Inventory of Supplemental Information

File 1 : Wu et al Supp. Text (Final)

Supplemental Figure Legends

Supplemental Figures (6)

-Figure S1 relates to Figure 1.
-Figure S2 relates to Table 1.
-Figure S3 relates to Figure 3.
-Figure S4 relates to Figure 4.
-Figure S5 relates to Figure 5.
-Figure S6 relates to a point in the Discussion.

Supplemental Table (1)

A complement to the Materials and Methods section.

Supplemental Materials and Methods

A complement to the Materials and Methods section.

File 2 : Wu et al Seq

-Sequence file. 3' RACE sequences on the Intermediate RNA species (relates to Figure 3 D).

Supplemental Figure Legends

Table S1 (relates to the Materials and Methods section). Primer sequences for northernanalyses, qRT-PCR, translation and stability assays, and cloning.

Fig. S1. (Relates to Fig. 1) miR-35 guantification in C. elegans embryonic extracts and fractions. (A) miR-35 real-time (qRT)-PCR analysis. Total RNA was isolated from fractions of wild-type (N2) C. elegans embryonic extract not filtered (NF) or filtered fractions (1-5). A standard curve was made with different concentrations of miR-35 template primer (fM). miR-35 concentration per reaction was multiplied by the dilution factor to obtain miR-35 concentration per fraction (nM). Dilution factor: RNA concentration from the stock divided by 0.0025 (final concentration in gRT-PCR reaction). (B) miR-35 northern blot analysis. A standard curve was made with different amounts of miR-35 DNA primer (pg) to determine the concentration of miR-35 in the middle embryo (me) lysate from wild-type (N2). 5S rRNA was used as a loading control for RNA. (C) miR-35 concentration (nM) per fraction from the data obtained in (A) and (B). (D) Northern blot analysis of miR-35-42 family members on 2'-O-Me depletions. Extracts prepared from wild-type (N2) C. elegans embryos were incubated with either α-miR-35 or α-let-7 2'-O-Me to pull down miRISC, and unbound fractions were probed for miR-35, miR-37 and miR-41. 5S rRNA was used as a loading control.

Fig. S2. (Relates to Table 1) Characterization of miR-35-RISC pulldown from *C. elegans* embryos. Western blot analysis on affinity-purified miRISC to confirm results obtained by MudPIT analysis. N2 embryonic extracts were incubated with 2'-O-Me, as

indicated. Proteins were probed with polyclonal antibodies against ALG-1/2, DCR-1, AIN-1, RDE-4, and GFP. * and ** indicate known non-specific bands. Bottom panel: western blot analysis of DCP-2 on affinity-purified miRISC. Wild-type embryonic extracts were incubated with either no 2'-O-Me (beads only), α -miR-35, or α -let-7 2'-O-Me. Proteins were probed with polyclonal antibodies against ALG-1/ALG-2 and DCP-2.

Fig. S3. (Relates to Fig. 3) (A) Time-course of RL 6xmiR-52 deadenylation in wild-type embryos. Full-length reporters contain a poly(A) tail of 87 nucleotides. Images are representative of three independent experiments. (B) Time-course of mRNA stability of RL 6xmiR-52 reporters lacking a poly(A) tail in the absence or presence of specific (α -miR-52) or non-specific (α -miR-1) 2'-O-Me. Images are representative of a triplicate experiment conducted in the same wild-type embryonic extract. Values represent the average from the triplicate experiment, and error bars indicate standard deviation. Quantification of the mRNA half-deadenylation time ($t_{d1/2}$) and half-life ($t_{1/2 decay}$) was obtained using ImageJ.

Fig. S4. (Relates to Fig. 4) Translation of RL in *C. elegans* embryos prepared from *alg-2(ok304); alg-1 RNAi*. Luciferase activity from each fraction was measured following 3-hours translation incubation.

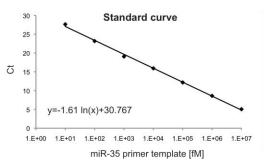
Fig. S5. (Relates to Fig. 5) (A) Northern blot analysis of candidate miRNAs affecting the 3'UTR of *egl-1* and *toh-1* mRNAs. RNA was prepared from wild-type (N2) or mid-

