norm of a matrix. The minimizer spans SY |x even when

the linearity condition is violated. The above minimization is equivalent to

E

(
[
E(x | Y )− E

{
E(x | xTβ) | Y }]T ∂E

{
E(x | xTβ) | Y }

∂ {vec(β)}T

)

= E

([
E(x | Y )− E

{
E(x | xTβ) | Y }]T

E

{
∂E(x | xTβ)

∂ {vec(β)}T
| Y

})

= 0.

In obtaining the second equality, we used the relation

∂E
{
E(x | xTβ) | Y }

∂ {vec(β)}T
= E

[
∂E(x | xTβ)

∂ {vec(β)}T

∣∣∣ Y

]
,

which holds under mild regularity conditions. With the law of iterated expectations, the

above equality can be equivalently written as

E

({
x− E(x | xTβ)

}T
E

[
∂E(x | xTβ)

∂ {vec(β)}T
| Y

])
= 0. (1)

To see the above method as a special case of the semiparametric approach, we choose

α(x) = x−E(x | xTβ) and g(Y,xTβ) = E
[
∂E(x | xTβ)/∂ {vec(β)}T | Y

]
in the estimating

equation (3) in the main article. Obviously, E(α | xTβ) = 0. Making use of the double

robustness, we mis-specify E(g | xTβ) = 0, which directly yields (1).

4 SAVE for Non-Elliptical Predictors

Dong and Li (2010) further extended the idea of Li and Dong (2009) to second-order methods.

In this section we use SAVE as an example to illustrate their rationale.

Assuming the constant variance condition, Dong and Li (2010) used the equality

Ip − cov(x | Y ) = cov
{
E(x | xTβ)

}− cov
{
E(x | xTβ) | Y }

and proposed to obtain SY |x based on

min
β

E
(∥∥Ip − cov(x | Y )− cov

{
E(x | xTβ)

}
+ cov

{
E(x | xTβ) | Y }∥∥2

)
.
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To simplify notation, we denote u = E(x | xTβ). Similar as in Section 3, an equivalent form

of the above is

E

[
vec {Ip − cov(x | Y )− cov (u) + cov (u | Y )}T ∂vec {−cov (u) + cov (u | Y )}

∂vec(β)T

]

= E

[
vec {Ip − cov(x | Y )− cov (u) + cov (u | Y )}T ∂vec {cov (u | Y )}

∂vec(β)T

]

= E
(
vec {Ip − cov(x | Y )− cov (u) + cov (u | Y )}T

·
[
E

{
∂vec(uuT)

∂vec(β)T
| Y

}
− E

{
u⊗ ∂u

∂vec(β)T
− ∂u

∂vec(β)T
⊗ u | Y

}])

= E
[
vec {Ip − cov(x | Y )− cov (u) + cov (u | Y )}T

·
{

∂vec(uuT)

∂vec(β)T
− u⊗ ∂u

∂vec(β)T
− ∂u

∂vec(β)T
⊗ u

}]

= 0.

Here, the first equality holds because ∂vec{cov (u)}/∂vec(β)T is a constant, and ⊗ denotes

Kronecker product. If we choose

g(Y,xTβ) = vec {Ip − cov(x | Y )− cov (u) + cov (u | Y )}T ,

α(x) =
∂vec(uuT)

∂vec(β)T
− u⊗ ∂u

∂vec(β)T
− ∂u

∂vec(β)T
⊗ u,

and mis-specify E(α | xTβ) = 0 while making use of E(g | xTβ) = 0, a direct result from

g = 0, we can easily see that this improved version of SAVE is also a special case of the

semiparametric approach.

5 Simulations: Example 3

We further illustrate the performance of the semiparametric methods at different mean-to-

variance ratios, which we define as var {E(Y | x)} /E {var(Y | x)}. Note that in the problem

of estimating SE(Y |x), this mean-to-variance ratio can be viewed as signal-to-noise ratio.

However, in the problem of estimating SY |x, the concept of signal or noise no longer applies

because all aspects of the model contains useful information. For this reason, we avoid using

the notion of signal-to-noise ratio.

