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Note S1. Determination of collagen fiber diameter and mass-length ratio by turbidimetry 
The wavelength dependence of the turbidity of a solution of rigid fibers contains information about the 
fiber diameter, d, and their mass-length ratio, . The exact functional dependence is model-dependent. 
Assuming that the fibers are randomly oriented, rigid rod-like, and monodisperse in size, the turbidity 
scales with wavelength as (1, 2): 
 
 5 = A(2 - Bd2)           (1) 
 
This relation is valid when the rods are longer than ~800 nm and have a diameter less than ~200 nm 
(2). According to Eq. (1), d and  can be simply determined by plotting 5 versus 2. The mass-length 
ratio, , follows from the slope of this linear relation, using the definition A = 
(88/15)3cns(dn/dc)21/NA, where c is the protein concentration expressed in g ml-1, ns is the solvent 
refractive index (equal to 1.33), dn/dc is the specific refractive index increment (dn/dc = 0.186 cm3 g-1 
for collagen(3)), and NA is Avogadro’s constant. The fiber diameter d can be calculated by combining 
the measured intercept with the y-axis (-ABd2) with the measured slope, using the definition B = 
(92/426) 2ns

2.  
 We measured d and  for collagen solutions during polymerization at 37oC by measuring the 
wavelength dependence of the turbidity at 8 evenly spaced wavelengths between 370 and 440 nm, 
using time intervals of 2 minutes between consecutive wavelength scans. For all wavelengths, the 
turbidity remained essentially zero during the first 15 minutes of assembly, indicative of a lag phase 
during which fibrils are nucleated. During this nucleation phase, we were thus unable to reliably track 
the fiber diameter and mass. After 15 minutes, the turbidity at each wavelength increased sigmoidally 
with time, indicating fiber growth. The wavelength dependence of the turbidity obeyed the linear 
scaling predicted by Eq. (1), consistent with the presence of rigid, high aspect ratio fibrils. The slope 
A increased over time, indicating that the fibrils grow laterally (Fig. S1). After 2 hours incubation at 
37oC, we suddenly lowered the temperature to a value between 4 and 32oC in order to induce fibril 
disassembly. In response, both the magnitude of the turbidity and the slope A decreased, indicating 
that fibrils loose monomers from their sides (Fig. S1, solid red circles).  

As shown in Fig. S2a (left hand side), the apparent mass length ratio of the fibrils increased in a 
sigmoidal fashion during the growth phase. At the end of the lag phase, the mass-length ratio was about 
1.3.1012 Da.cm. Given a quarter-staggered axial packing of collagen molecules with a period of D = 
67.2 nm, the number of molecules per fibril cross-section is N = /(M*4.6D), where M is the molecular 
mass of collagen (290 kDa(4)). At the end of the turbidimetric growth phase, the fibrils thus have ~130 
monomers per cross-section, consistent with prior reports (5, 6). The final mass length ratio of “mature 
collagen fibrils” formed after 2 hours at 37oC was 1.03.1013 Da/cm with a standard deviation of 7% (N 
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= 6), corresponding to an average of 1070 monomers per cross-section. These values are closely 
comparable to those measured for collagen fibrils formed at 37oC from purified rat tail collagen I (7).  

Upon cooling, the mass-length ratio decreased in a bi-phasic manner, showing an initial fast 
decay followed by a slow decay that was incomplete even after 2 hours (Fig. S2a, right hand side). The 
loss of mass from the sides was strongly temperature dependent. At the lowest temperature (4oC), the 
final mass length ratio was 2.2.1012, corresponding to 229 monomers per fibril cross-section.  