development embryo (me). Primers complementary to the probe (0.5 and 1.5 pg or 5 and 25 pg in the case of miR-60) were used as positive controls. (B) Time-course of RL eql-1 3'UTR and RL toh-1 3'UTR deadenylation in N2 embryo extract. Reporter mRNAs were incubated in the presence or absence of 50 nM of α -miR-35, α -miR-58, α -miR-81, α -miR-86 and α -miR-87 or the negative control α -miR-1. (C) Time-course of RL eql-1 3'UTR translation in N2 embryo extract. The reporter mRNA was incubated with 50 nM of 2'-O-Me, as indicated. α-miR-1 served as a negative control. Values represent averages from a triplicate experiment conducted in the same extract, and error bars indicate standard deviation. (D) Time-course of RL reporter mRNAs deadenylation fused to various copies of miR-52 binding sites (1x-6x). (E) Time-course of RL 3xmiR-35 reporter mRNAs deadenylation. For all the 3xmiR-35 reporters, miR-35 binding sites were separated by five nucleotides, with the exception of RL 3xmiR-35 spaced, in which the miR-35 binding sites are separated by 50 nucleotides. The size of the linker (sequence between the miR-35 sites and the poly(A) tail) are as follows: 161 nts (RL 3xmiR-35 and RL 3xmiR-35 spaced), 261 nts (RL 3xmiR-35 LL), and 32 nts (RL 3xmiR-35 SL). Images in D and E are representative of three independent experiments. Values for time of half-deadenylation $(t_{d1/2})$ were obtained by measuring the intensity of the bands using ImageJ.

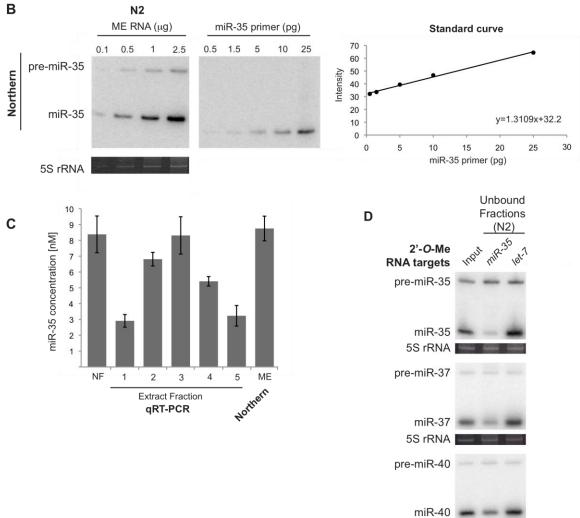
Fig. S6. (Relates to a point in the Discussion section) qRT-PCR analysis of the expression levels of *egl-1* and *toh-1* mRNA. Total RNA from embryonic preparations was isolated from wild-type (N2) and *alg-2(ok304); alg-1 RNAi. egl-1* and *toh-1* mRNA levels were normalized against actin mRNA. qRT-PCR results are presented as the

mean from triplicate independent preparations and error bars represent standard deviation.

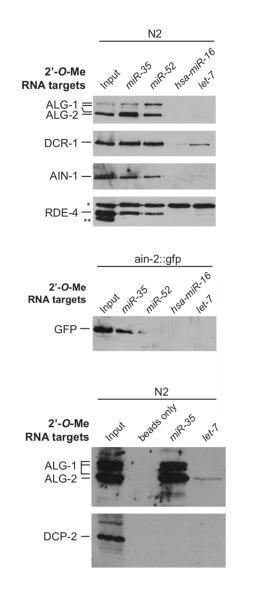
Name	Sequence		
Starfire probes			
α-miR-35	5'-ACTGCTAGTTTCCACCCGGTGA/3StarFire/-3'		
α-miR-52	5'-AGCACGGAAACATATGTACGGGTG/3StarFire/-3'		
α-miR-58	5'-ATTGCCGTACTGAACGATCTCA/3StarFire/-3'		
α-miR-60	5' ACTAGAAAATGTGCATAATA/3StarFire/-3'		
α-miR-86	5'-GACTGTGGCAAAGCATTCACTTA/3StarFire/-3'		
α-miR-87	5'ACACCTGAAACTTTGCTCAC/3StarFire/-3'		
α-miR-230	5' TCTCCTGGTCGCACAACTAATAC/3StarFire/-3'		
α-miR-232	5' TCACCGCAGTTAAGATGCATTTA/3StarFire/-3'		
qRT-PCR			
Universal primer	5'-CATGATCAGCTGGGCCAAGA-3'		
miR-35 specific primer	5'-CATGATCAGCTGGGCCAAGAACTGCTA GTT-3'		
miR-35 LNA	5'-T+CACCGGGTGGAAAC-3'		
2'- <i>O</i> -Me oligos			
α-miR-1	5'-UCUUCCUCCAUACUUCUUUACAUUCCAACCUU-3'		
α-miR-35	5'-UUAAUACUGCUAGUUUCCACCCGGUGAUUAAU-3'		
α-miR-52	5'-UUAAUAGCACGGAAACAUAUGUACGGGUGUUAAU-3'		
α-miR-58	5'-UUAAUUGCCGUACUGAACGAUCUCAUUAAU-3'		
α-miR-81	5'-UUAAUACUGGCUUUCACGAUGAUCUCAUUAAU-3'		
hsa-miR-16	5'-UUAAUCGCCAAUAUUUACGUGCUGCUAUUAAU-3'		
α-miR-86	5'-UUAAUGACUGUGGCAAAGCAUUCACUUAUUAAU-3'		
α-miR-87	5'-UUAAUACACCUGAAACUUUGCUCACUUAAU-3'		
miR-35 targets 3'UTR cloning			
c34h3.1 fwd	5'-ATAAACTAGTGCAATGCTTGATTCTACCACA-3'		
c34h3.1 rev	5'-TATTGCGGCCGCTAATGGAATCTGTGAGCAACG-3'		
hlh-11 fwd	5'-ACTAGTGCCTGACTTTTGACAAATGTAG-3'		
hlh-11 rev	5'-GCGGCCGCATTGGTACTCTTGTCTCAGTGG-3'		