We generate the response variable from the following two models:

model (V) : Y = xTβ1 + σ0 exp
(
xTβ2

)
ε,

model (VI) : Y = 0.5
(
xTβ1

)2
+ 4

(
xTβ2

)2
+ σ0ε
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where β1, β2, x and ε are the same as in Example 1. We use different σ0 values to control

the levels of mean-to-variance ratio. Specifically, we set σ0 = 0.5, 1 and 2, which roughly

corresponds to the respective mean-to-variance ratio of 4, 1 and 0.25 in model (V). The

corresponding mean-to-variance ratio in model (VI) is slightly different, with the smallest

ratio about 2. We use models (V) and (VI) to compare respectively SIR and PHD with their

semiparametric counterparts. Because the simulation results for p = 6 are quite similar to

those for p = 12, we only report the results for p = 12 below in Figure 1.

The performance of the various estimators in model (V) does not follow a monotone

pattern in general. This reflects the fact that in estimating SY |x, larger variability does

not necessarily lead to worse performance. How an estimator performs when the mean-to-

variance ratio increases depends on how the mean and variance information is utilized in

the particular estimator. However, in all the different mean-to-variance ratio situations, the

semiparametric estimator out-performs the others. On the contrary, all the estimators show

different degrees of improvement when the mean-to-variance ratio increases in model (VI).

This is within our expectation because in identifying SE(Y |x), the only useful information

is in the mean function and increasing the error variance truly reflects increased noise.

Again, among all the estimators and in all the different noise situations, the semiparametric

estimator performs the best.

6 Statement and Proof of Theorem 1

Theorem 1. Under conditions (C1)-(C4) given in Appendix 4, the estimator β̂ obtained

from the estimating equation
n∑

i=1

[
g(Yi,x

T
i β̂)− Ê{g(Yi,x

T
i β̂) | xT

i β̂}
] [

α(xi)− Ê{α(xi) | xT
i β̂}

]
= 0

satisfies

√
nAvec(β̂ − β) → N (0,B)

in distribution, where

A = E
[
∂vec

([
g(Y,xTβ)− E{g(Y,xTβ) | xTβ}] [

α(x)− E{α(x) | xTβ}]) /∂ {vec(β)}T
]
,

B = cov
{
vec

([
g(Y,xTβ)− E{g(Y,xTβ) | xTβ}] [

α(x)− E{α(x) | xTβ}])} .

Here vec(M) denotes the vector formed by concatenating the columns of M.

5



SIR dMAVE S−SIR SIR dMAVE S−SIR SIR dMAVE S−SIR
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Boxplot of Euclidean distances

σ
0
 = 2.0 σ

0
 = 1.0 σ

0
 = 0.5

SIR dMAVE S−SIR SIR dMAVE S−SIR SIR dMAVE S−SIR
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Boxplot of Euclidean distances

σ
0
 = 2.0 σ

0
 = 1.0 σ

0
 = 0.5

(A): case 1 in model (V) (B): case 2 in model (V)

PHD dMAVE S−PHD PHD dMAVE S−PHD PHD dMAVE S−PHD
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Boxplot of Euclidean distances

σ
0
 = 2.0 σ

0
 = 1.0 σ

0
 = 0.5

PHD dMAVE S−PHD PHD dMAVE S−PHD PHD dMAVE S−PHD
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Boxplot of Euclidean distances

σ
0
 = 2.0 σ

0
 = 1.0 σ

0
 = 0.5

(C): case 1 in model (VI) (D): case 2 in model (VI)

Figure 1: Boxplots of Euclidean distances for models (V) and (VI) with p = 12.

Proof: We first prove two lemmas.

Lemma 3. Assume Conditions (C1)-(C4) hold. Let Ωβ = {(x, Y, β̂) : x ∈ Rp, Y ∈ R, ‖β̂ −
β‖ ≤ Cn−1/2}, where ‖ · ‖ is the Euclidean norm and C is a generic constant. Then there
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exists a basis β of SY |x such that

sup
Ωβ

∣∣∣Ê{α(x) | xTβ̂} − Ê{α(x) | xTβ} − E{α(x) | xTβ̂}+ E{α(x) | xTβ}
∣∣∣

= Op

{
hmn−1/2 + n−1h−(d+1)logn

}
, (2)

and sup
Ωβ

∣∣∣Ê{g(Y,xTβ̂) | xTβ̂} − Ê{g(Y,xTβ) | xTβ} − E{g(Y,xTβ̂) | xTβ̂}

+E{g(Y,xTβ) | xTβ}
∣∣∣

= Op

{
hmn−1/2 + n−1h−(d+1)logn

}
. (3)

Proof for Lemma 3. We only prove (2) since the proof of (3) is almost identical. Recall

that we estimate the nonparametric functions with kernel regressions to obtain

Ê{α(x) | xTβ̂} =
1

n

n∑
i=1

Kh(x
T
i β̂ − xTβ̂)α(xi)

/ 1

n

n∑
i=1

Kh(x
T
i β̂ − xTβ̂).

