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A Tractable Mean-Field Model for pH Sensing

In this supplementary section, we give details about the analytically tractable
model for pH sensing. If we just focus on the system-level behaviors of the
signaling pathways, the E. coli chemosensory machinery can be described by
five dynamic variables [1]: the external stimuli pH(t) (the input), the average
receptor kinase activity aq(t) (the output), and the average methylation level
of type-q receptors mq(t) (the memory), where q = 1 for Tar and q = 2 for
Tsr. Again, the separation of timescales argument allows us to apply the
quasi-equilibrium approximation to the kinase activity and ligand binding.
Therefore, a general coarse-grained model for bacterial pH sensing can be
written as:

a1 = G1(pH,m1, a1, a2), (S1)

a2 = G2(pH,m2, a1, a2), (S2)

dm1

dt
= F1(a1, a), (S3)

dm2

dt
= F2(a2, a). (S4)

In the above, F1,2 is a transfer function describing the feedback gain of the
network depending on both the local activity a1,2 and the global activity a,
whereas the function G1,2 integrates the pH stimuli, the methylation feed-
back, and the receptor-receptor coupling. Inspired by the Ising-type model
described in the main text, we can assume that the receptor activities of Tar
and Tsr take the following forms,
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The above expressions resemble Eq. (5) in the main text and can be viewed
as a mean-field approximation of the Ising-type model by using an average
methylation level for each type of receptors (Em,q is a function of mq for
q = 1, 2).

The total receptor-kinase activity is a = f1a1 + f2a2. For cells that are
pre-adapted to a background pH level (denoted by the variable pH), the
total activity changes to a(pH, pH′) right after the pH level changes to a new
level pH′ (before adaptation sets in). The response at the background to an
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infinitesimal increase of pH is characterized by the sensitivity S defined as:

S(pH) ≡ lim
δpH→0

a(pH, pH + δpH)− a(pH, pH)

δpH
= lim

δpH→0

δa

δpH
, (S7)

where a(pH, pH) = a0 is the pre-stimulus (adapted) activity. For precision
sensing, S needs to reverse sign and thus the inversion point pH∗ should
satisfy:

S(pH∗) = 0, (S8)

which is equivalent to

da

dpH
= f1

da1
dpH

+ f2
da2
dpH

= 0. (S9)

Let gq(pH) ≡ ln
[
(1 + 10K

I
q−pH)/(1 + 10K

A
q −pH)

]
for q = 1, 2. Taking deriva-

tive on both sides of Eq. (S5) and Eq. (S6) yields

−da1
a1
− da1

1− a1
− f1C11da1 − f2C12da2 = g′1(pH)dpH, (S10)

−da2
a2
− da2

1− a2
− f2C22da2 − f1C21da1 = g′2(pH)dpH, (S11)

where g′q(pH) is the first derivative of gq(pH) for q = 1, 2. At the inversion
point pH∗, we should have f1da1 + f2da2 = 0 so that Eqs. (S10) and (S11)
can be rewritten as

−da1
a1
− da1

1− a1
− f1C11da1 + f1C12da1 = g′1(pH∗)dpH, (S12)

−da2
a2
− da2

1− a2
− f2C22da2 + f2C21da2 = g′2(pH∗)dpH, (S13)

which are equivalent to the following

da1
dpH

=
g′1(pH∗)

f1(C12 − C11)− [a1(1− a1)]−1
, (S14)

da2
dpH

=
g′2(pH∗)

f2(C21 − C22)− [a2(1− a2)]−1
. (S15)

Plugging the above equations into the condition Eq. (S9) for the inversion
pH gives

f1g
′
1(pH∗)

f1(C12 − C11)− [a1(1− a1)]−1
+

f2g
′
2(pH∗)

f2(C21 − C22)− [a2(1− a2)]−1
= 0. (S16)
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By redefining y ≡ 10pH, yAq ≡ 10K
A
q and yIq ≡ 10K

I
q for q = 1, 2, we have
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A
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I
q ) ln(10)
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A
q )(10pH + 10K

I
q )

=
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, (S17)

and Eq. (S16) amounts to

f1
f2
·f2(C21 − C22)− [a2(1− a2)]−1

f1(C12 − C11)− [a1(1− a1)]−1
= −g

′
2(pH∗)
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=
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·(y
∗ + yA1 )(y∗ + yI1)

(y∗ + yA2 )(y∗ + yI2)
.