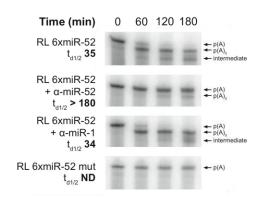

Table S1. (Complement to the Materials and Methods section) Primer sequences fornorthern analyses, qRT-PCR, translation and stability assays, and cloning.

nhl-2 fwd	5'-ATAAACTAGTGGAGGTTACCCCAATTCCTAT-3'
nhl-2 rev	5'-TATTGCGGCCGCGGGCGAGCTGAAATTCAAATT-3'
r05h11.2 fwd	5'-ATAAACTAGTATTGAATACTTATAGACCTCAAG-3'
r05h11.2 rev	5'-TATTGCGGCCGCTCTAACCGTCTGAATATTATCTG-3'
spn-4 fwd	5'-ATAAACTAGTTCAGTTCAACTGATACGCCC-3'
spn-4 rev	5'-TATTGCGGCCGCTATGGCGAAGCACTTCATTTG-3'
toh-1 fwd	5'-ACTAGTATTCATTTTCTAGTTCTTCTACTC-3'
toh-1 rev	5'-GCGGCCGCAAGACTCAAATGTTTCATTGGG-3'
y71f9b.8 fwd	5'-ATAAACTAGTATTTTCAGGCTTTCAAGCCCA-3'
y71f9b.8 rev	5'-TATTGCGGCCGCTTTATAGTTAATAAATTTATTTGATTTA-3'
Cloning	
miR-52 1X fwd	5'-CTAGAGATTTTTCCCAGCAGCGAAAATGTACGGGTGAATTCGC-3'
miR-52 1X rev	5'-GGCCGCGAATTCACCCGTACATTTTCCGTGCTGGGAAAAATCT-3'
miR-52 2X fwd	5' CTAGA A GCA CGG AAA ATG TAC GGG TG CTCGAG A GCA CGG AAA ATG TAC GGG TG GC-3'
miR-52 2X rev	5'-GGCCGC C ACC CGT ACA TTT TCC GTG CT CTCGAG C ACC CGT ACA TTT TCC GTG CT T-3'
miR-52 3X fwd	5'-CTAGA A GCA CGG AAA ATG TAC GGG TG CTCGAG A GCA CGG AAA ATG TAC GGG TG CTCGAG A GCA CGG AAA ATG TAC GGG TG GC-3'
miR-52 3X rev	5'-GGCCGC C ACC CGT ACA TTT TCC GTG CT CTCGAG C ACC CGT ACA TTT TCC GTG CT CTCGAG C ACC CGT ACA TTT TCC GTG CT T-3'
miR-52 4X fwd	5'-AATTC A GCA CGG AAA ATG TAC GGG TG CTCGAG A GCA CGG AAA ATG TAC GGG TG CTCGAG A GCA CGG AAA ATG TAC GGG TG G-3'
miR-52 4X rev	5'-AATTC C ACC CGT ACA TTT TCC GTG CT CTCGAG C ACC CGT ACA TTT TCC GTG CT CTCGAG C ACC CGT ACA TTT TCC GTG CT G-3'
miR-35 short linker fwd	5'-ATAAGCTGCAATAAACAAGTTG-3'
miR-35 short linker rev	5'-CTA AAG GGA AGC GGC CGC-3'
miR-35 long linker fwd	5'-GCGGCCGCTTCCCTTTAG-3'
miR-35 long linker rev	5'-GCGGCCGCAATAAAGCATTTTTTCACTGCA-3'
miR-35 1X fwd	5'-CTAGTACTGCTAGTTTCCACCCGGTGAGC-3'
miR-35 1X rev	5'-GCCCGCTCACCGGGTGGAAACTAGCAGTA-3'
miR-35 2X fwd	5'-CTAGAACTGCTAGCCACCCGGTGAG


