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Precision Sensing by Two Opposing Gradient Sensors: How Does
Escherichia coli Find its Preferred pH Level?
Bo Hu and Yuhai Tu*
IBM T.J. Watson Research Center, Yorktown Heights, New York
ABSTRACT It is essential for bacteria to find optimal conditions for their growth and survival. The optimal levels of certain envi-
ronmental factors (such as pH and temperature) often correspond to some intermediate points of the respective gradients. This
requires the ability of bacteria to navigate from both directions toward the optimum location and is distinct from the conventional
unidirectional chemotactic strategy. Remarkably, Escherichia coli cells can perform such a precision sensing task in pH taxis by
using the same chemotaxis machinery, but with opposite pH responses from two different chemoreceptors (Tar and Tsr). To
understand bacterial pH sensing, we developed an Ising-type model for a mixed cluster of opposing receptors based on the
push-pull mechanism. Our model can quantitatively explain experimental observations in pH taxis for various mutants and
wild-type cells. We show how the preferred pH level depends on the relative abundance of the competing sensors and how
the sensory activity regulates the behavioral response. Our model allows us to make quantitative predictions on signal integra-
tion of pH and chemoattractant stimuli. Our study reveals two general conditions and a robust push-pull scheme for precision
sensing, which should be applicable in other adaptive sensory systems with opposing gradient sensors.
INTRODUCTION
The survival of living systems relies on their ability to sense
their environmental conditions and move to advantageous
locations. A classic example is bacterial chemotaxis (1–4):
By sensing gradients of chemical stimuli, bacterial cells
usually migrate in a unidirectional mode following the gra-
dients, i.e., from low to high attractant concentrations or
from high to low repellent concentrations. This strategy
allows them to find nutrients (attractant) and escape from
toxins (repellent). However, there are other environmental
factors such as pH and temperature, for which the physio-
logical optimum may not be the extremes in a gradient but
correspond to an intermediate level. For example, extremely
acidic or alkaline environments can be detrimental to
Escherichia coli cells (5). Interestingly, the same chemo-
taxis machinery is also used in the bacterial pH taxis and
the opposing pH responses by two major types of chemore-
ceptors to determine the preferred pH level (6–9). There-
fore, a push-pull mechanism may be responsible for the
pH taxis, which allows cells to invert their responses at a
particular pH value. This mode of precision sensing is
closely related to, yet quite different from, the traditional
concept of chemotaxis, which generates unidirectional
response to certain chemical gradients. Instead of directing
cells to the extreme levels in a gradient, precision sensing
helps cells to find some intermediate, optimal level of stim-
uli. So far, however, the mechanisms for precision sensing
remain poorly understood.

In E. coli, extracellular chemical stimuli are sensed and
processed by several types of transmembrane chemorecep-
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tors, among which the aspartate binding receptor (Tar) and
serine binding receptor (Tsr) are the most abundant (10).
Interaction among different types of receptors enables
them to act together and respond cooperatively to specific
signals (11–13). Over the past decades, there has been sig-
nificant progress, both experimental and theoretical, in
understanding the role of receptor cooperativity in signal
amplification (11–23). In E. coli, Tar and Tsr form hetero-
trimers of homo-dimers in cytoplasmic membrane (24–
26). These receptors form clusters that associate with the
adaptor protein CheW and the histidine kinase CheA (27–
29). Binding of attractant (or repellents) to the periplasmic
domain of receptors inhibits (or promotes) the autophos-
phorylation activity of CheA, which in turn decreases (or
increases) phosphorylation of the response regulator CheY
and eventually regulates the flagellar motor to navigate the
cell toward attractant (or away from repellent). The system
also contains a phosphatase CheZ, which dephosphorylates
CheY-P (the phosphorylated form of CheY).

Sensory adaptation is needed to maintain a short-term
memory for temporal comparisons of concentrations when
swimming in a gradient (4,30,31). In E. coli, adaptation is
achieved by receptor methylation and demethylation, as
catalyzed by two cytoplasmic enzymes, methyltransferase
CheR and methylesterase CheB, which add and remove
methyl group at specific sites of receptors, respectively.
Methylation of receptors increases the kinase activity of
CheA that phosphorylates both CheY and CheB. Phosphor-
ylation of CheB enhances its enzymatic activity (for deme-
thylation) and helps restore the receptor-kinase activity to its
prestimulus level (adaptation) after its initial response to an
external stimulus. However, if it is only the total kinase
activity that controls the adaptation (methylation/demethy-
lation) process, there will be severe methylation crosstalk
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(memory contamination) between different types of recep-
tors; for example, both Tar (specific for aspartate) and Tsr
(specific for serine) receptors will be methylated to the
same degree even when the cell only experiences a change
in aspartate concentration. A recent study shows that bacte-
rial cells avoid methylation crosstalk by having the activity
of individual receptors locally control their own methylation
dynamics (13). This local adaptation mechanism drives each
individual receptor to its most responsive state and main-
tains high sensitivity of the entire receptor cluster (13).