(S18)
Note that the above is actually a quadratic equation of y∗. Thus it is easy
to solve y∗ and get the inversion point pH∗ = log10(y

∗) from Eq. (S18). For
simplicity, we assume that C11 = C12 and C21 = C22 and suppose that both a1
and a2 are perfectly adapted to a0 ≡ kR/(kR+kB), as can be guaranteed if we
assume perfect adaptation for both Tar and Tsr: dmq/dt = kR(1−aq)−kBaq.
Then, Eq. (S18) is reduced to

f1
f2

=
(yA2 − yI2)(y∗ + yA1 )(y∗ + yI1)

(yI1 − yA1 )(y∗ + yA2 )(y∗ + yI2)
. (S19)

Let’s consider the case that yA1 ≈ yA2 (i.e., KA
1 ≈ KA

2 ), yA2 � yI2 , yI1 � yA1 ,
and yI1 � y∗ � yI2 . In this scenario, Eq. (S19) implies
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I
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Thus we have y∗ ≈ yA2 f2/f1 and the inversion point is

pH∗ ≈ KA
2 − log10(f1/f2), (S21)

which is a decreasing function of the Tar/Tsr ratio f1/f2. Given a change
of Tar/Tsr ratio from 0.5 to 1.5, one can estimate that the shift of inversion
pH point is roughly: log10(1.5) − log10(0.5) ≈ 0.48, which is close to the
experimental observation 8.0−7.5 = 0.5. Thus, despite the simplicity of this
model, it can give a simple quantitative prediction about the dependence of
the inversion point on the Tar/Tsr ratio.

Of course, one can relax the assumption of C11 = C12 and C22 = C21

by allowing that C21 = C22 + ∆C and C12 = C11 + ∆C. Here, we take
∆C ≥ 0 which means that the coupling between homogeneous receptors is
at least stronger than the coupling between heterogeneous receptors. We
define h ≡ (kR + kB)2/(kRkB) = [a0(1− a0)]−1. Then Eq. (S18) suggests

f1
f2
·f2∆C − h
f1∆C − h

≈ yA2
y∗
, such that pH∗ ≈ KA

2 +log10

(
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)
−log10
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)
.

(S22)
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As tested by various numerical examples, the second term is dominated by
the last term in Eq. (S22). This suggests that the coupling between different
types of receptors does not affect the inversion point significantly. For this
reason, we will assume C11 = C12 and C22 = C21 for simplicity in the rest of
this Supporting Information. Under this condition, Eqs. (S14) and (S15) at
the inversion point pH∗ will reduce to (for q = 1, 2):

daq/dpH = aq(aq − 1)g′q(pH∗). (S23)

As the second condition required for precision sensing, the inversion point
pH∗ needs to be “attractive”, which is ensured only if

S ′(pH∗) ≡ dS

dpH
|pH∗ > 0. (S24)

By Eq. (S23), we can calculate that

S ′(pH∗) =
d2aq

dpH2 = (2aq− 1)aq(aq− 1)[g′q(pH∗)]2 +aq(aq− 1)g′′q (pH∗). (S25)

Suppose that both a1 and a2 are perfectly adapted to a0 ≡ kR/(kR + kB). If
a0 ≤ 1/2 (which is the case for the wild-type E. coli), then the first term in
Eq. (S25) is obviously nonnegative. Thus, our main interest is the sign of the
second term there. For this reason, we just need to examine the particular
case that a0 = 1/2 (i.e., kR = kB) which makes the first term vanish. Direct
calculation of g′′q (pH) yields

S ′(pH) =
d2aq

dpH2 =
ln(10)2

4
×

2∑
q=1

fqy

[
yAq

(y + yAq )2
−

yIq
(y + yIq )

2

]
. (S26)

For the scheme KI
2 < KA

1 ≈ KA
2 < KI

1 (such that yI1 � yA1 ≈ yA2 � yI2 and
yI1 � y � yI2) considered in our main text, Eq. (S26) can be simplified:

S ′(pH) ≈ ln2(10)

4

[
yyA2

(y + yA2 )2
− f1y

yI1
− f2y

I
2

y

]
≈ ln2(10)

4
× yyA2

(y + yA2 )2
> 0.