In the sequel we inspect the numerator and denominator of Ê{α(x) | xTβ} respectively.

Using the law of iterated expectations, we obtain that

E
[
{Kh(x

T
i β̂ − xTβ̂)−Kh(x

T
i β − xTβ)}2α(xi)α

T(xi)
]

= E
[
{Kh(x

T
i β̂ − xTβ̂)−Kh(x

T
i β − xTβ)}2E{α(xi)α

T(xi) | xT
i β,xT

i β̂}
]

= E

[{
Kh(x

T
i β̂ − xTβ̂)−Kh(x

T
i β − xTβ)

}2

E
{
α(xi)α

T(xi) | xT
i β

}]

+E
{

Kh(x
T
i β̂ − xTβ̂)−Kh(x

T
i β − xTβ)

}2

·
[
E{α(xi)α

T(xi) | xT
i β,xT

i β̂} − E{α(xi)α
T(xi) | xT

i β}
]
. (4)

We bound the first quantity in the last equality of (4) first. Under the condition (C3) that

E{α(xi)α
T(xi) | xT

i β} ≤ C1 and fx(xi) ≤ C2, the first quantity is less than

C1C2

∫
{Kh(x

T
i β̂ − xTβ̂)−Kh(x

T
i β − xTβ)}2dxi

= C1C2h
−2d

∫ {
K

(
xT

i β̂ − xTβ̂

h

)
−K

(
xT

i β − xTβ

h

)}2

dxi.

By letting zi = (xi − x)/h, the above display is equal to

C1C2

∫ {
Kh(x

T
i β̂ − xTβ̂)−Kh(x

T
i β − xTβ)

}2

dxi

= C1C2h
p−2d

∫ {
K(zT

i β̂)−K(zT
i β)

}2

dzi. (5)
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Because condition (C1) assumes that K(·) is Lipschitz continuous and has compact support,

C1C2h
−2dhp

∫ {
K(zT

i β̂)−K(zT
i β)

}2

dzi

≤ C1C2C3h
−2dhp

∫ ∥∥∥zT
i (β̂ − β)

∥∥∥
2

dzi

= C1C2C3h
−(p+2d+2)hp

∫ ∥∥∥(hzi)
T(β̂ − β)

∥∥∥
2

d(hzi)

= O
{
n−1h−(2d+2)

}
.

Next we deal with the second quantity in the last equality of (4). Condition (C3) assumes

that E{α(xi)α
T(xi) | xT

i β} is locally Lipschitz-continuous. Thus

∣∣∣E{α(xi)α
T(xi) | xT

i β,xT
i β̂} − E{α(xi)α

T(xi) | xT
i β}

∣∣∣ ≤ C4

∣∣∣xT
i (β̂ − β)

∣∣∣ .

Accordingly, the second quantity in the last equality of (4) is bounded by

C2C4

∫ {
Kh(x

T
i β̂ − xTβ̂)−Kh(x

T
i β − xTβ)

}2 ∣∣∣xT
i (β̂ − β)

∣∣∣ dxi. (6)

Following similar arguments for dealing with (5), we can obtain that (6) is clearly of order

o
{
n−1h−(2d+2)

}
. These two results imply that (4) is clearly bounded by O

{
n−1h−(2d+2)

}
.

The above result, together with Chebyshev’s inequality, imply that

∣∣∣∣∣n
−1

n∑
i=1

{Kh(x
T
i β̂ − xTβ̂)−Kh(x

T
i β − xTβ)}α(xi)

−E
[
{Kh(x

T
i β̂ − xTβ̂)−Kh(x

T
i β − xTβ)}α(xi)

] ∣∣∣∣∣
= Op

{
n−1h−(d+1)

}
.