Although the molecular sensing mechanism is unclear,
bacterial pH taxis is also mediated by the two major recep-
tors, Tar and Tsr. A recent study showed that Tar gives an
attractant response whereas Tsr elicits a repellent response
to an increase in pH (9). The competition between these
opposing effects results in a particular preferred pH value.
Here, we develop a mathematical model to explain the
recent experimental data on bacterial pH sensing. We
attempt to address the following questions:

1. How could the gradient sensing chemotaxis signaling
pathway be used to carry out precision sensing in pH
taxis?

2. What determines (encodes) the preferred pH value?
3. How is the pH sensing program integrated with other

chemical sensing processes?
4. What are the general conditions or constraints for the

push-pull mechanism to perform precision sensing?
THE ISING-TYPE MODEL FOR PH SENSING

Our model for pH sensing is based on the Ising-type model
for a mixed cluster of receptors (Tar and Tsr) as proposed in
Lan et al. (13) and Mello and Tu (18). We assume that the
environmental pH modulates the receptor-kinase activity
primarily by affecting the periplasmic domain of the recep-
tors just like chemoattractants bind to receptors in chemo-
sensing. This assumption is supported by the experiment
on a hybrid Tsar receptor, which has the periplasmic domain
of Tsr and the signaling domain of Tar but resembles the
response of Tsr (9). In light of such analogy, each single
receptor can be characterized by four state variables
(q,l,s,m) that are labeled as subscripts: q defines the type
of receptor with q ¼ 1 for Tar and q ¼ 2 for Tsr; l ¼ 0,1
indicates the proton binding state of the receptor; s ¼ 0,1
represents the inactive or active conformation of the recep-
tor; and m ˛[0,4] records the receptor’s methylation level
because Tar and Tsr have up to four or five methyl groups.
The process of receptor covalent modification is much
slower than that of the ligand binding and activity switching
(32). Such separation of timescales allows us to treat the
evolution of (l,s,m) with a quasi-equilibrium approximation.
The receptor binding/activity states can be described by
their equilibrium values for a given m, whereas the slow
methylation dynamics is characterized by a system of
coupled ordinary differential equations tracing the popula-
tion distribution of receptors at different methylation levels.

The free energy of an individual receptor in the state
(q,l,s,m) is given by

Hq;l;s;m ¼ mq$lþ
�
EL
q$lþ EM

q;m þ EC
q

�
$s; (1)

where the chemical potentials of the inactive and active pro-
ton-bound receptors, mq and mq þ EL

q, are defined as

e�mq ¼ 10K
I
q�pH and e�ðmqþELqÞ ¼ 10K

A
q�pH: (2)

Note that the proton concentration at a given pH is equal to
106�pH mM. For convenience, we have expressed the effec-
tive dissociation constants KI

q and KA
q for the inactive

and active type-q receptors in the pH scale. In principle,
KI

q and KA
q may depend on the receptor methylation level

Kq
I,A ¼ Kq

I,A(m), as evidenced by pH sensing experiments
for cells with different receptor methylation levels (9). How-
ever, we found that the push-pull mechanism for pH taxis
works as long as Tar and Tsr dominate different pH regimes,
regardless of such methylation level dependence; see the
Supporting Material for details. For this reason, we will
assume constant KI

q and KA
q in the rest of the article and

examine the consequence of the methylation level depen-
dence in the Discussion section.

In Eq. 1, EM
q,m represents the free energy contribution by

receptor methylation and is assumed to be a linear function
of m for intermediate methylation levels (32),

EM
q;m ¼ aq$

�
m� mq;0

�
; for 0<m<4; (3)

where aq measures the free energy change by adding one
methyl group, and mq,0 sets the average methylation level
in zero ligand background. Note that the methylation energy
at the boundary, jEM

q;m¼0j and jEM
q;m¼4j, should be large

enough to ensure accurate adaptation; see the Supplemen-
tary Information of Lan et al. (13) for details. In the Ising
model, neighboring receptors in the mixed cluster can
interact with each other, as captured by the receptor-receptor
coupling energy term EC

q in Eq. 1, which is assumed to
depend linearly on the activity of its neighbors:

EC
q ¼

X
ðnnÞ

Cqq0

N0

$

�
sq0 � 1

2

�
: (4)

The above expression means that the activity of a receptor

(s ¼ 0 or 1) in the cluster depends on the activities of
its N0 neighbors with a coupling strength Cqq

0
/N0 < 0 for

each cooperative interaction. To preserve symmetry
between active and inactive states, we have put 1/2 in
Eq. 4. This treatment does not alter our main results or
conclusions.

All the aforementioned energies are written in the units of
the thermal energy kBT. In the mean-field approximation,
Biophysical Journal 105(1) 276–285
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the average activity of a type-q receptor at methylation level
m can be written as

haiq;m ¼
(
1þ 1þ 10K

I
q�pH

1þ 10K
A
q�pH

$exp

"
EM
q;m þ

X
q0 ¼ 1;2

fq0Cqq0

�
 
haiq0 �

1

2

!#)�1

;

(5)

where fq is the fraction of type-q receptor such that f1 þ

f2 ¼ 1 and haiq represents the mean-field activity averaged
over all type-q receptors, i.e.,

haiq ¼
X4
m¼ 0

Pq;mhaiq;m: (6)

The symbol Pq,m in Eq. 6 represents the fractional popula-
tion of type-q receptors with methylation level m, and
satisfies the normalization condition

P4
m¼0Pq;m ¼ 1.

Subject to the (slow) methylation-demethylation kinetics,
Pq,m values are governed by the following master equations,

dPq;m

dt
¼ kR

�
1� haiq;m�1

�
Pq;m�1 þ kBhaiq;mþ1Pq;mþ1

�
h
kR

�
1� haiq;m

�
þ kBhaiq;m

i
Pq;m;

(7)

with the boundary condition Pq,m<0 ¼ Pq,m>4 ¼ 0. Here, we
assume that only inactive receptors methylate with rate kR,
and only active receptors demethylate with rate kB. The
timescale is set by kR ¼ 1. We take constant rates of kR
and kB by using a linear approximation (32). In general,
both kR and kB depend on the kinase activity. Such depen-
dence, however, does not change the behavior of our model
significantly because accurate adaption maintains the recep-
tor activity near its preferred level, where the linear approx-
imation holds.