(S27)
The positive sign above indicates that the inversion point is indeed an at-
tractive fixed point.

In the main text, we have considered another scheme for pH sensing:
KI

2 ≈ KA
1 < KA

2 < KI
1 (i.e., yI2 ≈ yA1 � yA2 � yI1 and yI2 ≈ yA1 � y � yI1).

Then Eq. (S19) reduces to:

f1
f2

=
(yA2 − yI2)(y∗ + yI1)

(yI1 − yA1 )(y∗ + yA2 )
≈ yA2
yI1
× yI1
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, (S28)
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which leads to

y∗ ≈ (f2/f1 − 1)yA2 or pH∗ ≈ KA
2 + log10(f2/f1 − 1). (S29)

The inversion point pH∗ decreases with the Tar/Tsr ratio f1/f2 and exists
only if f1 < f2. The second condition Eq. (S24) is also satisfied in this case:

S ′(pH) ≈ ln2(10)

4

[
f2yy

A
2

(y + yA2 )2
− f1y

yI1
+

(f1 − f2)yA1
y

]
≈ f2 ×

ln2(10)

4
× yyA2

(y + yA2 )2
> 0, (S30)

which is roughly proportional to f2, the fraction of Tsr.

2D Simulation for Bacterial pH Taxis

In this supplementary section, we provide details about the 2D simulation al-
gorithm for bacterial pH taxis. This model is based on the Signaling Pathway-
based E. coli Chemotaxis Simulator (SPECS) proposed in Ref. [2]. This sim-
ulator allows us to study the chemotaxis behaviors in an environment with
spatiotemporal complexity. In this 2D model for pH taxis, the state of Tar
or Tsr is represented by its average kinase activity aq(t) and average methy-
lation level mq(t) at time t for q = 1, 2. The external environment is defined
by pH(x, t) at the physical point x and time t. Since we consider a stable
gradient here, the pH level only depends on the spatial variable. At each
time step, each individual cell will sense its local pH level which leads to the
changes of its kinase activities and methylation levels, {a1,2(t),m1,2(t)}. The
total kinase activity a(t) = f1a1(t) + f2a2(t) regulates the switching prob-
ability P (a(t)) of the flagellar motor between CCW and CW states. This
switching behavior finally leads to the tumble and run motion of the cell.
When the cell moves to a new position in the next time step, the algorithm
repeats itself as the cell senses a new pH value.

The dynamics of the signaling pathway for pH sensing is governed by the
Ising-type model outlined in the main text. We use the same parameter set
given in Table 1 for the signaling module which produces the total kinase
activity a(t) over time for each cell and drives its tumble or run motion
in space. A phenomenological model is used here to model the bacterial
motion. Let r = 0, 1 represent the tumble and run state of the cell. For
the time period t → t + ∆t, a cell switches from state r to state 1 − r with
probability Pr([CheY p](t))∆t, where [CheY p](t) is assumed to be linearly
proportional to the kinase activity a(t). According to the measurements by
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Cluzel et al. [3], the ratio between the two probability rates for one flagellar
motor can be described as:

P1([CheY p])

P0([CheY p])
=

[CheY p]H

KH
1/2

, (S31)

with the Hill coefficient H ≈ 10 and the constant K1/2 ≈ 3µM . We assume
that the tumble time is constant P0([CheY p]) = τ−10 where τ0 ≈ 0.2sec is
the average duration of the tumble state. Then, the average run time is
τ1 ≈ 0.8sec in steady state, and the probability rate to switch from the run
state to the tumble state is given by:

P1([CheY p]) = τ−10

[CheY p]H

KH
1/2

. (S32)

After a tumbling episode, a new run direction is chosen randomly with the
run velocity v0 = 16.5µm/sec. A small time step ∆t = 0.1sec is chosen in
our simulations to resolve the average tumbling time.

