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Appendix S1

The results of Figs. S3 and S4 were generated as described herein. The general methodology
used is standard and is presented for the sake of completeness and clarity. We are careful to note
problem-specific aspects of the methodology.

Inspired by recent uses of Bayesian methods for analysis of models of cell signaling systems (Klinke,
2009; Klinke et al., 2012; Eydgahi et al., 2013), we used a Bayesian approach and the data presented
in Fig. 2B to estimate the free parameters of our model (kcx, kcr, ku, kv, χ, and α). Other model
parameters were fixed at the values given in Table 1. In the estimation procedure, we introduced
log-transformed parameters Θ = (θ1, . . . , θ6), where each θi is the logarithm (base 10) of one of
the free parameters identified above. (The parameters and the elements of Θ are in one-to-one
correspondence.) A change of a log-transformed parameter from θi to θi + ∆θi corresponds to a
10∆θi-fold change in the value of the corresponding model parameter.

To describe the estimation procedure, let us use y = (y1, . . . , y5) to represent the set of measured
average receptor cluster densities reported in Fig. 2B and M(Θ) = (M1(Θ), . . . ,M5(Θ)) to repre-
sent the set of corresponding receptor cluster densities predicted by our model (of Fig. 1) when
the free parameters are assigned the values consistent with Θ.

The procedure is based on Bayes’ theorem, which provides the following relationship amongst
certain probabilities and conditional probabilities:

P (Θ|y) =
P (y|Θ)P (Θ)

P (y)

The term on the left-hand side can be interpreted as quantifying the degree of belief in Θ after
considering y. In the parlance of Bayesian statistics, P (Θ|y) is called the posterior, P (Θ) is called
the prior, P (y|Θ) is called the likelihood, and P (y) is called the evidence. By taking the logarithm
of both sides, the above expression can be rewritten as follows: lnP (Θ|y) = − lnP (y) + lnP (Θ) +
lnP (y|Θ). In this expression, − lnP (y) is a constant term that can be ignored (for reasons that will
become clear later), lnP (Θ) can be specified arbitrarily to reflect prior opinion about Θ (although
particular functional forms are commonly used), and lnP (y|Θ) can be equated with −χ2, where

χ2 =
5∑
i=1

1
2σ2

yi

(yi −Mi(Θ))2

In the χ2 function (which is the objective function minimized in nonlinear least squares fitting),
σyi is the standard deviation that characterizes measurement noise for yi. We specified values of
σyi consistent with the error bars shown in Fig. 2B.
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We assumed a normal prior:

P (Θ) = exp

− 6∑
j=1

1
2σ2

θj

(µj − θj)2


where µj represents an initial guess for the value of θj and each σθj

is a hyperparameter of the
prior. A small (large) value for |σθj

| represents high (low) confidence in the initial guess µj . We
set σθj

= 1 ∀j, and we set each µj to the logarithm of the best-fit value listed in Table 1 for the
corresponding free parameter. These choices bias the estimation procedure toward the nominal
parameter values found through nonlinear least squares fitting and reflect uniform confidence in
our initial guesses.

Given the above considerations, it follows that lnP (Θ|y) is equal to the following expression up to
an additive constant:

−
5∑
i=1

1
2σ2

yi

(yi −Mi(Θ))2 −
6∑
j=1

1
2σ2

θj

(µj − θj)2

This expression was used in the formula given next to estimate the posterior via a Markov chain
Monte Carlo (MCMC) algorithm. The algorithm involves a random walk in the log-transformed
parameter space. At each step along the walk, a new position in the parameter space, Θ∗, is
proposed based on the current position Θ. The proposed move to a new position is accepted or
rejected with probability κ according to the Metropolis-Hastings criterion:

κ = min
{

1,
P (Θ∗|y)
P (Θ|y)

}
If the proposed move is accepted, the current Θ is replaced by the proposed Θ∗; if the proposed
move is rejected, Θ remains unchanged. A stationary distribution is reached after an initial burn-in
period, and the stationary distribution is sampled to estimate the posterior. A single MCMC run
was performed to obtain the results of Figs. S3 and S4. After a burn-in period of 500,000 steps,
we thereafter sampled (i.e., recorded Θ) every 100th step and collected a total of 5,000 samples.
The run started from a randomly selected point in log-transformed parameter space by setting
θj = µj + (1 − 2rj) for j = 1, . . . , 6, where each rj is a uniform random deviate between 0 and 1.
At each MCMC step, the proposed move from Θ to Θ∗ was found by using the following equation:

Θ∗ = Θ + γ
∆
||∆||

where γ is an algorithmic parameter that tunes the probability of accepting a proposed move and
∆ = {ρ1, . . . , ρ6}, where each ρj = N(0, 1) for j = 1, . . . , 6 is a standard normal deviate. We set
γ = 0.1, which yielded an acceptance probability of approximately 35%.

From the MCMC procedure described above, we obtained an estimate of the posterior (or joint
posterior distribution) in the form of the 5,000 sampled Θ sets and the marginal posterior distri-
butions for each of the six free parameters (Fig. S3). Each histogram in Fig. S3 characterizes
the independent variation in the estimate of a particular parameter value; these histograms do not
reflect covariation of parameter values. As described in the caption of Fig. S4, the joint posterior
distribution (which does reflect covariation) was sampled—a Θ set was chosen randomly with uni-
form probability from the 5,000 Θ sets—and the corresponding sets of values for the free model
parameters were used to quantify confidence in the prediction of our model that relative EGFR
cluster density decreases with increasing EGF concentration (Fig. S4).
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