Equations 5–7 fully define our pH sensing model. The
only parameters specific to pH sensing are Kq

I,A; all the
other parameters are the same as in chemotaxis (Table 1).
Equation 7 is solved numerically using the Euler discretiza-
tion method. At each time step, we first solve Eqs. 5 and 6
under the current pH level using the nonlinear equation
TABLE 1 Parameters used in the Ising-type model

Parameter Value Parameter Value

f1 1/2 f2 1/2

m1,0 1.0 m2,0 2.5

EM
1,0 10 EM

2,0 10

a1 �1.875 a2 �1.5

C11 �3.5 C12 �3.5

C21 �4.0 C22 �4.0

kR 1 kB 2

KI
1 9.0 KI

2 6.0

KA
1 7.3 KA

2 7.8
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solver Fsolve in MATLAB (The MathWorks, Natick,
MA), and then we plug the new solution of {haiq,m} and
{haiq} into Eq. 7 and update {Pq,m} over this small time in-
terval using the solver Ode15s in MATLAB. Iterating the
above procedure will give us the entire dynamics of receptor
activity and methylation distribution.
RESULTS

Tar and Tsr respond oppositely to pH changes

In a recent experiment (9), Yang and Sourjik used the fluo-
rescence resonance energy transfer (FRET) technique to
investigate the intracellular response of E. coli chemotaxis
pathways to step-like changes of extracellular pH. The
energy transfer pair is CheY and CheZ such that the FRET
signal is proportional to [CheY-P-CheZ], the concentration
of the intermediate species in the enzymatic hydrolysis of
CheY-P (11). At steady state, the production rate of CheY-P,
catalyzed by CheA, is exactly balanced by its degradation
rate, which is proportional to [CheY-P-CheZ]. Therefore,
the FRET signal can be viewed as a reporter of the CheA
kinase activity. The authors found that mutant cells express-
ing only Tar, when preadapted at neutral pH of 7.0, exhibit
an attractant response to a decrease of pH and a repellent
response to an increase of pH. An opposite response was
observed for cells expressing only Tsr.

In our Ising-type model, we can set f1 ¼ 1, f2 ¼ 0
(or f2 ¼ 1, f1 ¼ 0) to model mutant cells expressing only
Tar (or Tsr). The opposite responses to pH changes for
Tar and Tsr can be described in our model by setting
K1

A < K1
I for Tar and K2

A < K2
I for Tsr. In Fig. 1 A, we

plot the receptor activity hai1 for cells expressing Tar
(f1¼ 1) in response to certain changes of pH stimuli. Indeed,
a decrease (or an increase) of pH is like an attractant (or a
repellent) to the Tar receptors in our model. The opposite
response of Tsr receptors, denoted by hai2, to the same pH
profile is also plotted in Fig. 1 A, consistent with experi-
mental observations (9).

We also studied the receptor activity of Tar and Tsr in
response to steps of increasing pH values (Fig. 1 B). Before
each step of stimulation, the model system is allowed to
adapt to the ambient pH. The simulation was carried out
over a broad range of ambient pH values (from pH 6.8 to
8.9 with step size DpH ¼ 0.3). As one can see from Fig. 1
B, the Tar response remains relatively strong whereas the
Tsr response decreases as the pH level increases in the tested
pH range. This pattern results from the different operating
regions of Tar and Tsr as determined by their respective
dissociation parameters in our model (Table 1), and is qual-
itatively consistent with the experimental observations (9).
Moreover, Tar dominates the response at high pH values
and Tsr dominates at low pH regions. Such difference in
dominance is critical for the system to invert its response
at an intermediate pH value.



A B

FIGURE 1 Responses to pH stimulation (solid

lines) and dynamics of methylation levels (dashed

lines) for the Tar-only mutant (f1 ¼ 1) and the Tsr-

only mutant (f2 ¼ 1). (A) Tar and Tsr responses to

up and down pH steps. (B) Tar and Tsr responses

to a series of increased steps, from pH ¼ 6.8 to

pH ¼ 8.9 with step size DpH ¼ 0.3.
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Similar to chemotaxis, adaptation to pH changes is
achieved by changes in receptor methylation. Specifically,
the methylation level increases upon positive (attractant)
stimulation and decreases upon negative (repellent) stimula-
tion. As shown in Fig. 1 (dashed lines), Tar (or Tsr) methyl-
ation decreases (or increases) at higher pH, in agreement
with experiments (9). The observation reported in Yang
and Sourjik (9) of distinctive methylation patterns for Tar
and Tsr also confirms the local adaptation mechanism (13)
that the adaptation processes for individual receptors are
affected by their own activities (conformational changes),
instead of being solely regulated by the total kinase activity
of the receptor cluster.
The reversal of pH response in wild-type cells

The response of wild-type (WT) E. coli cells that express
both Tar and Tsr is determined by integration of the two
opposing pH responses. Fig. 2 plots the responses for the
Tar-only mutant, the Tsr-only mutant, and the WT cell to
a series of pH steps with varying step sizes (DpH) but the
same ambient pH. We denote pH0 and pH1(¼ pH0 þ
DpH) as the pre- and poststimulation pH levels, respectively.
As shown in Fig. 2 B, the WT cell (with the Tar/Tsr ratio
f1/f2 ¼ 0.5) exhibits a repellent response to a decrease in
pH and an attractant response to an increase in pH, similar
to the Tsr-only response. This suggests that theWT response
at ambient pH 7.0 is dominated by the Tsr-mediated
response, consistent with the experimental findings (9).
Fig. 2 C plots their initial responses (i.e., the maximum
magnitude right after each stimulation) as a function of
pH1 with ambient pH0 ¼ 7.0. The quantitative values of
KA;I
1;2, as listed in Table 1, are determined by fitting our model

to the experimental data for the Tar-only and Tsr-only mu-
tants. These values are then used in the model, now without
any free parameters, to predict the pH response for the WT
cell. As shown in Fig. 2 C, the modeling results are in good
agreement with the experimental observations.