Due to the Brownian fluctuation of the medium, the rotational diffusion
of the chemotactic cell can be captured by adding a small Gaussian random
angle δθ to the direction of the velocity in every run time step [2]: θ → θ+δθ.
The amplitude of this rotational diffusion angle ∆θ ≡

√
〈δθ2〉 is estimated to

be about 10 degrees. We also implement appropriate boundary condition to
ensure the cells swim in the specified region. The following table summarizes
other parameters used in our 2D simulator for bacterial pH taxis.

Table S1: Other parameters used in the 2D Monte Carlo simulation.
Parameter Value

Total Simulation Time 2000 sec
Time Step, ∆t 0.1 sec

Number of Cells 100
Channel Length 600 µm
Channel Width 300 µm
Hill Coeff., H 10.3

Ave. Run Velocity, v0 16.5 µm/sec
Ave. Run Time, τ1 0.8 sec

Const. Tumble Time, τ0 0.2 sec
Ave. Directional Change 30 per sec

pH Gradient (∆pH) 1 per 200µm
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An Extended Model Integrating both pH and

Chemical Sensing

In this supplementary section, we describe an extended Ising-type model
which integrates both pH and chemical signals. We start by assuming that
the external pH signal modulates the receptor-kinase activity primarily by
affecting the periplasmic domain, a process independent of the ligand binding
to chemoreceptors. Then, each single receptor can be characterized by five
state variables (q, lc, lp, s,m) which are labeled as subscripts: q defines the
type of receptor with q = 1 for Tar and q = 2 for Tsr; lc = 0, 1 denotes the
chemical ligand binding state; lp = 0, 1 indicates the proton “binding” state
of the receptor; s = 0, 1 represents the inactive or active conformation of the
receptor; and m ∈ [0, 4] records the receptor’s methylation level. Thus, the
free energy of an individual receptor is given by

Hq,lc,lp,s,m = µcq · lc + µpq · lp + (EL,c
q · lc + EL,p

q · lp + EM
q,m + EC

q ) · s, (S33)

where µcq = ln(KI,c
q /[L]q) and µcq + EL,c

q = ln(KA,c
q /[L]q) are the chemical

potentials of the inactive and active ligand-bound receptors, respectively.
Here, [L]q is the concentration of ligand that specifically binds to the type-

q receptor. We use KI,c
1 = 18.1µM , EL,c

1 = 8 for Tar and KI,c
2 = 6µM ,

EL,c
2 = 3 for Tsr [4, 5]. Other parameters including µpq , E

L,p
q , EM

q,m, and EC
q

were defined by Eqs. (2-4) in the main text.
For a type-q receptor at methylation state m, it can be in any of the

following 23 = 8 states in the (lc, lp, s) subspace: (0, 0, 0), (0, 1, 0), (1, 0, 0),
(1, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1), and (1, 1, 1), with the corresponding ener-
gies (in the units of the thermal energy kBT ) given by:

Hq,0,0,0,m = 0, (S34)

Hq,0,1,0,m = µpq , (S35)

Hq,1,0,0,m = µcq, (S36)

Hq,1,1,0,m = µcq + µpq , (S37)

Hq,0,0,1,m = EM
q,m + EC

q , (S38)

Hq,0,1,1,m = µpq + EL,p
q + EM

q,m + EC
q , (S39)

Hq,1,0,1,m = µcq + EL,c
q + EM

q,m + EC
q , (S40)

Hq,1,1,1,m = µpq + µcq + EL,p
q + EL,c

q + EM
q,m + EC

q . (S41)

Under the quasi-equilibrium approximation, the probability for the receptor
to be in each of the 8 states follows the Boltzmann distribution which is pro-
portional to exp (−Hq,lc,lp,s,m). So the average activity of the type-q receptor
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at methylation state m is given by:

〈a〉q,m =
e−Hq,0,0,1,m + e−Hq,0,1,1,m + e−Hq,1,0,1,m + e−Hq,1,1,1,m∑

lc

∑
lp

∑
s exp (−Hq,lc,lp,s,m)

. (S42)

The extended model is completed by including Eqs. (6) and (7) for the
methylation kinetics in the main text. We have presented in the Discussion
section the simulation result of this model for Tar-only mutant which was pre-
adapted to pH0 = 7.0 and [MeAsp]0 = 10−1KI,c

1 prior to stimulation/changes
of both pH and [MeAsp]. Since Tar elicits an attractant response to [MeAsp]
yet a repellent response to an increase of pH, the model predicts a “neutral”
response curve along which the effects of changing pH and [MeAsp] cancel
out with each other. This prediction can be easily tested by experiments and
will tell us, for example, whether the proton “binding” process is relatively
independent of the (chemical) ligand binding process.