The apparent fibril diameter started at a value of about 20 nm at the end of the lag phase, and 
increased to values ranging between 42 and 70 nm after 2 hours assembly at 37oC (Fig. S2b). The 
average diameter of “mature fibrils” was 61 nm with a standard deviation of 22%. Upon cooling, the 
apparent diameter, surprisingly, jumped up to higher values (80-100 nm) and afterwards showed a 
biphasic decay which was often rather noisy (see for instance the 4oC trace in Fig. S2b). We currently 
have no definitive interpretation of this behavior, but we strongly suspect that the diameter 
measurements are prone to artifacts, since the sudden jump upon cooling is clearly unphysical. We 
suspect that the diameter measurements are fundamentally inaccurate because the diameters are about 
10-fold smaller than the wavelengths used; as a result, the extrapolation required to measure the y-
intercept of 5 versus 2 curves becomes very inaccurate. We nevertheless expect that the measured 
values of  are reasonable, since light scattering theories predict that   can still be determined from the 
slope in the limit of fibrils much thinner than  (1).  

We can compare the reduction of  as a function of disassembly temperature (dis/37) with the 
reduction of turbidity (dis/37). The latter quantity provides a model-independent measure of the overall 
loss in fibril mass. As shown in Fig. S4, dis/37 is nearly identical to dis/37 over the entire range of 
disassembly temperatures, strongly suggesting that fibrils mainly loose mass from their sides. We 
observe that dis/37 is consistently somewhat larger than dis/37, which is consistent with mass being 
lost also from the fibril ends. This in turn is consistent with confocal microscopy data, showing that 
cooling promotes the formation of dangling ends.  
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Supplemental Figure S1. Wavelength dependence of the turbidity of a 1 mg/ml collagen gel, plotted 
according to Eq. 1 in Supporting Note S1. The plots are linear, consistent with the presence of long, 
thin fibers (lines are best fits to the data). Three of the measurements shown were obtained at different 
times during fibril assembly at 37oC (16, 30, 120 minutes after induction of polymerization by warming 
from 4 to 37oC); fibril polymerization is evident from the increase in the magnitude of the turbidity and 
in the increase of the slope. One measurements was obtained after disassembly of the gel for 2 hours at 
4oC (see figure legend); disassembly is evident from the decrease of the turbidity and the decrease of 
the slope. 
  



De Wild et  al. Thermal memory in self-assembled collagen fibril networks, Supporting Material  

 

4 
 

 

 
 
Supplemental Figure S2. Structural properties of collagen fibrils during assembly and 
disassembly, as determined from the wavelength dependence of the turbidity. (a) Fibril mass-
length ratio and (b) fibril diameter, shown as a function of time during fibril assembly at 37oC for 2 
hours (left of dashed vertical lines) and during fibril disassembly triggered by stepwise cooling to 4, 17, 
or 27oC. The analysis of the data assumes that the fibrils are long, thin, rigid, monodisperse, and 
randomly oriented, as explained in Supporting Note S1. 
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Supplemental Figure S3. Empirical double-exponential fits to the time-dependent decay of the 
turbidity measured upon sudden cooling of collagen gels formed for 2 hours at 37oC. The turbidity 
is normalized by the turbidity of the “mature collagen fibrils” (formed after 2 hours incubation at 
37oC), according to dis/37. The fitting formula was: dis/37 = Pfast exp(-t/ tfast) + Pslow exp(-t/tslow) with 
the constraint that Pfast + Pslow = 1. (a) Example data sets (symbols) with double-exponential fits (lines). 
(b) Dependence of the two decay times, tfast and tslow, on disassembly temperature. The fast decay time 
is temperature-independent. The slow time scale increases strongly with increasing disassembly 
temperature; at 32oC, tslow diverges. The fraction of the fast-decaying component is 65% at 4oC, 49% at 
12oC, 41% at 17oC, 29% at 22oC, 19% at 27oC, and 10% at 32oC.  
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Supplemental Figure S6. Comparison between the temperature dependence of the loss in fibril 
mass-length ratio (dis/37, solid red circles) determined by analyzing the wavelength dependence 
of the turbidity (which is model-dependent, see Supporting Note S1), with the loss in fibril mass 
as quantified in a model-independent manner from the relative change in turbidity measured at a single 
wavelength of 370 nm (dis/37, open black squares). The two measures are comparable, which suggests 
that mass is predominantly lost from the sides. 
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