The response also depends on the ambient pH level,
denoted by pH0. Fig. 3, A and B, plots the response of the
WT strain (with f1/f2 ¼ 0.5) to steps of first increasing
then decreasing pH with the same step size (DpH ¼ 0.3).
The model exhibits an attractant response of gradually
decreasing magnitude for ambient pH level up to pH0 ¼
7.7. The response then inverts to a repellent response for
pH0 R 8.0. For the sequence of steps of decreasing pH,
the WT system shows an almost mirror-image response of
opposite sign (Fig. 3 B). This response pattern again resem-
bles the experimental observation (9). Quantitatively, the
inversion point pH* (the preferred pH) lies between 8.0
and 8.3, also agreeing with the experimental finding (9).
The preferred pH depends logarithmically
on the receptor abundance ratio

What determines the inversion point pH* in the pH response
of E. coli cells?

Experimentally, it has been found that the relative levels
of Tar and Tsr change with the cell density and growth con-
ditions in the medium (33). By tuning the cell density and
growth condition, Yang and Sourjik (9) observed a shift of
the inversion point, pH*, from 8.0 to 7.5, as a result of the
increased abundance of Tar relative to Tsr (the Tar/Tsr ratio
from 0.5 to 1.5). Taking the same parameters we used in
Fig. 2, our model also predicts the response pattern with
shifted pH*, similar to what was observed in experiment
(Fig. 3 C). The solid (or dashed) lines represent the magni-
tude of response to steps of increasing and decreasing pH
Biophysical Journal 105(1) 276–285
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FIGURE 3 (A and B) Response of the WT cell with f1/f2 ¼ 0.5 to steps of

first increasing then decreasing pH levels (the ambient pH0: 6.8 / 8.9 /
6.8 with step size DpH ¼ 0.3). As illustrated by the shaded area, the inver-

sion pH can be located by mapping the region where the response becomes

inverted. (C) Relative responses versus the ambient pH0 for increasing pH

steps (circles, up arrow) and decreasing pH steps (squares, down arrow)

under two different Tar/Tsr ratios: f1/f2 ¼ 0.5 (open symbols, solid lines)

and f1/f2 ¼ 1.5 (solid symbols, dashed line). (Horizontal arrow) Shift of

the response inversion point to lower pH upon increasing the Tar/Tsr ratio.

(Left panel) Our model results; these are directly compared to the experi-

mental measurements (right panel) in Yang and Sourjik (9). The relative

responses were normalized by the maximum response value among all

the data points in each subfigure (either model or experiment).

A

B

C

FIGURE 2 (A and B) Responses of the Tar-only mutant (f1 ¼ 1, dashed

line), the Tsr-only mutant (f2 ¼ 1, dot-dashed line), and the WT strain (f1 ¼
f2 ¼ 0.5, solid line) to a series of pH steps with varying step sizes and but

same ambient pH level (pH0 ¼ 7.0). (C) Their relative responses (normal-

ized by the maximum response value among all the data points in each sub-

figure) versus the poststimulation pH, denoted as pH1 ¼ pH0 þ DpH. (Left

panel) Obtained from our model results in panel B and is compared with the

experimental measurements (right panel) in Yang and Sourjik (9).
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given that the Tar/Tsr ratio is 0.5 (or 1.5), as can be obtained
from simulations shown in Fig. 3 B.

Analytically, we have simplified our full model (see the
Supporting Material for detailed derivation) to provide a
quantitative prediction on how this inversion point of pH de-
pends on the relative levels of Tar and Tsr. Specifically, we
found that the inversion point could be modulated as a
(minus) logarithm of the Tar/Tsr ratio (to base 10):

pH�zKA
2 � log10

�
f1
f2

�
: (8)

Given a change of Tar/Tsr ratio from 0.5 to 1.5, we can es-
timate that the shift of inversion pH point is roughly:
log10(1.5) – log10(0.5) z 0.48, which is quite close to the
experimental observation 8.0 – 7.5 ¼ 0.5. This tunability
of the preferred pH point can be beneficial for cells to adjust
their behavioral responses according to both internal and
external physiological conditions. Additional measurements
for cells with different receptor population ratios (f1/f2) can
be used to test our model prediction quantitatively.
Biophysical Journal 105(1) 276–285
Our model has so far focused on the signaling pathway
for pH sensing. How does the sensory output (receptor-
kinase activity) navigate the cells’ migration toward the
preferred pH level?

To answer this question, we have implemented a two-
dimensional Monte-Carlo simulation for cells moving in a
linear pH gradient (pH from 6.0 to 9.0 in 600 mm). The
algorithm is based on an earlier computational model for
bacterial chemotaxis (34). Here, we have directly incorpo-
rated the pH sensing module (Tar and Tsr) into the original
algorithm, using the same parameters given in Table 1.
Effects of the pH change on the motor speed have been
measured before in Chen and Berg (35) where only weak
dependence of the speed on the external pH was observed.
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Thus, we assumed a constant run speed in the simulations.
As shown in Fig. 4, cells (which were uniformly distributed
at the beginning) eventually accumulate near a location cor-
responding to the preferred pH value. Furthermore, as the
Tar/Tsr ratio changes from 0.5 to 1.5, the average pH, as
sampled by the locations of 100 cells, is found to change
from 8.15 to 7.4. Our simulation results demonstrate the
capability of the precision sensing mechanism in guiding
the cells to their preferred pH level, which can be tuned
by changing the relative abundance of the two opposing
sensors.
Two general conditions for precision sensing

What are the general constraints for the precision sensing
mechanism via two opposing gradient sensors?