This extended model also allows us to study how the presence of chemical
attractants affects the pH responses. In Fig. S1, we plot the pH responses
of Tar-only and Tsr-only mutants in the absence (solid lines) or presence
(dashed lines) of attractant (100µM MeAsp for Tar and 100µM serine for
Tsr). These mutants were pre-adapted to their respective attractant prior
to stimulation of pH changes (increasing pH steps from pH=6.5 to pH=9.2
with step size ∆pH=0.3). Fig. S1 shows the amplitude of the adaptive pH
responses right after the stimulation versus the ambient pH prior to each
stimulation. One can see that the presence of the ligands (MeAsp and serine)
weakens the pH responses of Tar and Tsr, respectively. This is in qualitative
agreement with the experimental data [6].

A Model Variant with Methylation Level De-

pendence

In the Ising-type model we described in the main text, the dissociation con-
stants KI,A

q are assumed to be constant for simplicity. In principle, these pa-
rameters may depend on the receptor methylation level, i.e. KI,A

q = KI,A
q (m),

as suggested by pH sensing experiments in Ref. [6]. However, our simula-
tions demonstrate that, regardless of the methylation level dependence, the
push-pull mechanisms works for pH sensing as long as the opposing sensors
(Tar and Tsr) dominate different pH regimes.

In this supplementary section, we discuss model variants considering the
methylation level dependence. For example, we can fix KI

1 = 9.0 and KA
1 =

7.0 for Tar, and assume that KA
2 = 8.0 and KI

2 (m) = 6.0 + 0.5m for Tsr. It
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follows that µ2(m) = ln(10)·[pH−KI
2 (m)] and EL

2 (m) = ln(10)·[KI
2 (m)−KA

2 ],
both depending on the Tsr methylation level m. Fig. S1 shows that this
methylation dependence does not change the sign of the Tsr response to pH
stimuli (ambient pH: 5.0 → 9.8). As a result (Fig. S2), this model still
contains an inversion pH point around pH 7.0 for the wild-type strain (with
f1 = f2 = 1/2). We have tried other forms of methylation level dependence:
for example, fixing KA

2 = 8.0 and KI
2 = 6.0 for Tsr, and assuming that

KI
1 (m) = 9.0− 0.5m and KA

1 = 7.0 for Tar. Similar to the result in Fig. S2,
we found an inversion pH point around pH= 8.0 for the wild-type strain with
f1 = f2 = 1/2. As long as the methylation changes do not change the order
of KI

q and KA
q , there could be an inversion pH point in our model. Simulation

results for different model variants do not alter our main conclusion that the
existence of an inversion pH point requires the opposite responses of Tar and
Tsr which should dominate in different pH regimes.
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Figure S1: Responses of the Tar-only (red symbols) and Tsr-only (blue sym-
bols) mutants to steps of increasing pH in the absence (solid lines) or pres-
ence (dashed lines) of their respective attractant: 100µM MeAsp for Tar and
100µM serine for Tsr. The ambient pH0 ranges from 6.5 to 8.9 with the step
size ∆pH=0.3)
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Figure S2: Responses of the Tsr-only mutant and the wild-type strain to
steps of increasing pH. In this simulation, we have chosen KA

2 = 8.0 and
KI

2 (m) = 6.0+0.5m for Tsr. (A) Steps of increasing pH levels, with ambient
pH0: 5.0 → 9.8 with ∆pH=0.3. (B) Response of the Tsr-only mutant. (C)
Response of the wild-type cell (the Tar/Tsr ratio f1 = f2 = 1/2), together
with the average activities contributed by Tar (red dotted line) and Tsr (blue
dashed line).
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