This result enables us to use Theorem 37 in Pollard (1984, page 34) to prove that

sup
Ωβ

∣∣∣∣∣n
−1

n∑
i=1

{Kh(x
T
i β̂ − xTβ̂)−Kh(x

T
i β − xTβ)}α(xi)

−E
[
{Kh(x

T
i β̂ − xTβ̂)−Kh(x

T
i β − xTβ)}α(xi)

] ∣∣∣∣∣
= Op

{
n−1h−(d+1)logn

}
. (7)

One can also refer to Appendix A.1 in Wang, Xue, Zhu and Chong (2010) where they

illustrate in detail how to use Theorem 37 in Pollard (1984, page 34) to derive (7). Thus the
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variance term is bounded. Next we bound the bias term. In the sequel we prove that

sup
Ωβ

∣∣∣∣∣E
[
{Kh(x

T
i β̂ − xTβ̂)−Kh(x

T
i β − xTβ)}α(xi)

]
− r1(x

T
i β̂) + r1(x

T
i β)

∣∣∣∣∣ = O

(
hm

√
n

)
, (8)

where r1(x
T
i β) = E{α(xi) | xT

i β}f(xT
i β), and the result holds elementwise. By using

Taylor’s expansion with Lagrange remainder, we have

E
{
Kh(x

T
i β − xTβ)α(xi)

}− r1(x
Tβ)

= E
[
Kh(x

T
i β − xTβ)E{α(xi) | xT

i β}]− r1(x
Tβ)

=

∫
Kh(x

T
i β − xTβ)r1(x

T
i β)d(xT

i β)− r1(x
Tβ)

=

∫
K(zi)r1(x

Tβ + hzi)dzi − r1(x
Tβ)

=

∫
K(zi)(hzi)

m{r(m)
1 (xTβ + hz?

i )}/m!dzi,

where z?
i is between xTβ and xTβ + xT

i β. Let z??
i be a proper value between xTβ̂ and

xTβ̂ + xT
i β̂. It follows from the local Lipschitz continuity of r

(m)
1 in Condition (C2) that

sup
Ωβ

∣∣∣E
[
{Kh(x

T
i β̂ − xTβ̂)−Kh(x

T
i β − xTβ)}α(xi)

]
− {r1(x

T
i β̂)− r1(x

T
i β)}

∣∣∣

= sup
Ωβ

∣∣∣∣
∫

K(zi)(hzi)
m{r(m)

1 (xTβ + hz?
i )− r

(m)
1 (xTβ̂ + hz??

i )}/m!dzi

∣∣∣∣

= sup
Ωβ

∣∣∣∣∣
∫

K(zi)(hzi)
m r

(m)
1 (xTβ) {1 + O(hz?

i )} − r
(m)
1 (xTβ̂) {1 + O(hz??

i )}
m!

dzi

∣∣∣∣∣

= O

(
hm

√
n

)
,

which proves (8). Combining the results of (7) and (8), we obtain that

sup
Ωβ

∣∣∣∣∣
1

n

n∑
i=1

{Kh(x
T
i β̂ − xTβ̂)−Kh(x

T
i β − xTβ)}α(xi)− {r1(x

T
i β̂)− r1(x

T
i β)}

∣∣∣∣∣
= Op

{
hm/

√
n + n−1h−(d+1)logn

}
. (9)

Following similar arguments for proving (9) by letting α(xi) = 1, we can prove that

sup
Ωβ

∣∣∣∣∣
1

n

n∑
i=1

{Kh(x
T
i β̂ − xTβ̂)−Kh(x

T
i β − xTβ)} − {f(xT

i β̂)− f(xT
i β)}

∣∣∣∣∣
= Op

{
hm/

√
n + n−1h−(d+1)logn

}
. (10)

The result of (9) and (10) imply immediately (2).

We omit the details for proving (3) because it can be proven similarly.
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Lemma 4. Assume Conditions (C1)-(C3) hold. Then

1

n

n∑
i=1

[
g(Yi,x

T
i β)− E{g(Yi,x

T
i β) | xT

i β}]
[
Ê{α(xi) | xT

i β} − E{α(xi) | xT
i β}

]

= Op

{
1/

(
nhd/2

)
+ hm/n1/2 + h2m + log2n/

(
nhd

)}
,

and
1

n

n∑
i=1

[
Ê{g(Yi,x

T
i β) | xT

i β} − E{g(Yi,x
T
i β) | xT

i β}
] [

α(xi)− E{α(xi) | xT
i β}]

= Op

{
1/

(
nhd/2

)
+ hm/n1/2 + h2m + log2n/

(
nhd

)}
.