Here, we use our model to answer this question, taking
pH sensing as an example. For cells that are adapted to
a background pH level (denoted by the variable pH),
their average kinase activity changes to a(pH,pH0) directly
after the pH level changes to a new level pH0 (before adap-
tation sets in). The response at the background to an infini-
tesimal increase of pH is characterized by the sensitivity S
defined as

SðpHÞh lim
dpH/0

aðpH; pHþ dpHÞ � aðpH; pHÞ
dpH

; (9)

where a(pH,pH) ¼ a0 is the prestimulus (adapted) activity.
In our model, the adapted activity for both Tar and Tsr is
a0 h kR/(kR þ kB). Note that S < 0 and S > 0 correspond
A B

FIGURE 4 Two-dimensional stimulations for pH taxis with different Tar/

Tsr ratios: (A) f1/f2 ¼ 0.5 and (B) f1/f2 ¼ 1.5. (Top panels) Distribution of

100 cells along the linear pH gradient (pH: 6.0 / 9.0 with DpH ¼1 per

200 mm). (Bottom panels) Two-dimensional visualizations of those WT

cells performing pH taxis in steady state. The Monte Carlo simulation

uses those key parameters given in Table 1. The detailed algorithm is pro-

vided in the Supporting Material.
to attractant and repellent responses, respectively. For preci-
sion sensing, S needs to reverse sign and thus the inversion
point pH* should satisfy

SðpH�Þ ¼ 0; (10)

which is the first condition required for precision sensing.
By using a mean-field approximation in our model

(see the Supporting Material for details) and assuming
C11¼ C12 and C21¼ C22 for simplicity, we obtain an analyt-
ical form for S(pH) and the above condition (Eq. 10) sim-
plifies to

f1 � yA1 � yI1
ðy� þ yA1 Þðy� þ yI1Þ

þ f2 � yA2 � yI2
ðy� þ yA2 Þðy� þ yI2Þ

¼ 0;

(11)

with redefined variables y�h10pH
�
, yAqh10K

A
q , and yIqh10K

I
q

for Tar (q ¼ 1) and Tsr (q ¼ 2). To satisfy the above equa-
tion, yA1 � yI1 should have the opposite sign as yA2 � yI2,
which simply means that Tar and Tsr should have opposite
responses to pH. If we further assume that yA1 z yA2 (i.e.,
KA

1 z KA
2), y

A
2 [ yI2, y

I
1 [ yA1, and yI1 [ y* [

yI2, then we obtain a simple analytical expression for y*
z yA2 � (f2/f1), which leads to the expression for the inver-
sion point (pH*) as shown in Eq. 8.

Although Eq. 10 is necessary for the existence of an
inverted response, it is not sufficient to drive precision
sensing. This inversion point pH* needs to be attractive,
which is only guaranteed by having

S0ðpH�Þh dS

dpH

����
pH�

>0: (12)

Equation 12 is the second condition required for precision
sensing. For the particular case a0 ¼ 1/2, we found that
(see the Supporting Material for details)

S0ðpHÞ ¼ ln2ð10Þ
4

�
X2
q¼ 1

fq

"
yyAq�

yþ yAq

�2 � yyIq�
yþ yIq

�2
#
;

(13)

where y h 10pH. For the case yI1 [ yA1 z yA2 [ yI2
considered in this article and in the range yI1 [ y [ yI2,
where the inverted response occurs, the above expression
can be simplified:

S0ðpHÞzln2ð10Þ
4

� yyA2

ðyþ yA2 Þ2
>0: (14)

This shows that the inversion pH level in our model is
indeed a stable (attractive) fixed point, which is consistent
with the experiments as shown in Fig. 3 C. It is also apparent
that S0(pH) does not depend on Tar/Tsr. Therefore, tuning
Biophysical Journal 105(1) 276–285
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the ratio f1/f2 can shift the inversion point but does not
change the shape of the response curve. This prediction
agrees with the experimental data (9) and our simulations
(Fig. 3 C): when f1/f2 changes from 0.5 to 1.5, the inversion
point (as defined by the zero crossing point of the response
curves) shifts from 8.0 to 7.5, but the slope of those curves
remains roughly the same.
Possible precision sensing schemes

The two general requirements for precision sensing, as sum-
marized by Eqs. 10 and 12, can be used to evaluate different
possible scenarios with two opposing sensors. Fig. 5 illus-
trates six typical combinations of the two sensors with over-
lapping sensitivity regimes. To establish a stable inversion
point, the push-pull mechanism requires that the repellant
sensor (Tar, red line) dominates in the high pH regime,
whereas the attractant sensor (Tsr, blue line) must dominate
in the low pH regime. This stability requirement immedi-
ately rule out the scenarios outlined in Fig. 5, D and E.
Fig. 5 F illustrates a special case where the operating regime
of Tar is contained in the regime of Tsr. This scheme allows
for two fixed points, one attractive and the other repulsive;
thus a cell starting at high pH levels may not be able to
migrate toward the (preferred) low pH level due to the repul-
sive fixed point.