	AATTCACTGCTAGCCACCCGGTGAGC-3'
miR-35 2X rev	5'-GGCCGCTCACCGGGTGGCTAGCAG
THIR-33 ZA Tev	TGAATTCTCACCGGGTGGCTAGCAGTT-3'
miR-35.3X fwd	5'-CTAGAACTGCTAGCCACCCGGTGATTAATACTGCTAGCCACCC
111IK-35 5X 1Wu	GGTGATTAATACTGCTAGCCACCCGGTGAGC-3'
miR-35 3X rev	5'-GGCCGCTCACCGGGTGGCTAGCAGTATTAATCACCGGGT
111IK-33 3X 16V	GGCTAGCAGTATTAATCACCGGGTGGCTAGCAGTT-3'
miR-35 4X fwd	5'-AATTGACTGCTAGCCACCCGGTGATTAATACTGCTAGCCA
1111K-35 4X 1wu	CCCGGTGATTAATACTGCTAGCCACCCGGTGATTAATG-3'
miR-35 4X rev	5'-AATTCATTAATCACCGGGTGGCTAGCAGTATTAATCACC
11111-00 47 160	GGGTGGCTAGCAGTATTAATCACCGGGTGGCTAGCAGTC-3'

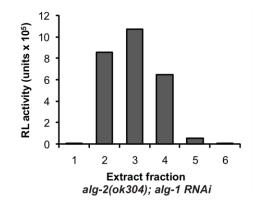
Α

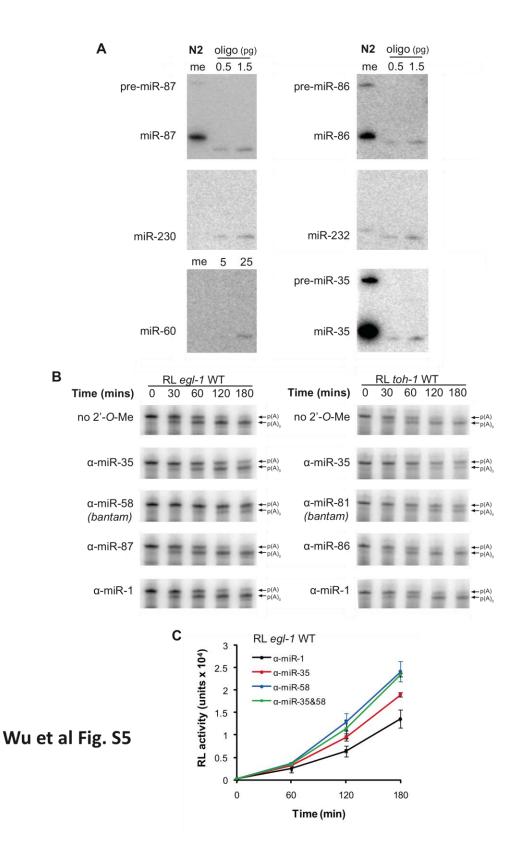

	Fractions	Ct mean	Dilution Factor	miR-35 conc. [nM]
<u>к</u>	NF	16.33 ± 0.23	1062	8.38 ± 1.16
qRT-PCR	1	16.78 ± 0.23	487.5	2.91 ± 0.40
R	2	16.22 ± 0.10	808.3	6.81 ± 0.43
ъ	3	16.26 ± 0.23	1006	8.31 ± 1.18
	4	16.60 ± 0.09	819.2	5.41 ± 0.30
	5	16.42 ± 0.33	429.0	3.23 ± 0.78