Proof for Lemma 4. Because these two equalities and their proofs are very similar, we

only show the first one. For simplicity, we let εi = g(Yi,x
T
i β) − E{g(Yi,x

T
i β) | xT

i β},
f̂(xT

i β) = (n − 1)−1
∑
j 6=i

Kh(x
T
j β − xT

i β) and r̂1(x
T
i β) = (n − 1)−1

∑
j 6=i

Kh(x
T
j β − xT

i β)α(xj).

Notice that E{α(xi) | xT
i β} = r1(x

T
i β)/f(xT

i β). After some simple algebra, we have

1

n

n∑
i=1

εi

[
Ê{α(xi) | xT

i β} − E{α(xi) | xT
i β}

]

=
1

n

n∑
i=1

εi

[
r̂1(x

T
i β)

f̂(xT
i β)

− r1(x
T
i β)

f(xT
i β)

]

=
1

n

n∑
i=1

εi

{
r̂1(x

T
i β)− r1(x

T
i β)

f(xT
i β)

}
− 1

n

n∑
i=1

εi

[
r1(x

T
i β){f̂(xT

i β)− f(xT
i β)}

f 2(xT
i β)

]

− 1

n

n∑
i=1

εi

[
{r̂1(x

T
i β)− r1(x

T
i β)}{f̂(xT

i β)− f(xT
i β)}

f(xT
i β)f̂(xT

i β)

]

+
1

n

n∑
i=1

εi

[
r1(x

T
i β){f̂(xT

i β)− f(xT
i β)}2

f 2(xT
i β)f̂(xT

i β)

]
. (11)

We notice that the first two quantities in the right hand side of (11) have similar struc-

ture. Thus in the sequel we only deal with the first quantity. By the uniform conver-

gence of nonparametric regression, the third and the fourth quantities are clearly of order

Op

{
h2m + log2n/

(
nhd

)}
. Thus it suffices to study the convergence rate of the first quantity

below. We write n−1
∑n

i=1 r̂1(x
T
i β)εi as a second-order U -statistic:

1

n

n∑
i=1

r̂1(x
T
i β)εi =

1

n(n− 1)

n∑

i6=j

Kh(x
T
i β − xT

j β) {εiα(xj) + εjα(xi)} .

By using Lemma 5.2.1.A of Serfling (1980, page 183), it follows that

1

n

n∑
i=1

r̂1(x
T
i β)εi − 1

n

n∑
i=1

εiE
{
Kh(x

T
i β − xT

j β)r1(x
T
j β) | xT

i β
}

= Op

{
1/

(
nhd/2

)}
. (12)
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The above equality follows because the difference on the left hand side is a degenerated

U -statistic. Next we show that

1

n

n∑
i=1

εi

[
E

{
Kh(x

T
i β − xT

j β)r1(x
T
j β) | xT

i β
}− r1

(
xT

i β
)
f

(
xT

i β
)]

= Op(n
−1/2hm). (13)

By using the standard arguments to calculate the bias term in nonparametric regression,

we can easily have sup
xi

∣∣E {
Kh(x

T
i β − xT

j β)r1(x
T
j β) | xT

i β
}− r1(x

T
i β)f(xT

i β)
∣∣ = Op(h

m) by

assuming that the m-th derivative of
{
r1(x

Tβ)f(xTβ)
}

is locally Lipschitz-continuous. This

proves (13). Combining (12) and (13), we obtain that

1

n

n∑
i=1

εi

{
r̂1(x

T
i β)− r1

(
xT

i β
)
f

(
xT

i β
)}

= Op

{
1/

(
nhd/2

)
+ hm/n1/2

}
.

This result together with (11) entails the desired result, which completes the proof.

Proof for Theorem 1. We notice that the resulting estimator β̂ satisfies

n∑
i=1

[
g(Yi,x

T
i β̂)− Ê{g(Yi,x

T
i β̂) | xT

i β̂}
] [

α(xi)− Ê{α(xi) | xT
i β̂}

]
= 0.