The scheme in Fig. 5 A with KI
2 < KA

1 % KA
2 < KI

1 is
what we used in this article for pH sensing in E. coli. The
inversion point is expected to be defined within the overlap-
B

A D

E

FC

FIGURE 5 Possible schemes for precision sensing. The height of the up-

per (red) or lower (blue) boxes represents the maximum magnitude of the

response of Tar or Tsr, respectively, which depends on the abundance of

each type of sensor. The length of the boxes denotes the range of sensitivity

as determined by KA
1;2 and KI

1;2. (Arrow points toward an increasing pH

gradient.) Specifically, we consider six typical combinations of the

opposing sensory regimes: (A) KI
2 < KA

1 % KA
2 < KI

1; (B) KI
2 z

KA
1 < KA

2 < KI
1; (C) K

I
2 < KA

1 < KA
2 z KI

1; (D) K
A
1 < KI

2 % KI
1 <

KA
2; (E) K

A
1 < KI

2 < KI
1 z KA

2; and (F) KI
2 < KA

1 < KI
1 < KA

2.
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ped operating regions of Tar and Tsr. This small overlap is
necessary because if there is no overlap, e.g., KI

2 < KA
2 <

KA
1 < KI

1, cells would show no appreciable response to
pH changes within the dead-zone (KA

2, KA
1), which is

inconsistent with experiments (Fig. 3). One advantage of
the Fig. 5 A scheme is that it puts no constraints on the rela-
tive response strength of Tar and Tsr (which depends on the
relative abundance of these receptors). This allows the
inversion point to be tunable by freely adjusting the Tar/
Tsr ratio as shown in Eq. 8.

The two schemes shown in Fig. 5, B and C, represent the
cases where there is a large overlap between the operating
ranges of the two opposing sensors. In particular, either
the maximums or the minimums of the two operating re-
gimes are close to each other: KI

2 z KA
1 < KA

2 < KI
1 for

Fig. 5 B and KI
2 < KA

1 < KA
2 z KI

1 for Fig. 5 C. Let us
consider the case in Fig. 5 B. By using Eq. 10 and following
the same procedure as before (see the Supporting Material
for details), we get an estimate of the inversion pH level,

pH�zKA
2 þ log10

�
f2
f1
� 1

�
; (15)

whichmeans that the existence of the inversion point requires
tuning the sensor ratio f1/f2 < 1. For the particular case a0 ¼
1/2, the second condition (Eq. 12) is also satisfied as

S0ðpHÞzf2 � ln2ð10Þ
4

� yyA2

ðyþ yA2 Þ2
>0; (16)

which suggests that pH* is indeed an attractive fixed point if
it exists. However, as measured by S0(pH), the attraction is
now weakened by a factor f2 in comparison with Eq. 14
for the scenario shown in Fig. 5 A. Intuitively, the broad-
ening of the operating regime of one sensor deep into the
operating regime of the opposing sensor weakens the sys-
tem’s precision sensing ability and can even destroy preci-
sion sensing if it overpowers the other sensor (f1 > f2).

Therefore, based on the experimental observation and our
aforementioned analysis, the most robust push-pull scheme
seems to be the one illustrated in Fig. 5 A. The parameter
condition for this scheme can be simply expressed as
KI

2 < KA
1 % KA

2 < KI
1.
DISCUSSION

A critical challenge for living systems is to find the favor-
able environment where they can live and prosper. This is
usually achieved by continuously sensing the external con-
ditions and performing biased random movements toward
those optimal niches. Bacterial chemotaxis serves as an
elegant example, because it allows the cells to follow the
chemical gradients and navigate unidirectionally toward
the highest concentrations of nutrients or lowest levels of
toxins. Nonetheless, for many environmental factors such
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as pH and temperature (5,9,36), the most physiologically
favorable conditions do not correspond to the extreme levels
of those factors and cells prefer to accumulate around an in-
termediate level in a gradient. By using a modeling
approach, we confirm that this behavior can be achieved
by a push-pull mechanism by coordinating two opposing
sensors (Tar and Tsr), each dominating in different regimes
of pH (Fig. 6).

Bacteria can integrate and respond to a multitude of stim-
uli. For example, responses of the Tsr receptor to combined
repellent/attractant signals has been studied before in the
Tar-deletion mutant by the simultaneous photorelease of
caged protons and serine (8). Depending on the relative
levels of these two effectors, the Tsr receptor was observed
to produce an attractant or repellent response. Our computa-
tional model can also be extended to predict how bacteria
might process the pH signals in the presence of other chem-
ical stimuli (see the Supporting Material for details). As a
preliminary step, we hypothesize that the external pH mod-
ulates the receptor kinase activity but does not directly affect
chemoattractant binding to the receptor. Fig. 7 shows the
predicted response of Tar-only mutant to a combination of
pH and chemical (MeAsp) stimuli. Because Tar generates
an attractant response to [MeAsp] but a repellent response
to an increase of pH, the model predicts a neutral response
curve (dashed line, Fig. 7 B) along which the effects of
increasing pH and adding [MeAsp] cancel out with each
other. Experiments similar to that of Khan et al. (8) can be
carried out to test our prediction for the Tar-only mutant
and to reveal whether the pH sensing step is relatively inde-
pendent of the chemical binding process in the chemorecep-
1,2a
pH

FIGURE 6 Schematic illustration of the push-pull mechanism for bacte-

rial pH taxis. The two opposing sensors, Tar and Tsr, dominate the response

in different pH regions. The balance between their competing effects deter-

mines the inversion point of the pH response (i.e., the preferred pH value) at

which cells appear to accumulate.
tors. The extended model also allows us to study how the
presence of chemical attractants affects the pH responses.
Our results (see Fig. S1 in the Supporting Material) demon-
strate that the pH responses of Tar and Tsr are appreciably
weakened when the Tar- and Tsr-only mutants were
preadapted to high MeAsp and serine backgrounds, respec-
tively. This is in qualitative agreement with the experimental
observations (9).