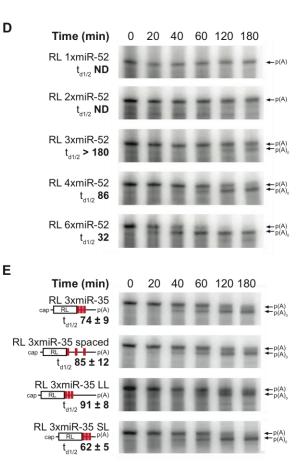

5S rRNA

Wu et al. Fig. S1

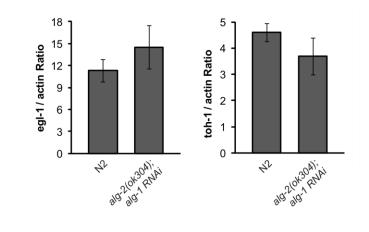
Wu et al. Fig. S2




Α


В Time (min) 0 30 60 120 180 150 RL 6xmiR-52 p(A) t_{1/2 decay} of mRNA (min) 120 RL 6xmiR-52 mut p(A)₀ 90 60 RL 6xmiR-52 p(A)₀ + α-miR-1 30 RLownerst ownerst nut of the second state of t RL 6xmiR-52 p(A)₀ + α-miR-52 mRNA 2'-O-Me t_{1/2 decay} (min) RL 6xmiR-52 p(A) 103 ± 18 -RL 6xmiR-52 mut p(A)₀ -79 ± 11 α-miR-1 130 ± 19 RL 6xmiR-52 p(A)₀ RL 6xmiR-52 p(A)₀ α-miR-52 84 ± 7

Wu et al. Fig. S3


Wu et al. Fig. S4

Wu et al Fig. S5

Wu et al. Fig. S6

Supplemental Materials and Methods

Construction of reporters

To generate RL reporters containing miR-35 sites, annealed primers were inserted into Xbal-NotI sites of pCI neo RL p(A). miR-35 targets 3'UTR: 3'UTR sequences were amplified by PCR from genomic DNA or cDNA isolated from C. elegans embryos using primers listed in Table S1 and cloned into Xbal/NotI in pCI neo truncated RL, in which the RL cds region between NheI and BsaBI (position 1-764) was removed. For c34h3.1 3'UTR reporter, RL cDNA contained only region 491-936. The sequences of 6xmiR-35 mutant, 6xmiR-52, 6xmiR-52 mutant, egl-1 3'UTR (wild-type, miR-35 mutant, bantam mutant, miR-35 + bantam mutant), and toh-1 3'UTR (miR-35 mutant, bantam mutant, miR-35 and bantam mutant) were purchased from IDT, as pIDTSMART-KAN clones and were subcloned into pCI neo RL in Xbal-NotI sites.

Embryonic extract Preparation

C. elegans embryonic pellets were homogenized in hypotonic buffer [10 mM HEPES-KOH pH 7.4, 15 mM KCl, 1.8 mM Mg(OAc)₂, 2 mM DTT] with a pre-chilled Kontes dounce homogenizer. The extract was then centrifuged twice at 13,200 rpm for 10 minutes at 4°C. The supernatant was loaded onto a Column-Prep (BioRad) stacked with Sephadex G-25 Superfine beads (volume of beads was four-times the volume of the supernatant, Amersham Bioscience) and pushed into the matrix with 1 supernatant volume of isotonic buffer (30 mM HEPES-KOH pH 7.4, 100 mM KOAc, 1.8 mM Mg(OAc)₂, 2 mM DTT). Multiple elutions (5-7) were gathered and protein concentrations

were determined by Bradford. The average concentration of active fractions ranged from 10-30 mg/mL.

In vitro Translation Assays

Reactions were typically set up as follows: each 12.5 ul reaction contained 5 ul embryonic extract, 0.1 mM spermidine, 60 uM amino acids, 36 mM HEPES-KOH (pH 7.4), 2 mM Mg(OAc)₂, 65 mM KOAc, 0.1 ug/ul calf liver tRNA, 0.096 U/ul RiboLock RNase Inhibitor (Fermentas), 16.8 mM creatine phosphate, 81.6 ng/ul creatine phosphokinase, 0.8 mM ATP, and 0.2 mM GTP). Reactions were incubated with mRNA (1 nM final) at 17°C for 0 to 3 hours, as indicated. Luciferase activities were analyzed with the Dual-Luciferase® Reporter Assay System (Promega). To assay for miRNA activity, reactions were pre-incubated with 50 nM (except where indicated) 2'-O-Me oligonucleotides (Dharmacon) prior to mRNA addition for 30 minutes at 17°C. The 2'-O-Me miRNA inhibitors were designed as antisense oligonucleotides to the mature miRNAs according to Wormbase registry (www.wormbase.org).