The left hand side of the above display can be decomposed into four terms.

n∑
i=1

[
g(Yi,x

T
i β̂)− Ê{g(Yi,x

T
i β̂) | xT

i β̂}
] [

α(xi)− Ê{α(xi) | xT
i β̂}

]

=
n∑

i=1

[
g(Yi,x

T
i β̂)− E{g(Yi,x

T
i β̂) | xT

i β̂}
] [

α(xi)− E{α(xi) | xT
i β̂}

]

+
n∑

i=1

[
g(Yi,x

T
i β̂)− E{g(Yi,x

T
i β̂) | xT

i β̂}
] [

E{α(xi) | xT
i β̂} − Ê{α(xi) | xT

i β̂}
]

(14)

+
n∑

i=1

[
E{g(Yi,x

T
i β̂) | xT

i β̂} − Ê{g(Yi,x
T
i β̂) | xT

i β̂}
] [

α(xi)− E{α(xi) | xT
i β̂}

]

+
n∑

i=1

[
E{g(Yi,x

T
i β̂) | xT

i β̂} − Ê{g(Yi,x
T
i β̂) | xT

i β̂}
] [

E{α(xi) | xT
i β̂} − Ê{α(xi) | xT

i β̂}
]
.

In the sequel we show that the first term in the right hand side of (14) is Op

(
n1/2

)
while the

other three terms are op

(
n1/2

)
. We notice that the first term in (14) can be expanded as

n∑
i=1

[
g(Yi,x

T
i β)− E{g(Yi,x

T
i β) | xT

i β}] [
α(xi)− E{α(xi) | xT

i β}]

+ ndvec E

{
∂vec

([
g(Y,xTβ)− E{g(Y,xTβ) | xTβ}] [

α(x)− E{α(x) | xTβ}])

∂ {vec(β)}T

}

·vec(β̂ − β) + op(n
1/2). (15)
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Here dvec(·) is such that dvec{vec(M)} = M for any matrix M.

Next we deal with the second quantity in the right hand side of (14). By using Lemma

3, this quantity can be approximated by

n∑
i=1

[
g(Yi,x

T
i β̂)− E{g(Yi,x

T
i β̂) | xT

i β̂}
] [

E{α(xi) | xT
i β} − Ê{α(xi) | xT

i β}
]
{1 + op(1)} ,

which, again by Taylor’s expansion, is asymptotically equivalent to

n∑
i=1

[
g(Yi,x

T
i β)− E{g(Yi,x

T
i β) | xT

i β}]
[
E{α(xi) | xT

i β} − Ê{α(xi) | xT
i β}

]
{1 + op(1)} .

Lemma 4 implies that the above display is of order op(n
1/2) when nh4m → 0 and nh2d →∞.

We turn to the third quantity in the right hand side of (14). By using Lemma 3 again,

this quantity can be approximated with

n∑
i=1

[
E{g(Yi,x

T
i β) | xT

i β} − Ê{g(Yi,x
T
i β) | xT

i β}
] [

α(xi)− E{α(xi) | xT
i β̂}

]
{1 + op(1)}

=
n∑

i=1

[
E{g(Yi,x

T
i β) | xT

i β} − Ê{g(Yi,x
T
i β) | xT

i β}
] [

α(xi)− E{α(xi) | xT
i β}] {1 + op(1)}

+
n∑

i=1

[
E{g(Yi,x

T
i β) | xT

i β} − Ê{g(Yi,x
T
i β) | xT

i β}
] [

E{α(xi) | xT
i β̂} − E{α(xi) | xT

i β}
]
.

Lemma 4 implies that the first term in the above display is of order op

(
n1/2

)
. The second

term is clearly of order op(n
1/2) by using the uniform convergence of nonparametric regression

(Mack and Silverman, 1982) and Taylor’s expansion.

The last quantity in the right hand side of (14) is of order Op

{
n

(
h2m + log2n/(nhd)

)}

(Mack and Silverman, 1982), which is of order op(n
1/2) when nh4m → 0 and nh2d →∞.

Combining the above results for all four terms in (14), we obtain the root-n rate and

the asymptotic normality directly from (15), which completes the proof for the asymptotic

normality of β̂.
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