Bacteria can also perform precision sensing in thermo-
taxis as they tend to accumulate at ~37�C in a temperature
gradient. For E. coli, it was found experimentally (38–40)
that the Tar receptor can switch from a warm sensor to a
cold sensor when the receptor methylation level increases
across a critical level. The push-pull mechanism is valid
but more subtle in this case as the two balancing effects
(push and pull) are provided by the same receptor in
different methylation states. The requirements for precision
sensing, as summarized by Eqs. 10 and 12 in this article,
also apply for thermotaxis. Indeed, based on these general
conditions, a theoretical model for thermotaxis by Jiang
et al. (41) revealed that imperfect adaptation to temperature
changes (in contrast to the perfect adaptation in chemotaxis)
is needed to drive the receptor methylation level to cross the
critical level where the inverted response occurs.

Despite their similar precision sensing capability, there
are some important distinctions between temperature
sensing and pH sensing:

1. At least two competing sensors are involved for the push-
pull mechanism in pH sensing (Fig. 6), whereas Tar
alone is able to invert its sensing mode for temperature.

2. The inversion of pH response requires appropriate com-
bination of the dominant regimes of Tar and Tsr (Fig. 5).
Although a high maximum receptor methylation level
could lead to a decrease or even inversion of the
pH response (especially for Tsr), the experimentally
observed change in methylation level due to the pH
change alone (9) is not sufficient to drive the receptors
to their inversion methylation level in the absence of
additional chemoattractants (see the Supporting Material
for details). For thermotaxis, however, temperature-
induced methylation level change is essential to drive
the receptor across the inversion point (41).

3. Although the imperfect adaptation to the temperature is
necessary for the inverted response in thermotaxis (41),
the push-pull mechanism for pH sensing works with per-
fect adaptation.

The push-pull mechanism appears to be a general mech-
anism for precision sensing that enables cells to accumulate
at specific intermediate levels of environmental factors. For
example, indole, a stationary-phase chemical signal, can
also elicit opposite responses via Tar and Tsr. Similar to
pH sensing, the response of WT cells to indole gradients
gets inverted from the repellent response at low con-
centrations to attractant response at high concentrations
Biophysical Journal 105(1) 276–285



A B

FIGURE 7 Response of the Tar-only mutant to

both pH and chemical (MeAsp) stimuli, as pre-

dicted by an extended Ising-type model (with

details in the Supporting Material). The mutant

was preadapted to pH0 ¼ 7.0 and [MeAsp]0 ¼
10�1 K1

I,c before being stimulated to the new state

(pH, [MeAsp]), where the dissociation constant

K1
I,c ¼ 18 mM. (A) Each point in the surface repre-

sents the Tar response to a combined stimuli (pH,

[MeAsp]). (B) The contour plot of panel A on the

space (pH, [MeAsp]) (dashed line corresponds

to the neutral response curve along which the

responses to the pH and chemoattractant changes

cancel out).
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(V. Sourjik, Heidelberg University, personal communica-
tion, 2012). Moreover, this inversion is also found to depend
on the relative levels of Tar and Tsr. In another example, it
was found that two receptors, Tsr and Aer, are responsible
for E. coli aerotaxis, which leads to the accumulation of bac-
teria at a preferred level of oxygen (42). This is again similar
to the pH taxis and may be explained by a variant of our
model. Finally, the four transmembrane chemoreceptors of
E. coli sense phenol as either an attractant (Tar) or a repel-
lent (Tsr, Tap, and Trg) (43). It would be very interesting to
test whether the push-pull mechanism studied here for pH
taxis serves as a general strategy in bacterial sensory
systems.
SUPPORTING MATERIAL
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A Tractable Mean-Field Model for pH Sensing

In this supplementary section, we give details about the analytically tractable
model for pH sensing. If we just focus on the system-level behaviors of the
signaling pathways, the E. coli chemosensory machinery can be described by
five dynamic variables [1]: the external stimuli pH(t) (the input), the average
receptor kinase activity aq(t) (the output), and the average methylation level
of type-q receptors mq(t) (the memory), where q = 1 for Tar and q = 2 for
Tsr. Again, the separation of timescales argument allows us to apply the
quasi-equilibrium approximation to the kinase activity and ligand binding.
Therefore, a general coarse-grained model for bacterial pH sensing can be
written as:

a1 = G1(pH,m1, a1, a2), (S1)

a2 = G2(pH,m2, a1, a2), (S2)

dm1

dt
= F1(a1, a), (S3)

dm2

dt
= F2(a2, a). (S4)

In the above, F1,2 is a transfer function describing the feedback gain of the
network depending on both the local activity a1,2 and the global activity a,
whereas the function G1,2 integrates the pH stimuli, the methylation feed-
back, and the receptor-receptor coupling. Inspired by the Ising-type model
described in the main text, we can assume that the receptor activities of Tar
and Tsr take the following forms,

1

a1
= 1 +

1 + 10K
I
1−pH

1 + 10K
A
1 −pH

· exp

[
Em1 + f1C11

(
a1 −

1

2

)
+ f2C12

(
a2 −

1

2

)]
,

(S5)

1

a2
= 1 +

1 + 10K
I
2−pH

1 + 10K
A
2 −pH

· exp

[
Em2 + f2C22

(
a2 −

1

2

)
+ f1C21

(
a1 −

1

2

)]
.

(S6)
The above expressions resemble Eq. (5) in the main text and can be viewed
as a mean-field approximation of the Ising-type model by using an average
methylation level for each type of receptors (Em,q is a function of mq for
q = 1, 2).

The total receptor-kinase activity is a = f1a1 + f2a2. For cells that are
pre-adapted to a background pH level (denoted by the variable pH), the
total activity changes to a(pH, pH′) right after the pH level changes to a new
level pH′ (before adaptation sets in). The response at the background to an
2



infinitesimal increase of pH is characterized by the sensitivity S defined as:

S(pH) ≡ lim
δpH→0

a(pH, pH + δpH)− a(pH, pH)

δpH
= lim

δpH→0

δa

δpH
, (S7)

where a(pH, pH) = a0 is the pre-stimulus (adapted) activity. For precision
sensing, S needs to reverse sign and thus the inversion point pH∗ should
satisfy:

S(pH∗) = 0, (S8)

which is equivalent to

da

dpH
= f1

da1
dpH

+ f2
da2
dpH

= 0. (S9)

Let gq(pH) ≡ ln
[
(1 + 10K

I
q−pH)/(1 + 10K

A
q −pH)

]
for q = 1, 2. Taking deriva-

tive on both sides of Eq. (S5) and Eq. (S6) yields

−da1
a1
− da1

1− a1
− f1C11da1 − f2C12da2 = g′1(pH)dpH, (S10)

−da2
a2
− da2

1− a2
− f2C22da2 − f1C21da1 = g′2(pH)dpH, (S11)

where g′q(pH) is the first derivative of gq(pH) for q = 1, 2. At the inversion
point pH∗, we should have f1da1 + f2da2 = 0 so that Eqs. (S10) and (S11)
can be rewritten as

−da1
a1
− da1

1− a1
− f1C11da1 + f1C12da1 = g′1(pH∗)dpH, (S12)

−da2
a2
− da2

1− a2
− f2C22da2 + f2C21da2 = g′2(pH∗)dpH, (S13)

which are equivalent to the following

da1
dpH

=
g′1(pH∗)

f1(C12 − C11)− [a1(1− a1)]−1
, (S14)

da2
dpH

=
g′2(pH∗)

f2(C21 − C22)− [a2(1− a2)]−1
. (S15)

Plugging the above equations into the condition Eq. (S9) for the inversion
pH gives

f1g
′
1(pH∗)

f1(C12 − C11)− [a1(1− a1)]−1
+

f2g
′
2(pH∗)

f2(C21 − C22)− [a2(1− a2)]−1
= 0. (S16)
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By redefining y ≡ 10pH, yAq ≡ 10K
A
q and yIq ≡ 10K

I
q for q = 1, 2, we have

g′q(pH) =
10pH(10K

A
q − 10K

I
q ) ln(10)

(10pH + 10K
A
q )(10pH + 10K

I
q )

=
y(yAq − yIq ) ln(10)

(y + yAq )(y + yIq )
, (S17)

and Eq. (S16) amounts to

f1
f2
·f2(C21 − C22)− [a2(1− a2)]−1

f1(C12 − C11)− [a1(1− a1)]−1
= −g

′
2(pH∗)

g′1(pH∗)
=
yA2 − yI2
yI1 − yA1

·(y
∗ + yA1 )(y∗ + yI1)

(y∗ + yA2 )(y∗ + yI2)
.

(S18)
Note that the above is actually a quadratic equation of y∗. Thus it is easy
to solve y∗ and get the inversion point pH∗ = log10(y

∗) from Eq. (S18). For
simplicity, we assume that C11 = C12 and C21 = C22 and suppose that both a1
and a2 are perfectly adapted to a0 ≡ kR/(kR+kB), as can be guaranteed if we
assume perfect adaptation for both Tar and Tsr: dmq/dt = kR(1−aq)−kBaq.
Then, Eq. (S18) is reduced to

f1
f2

=
(yA2 − yI2)(y∗ + yA1 )(y∗ + yI1)

(yI1 − yA1 )(y∗ + yA2 )(y∗ + yI2)
. (S19)

Let’s consider the case that yA1 ≈ yA2 (i.e., KA
1 ≈ KA

2 ), yA2 � yI2 , yI1 � yA1 ,
and yI1 � y∗ � yI2 . In this scenario, Eq. (S19) implies

f1
f2

=
(yA2 − yI2)(y∗ + yI1)

(yI1 − yA1 )(y∗ + yI2)
≈ yA2
yI1
· y

1
I

y∗
=
yA2
y∗
. (S20)

Thus we have y∗ ≈ yA2 f2/f1 and the inversion point is

pH∗ ≈ KA
2 − log10(f1/f2), (S21)

which is a decreasing function of the Tar/Tsr ratio f1/f2. Given a change
of Tar/Tsr ratio from 0.5 to 1.5, one can estimate that the shift of inversion
pH point is roughly: log10(1.5) − log10(0.5) ≈ 0.48, which is close to the
experimental observation 8.0−7.5 = 0.5. Thus, despite the simplicity of this
model, it can give a simple quantitative prediction about the dependence of
the inversion point on the Tar/Tsr ratio.

Of course, one can relax the assumption of C11 = C12 and C22 = C21

by allowing that C21 = C22 + ∆C and C12 = C11 + ∆C. Here, we take
∆C ≥ 0 which means that the coupling between homogeneous receptors is
at least stronger than the coupling between heterogeneous receptors. We
define h ≡ (kR + kB)2/(kRkB) = [a0(1− a0)]−1. Then Eq. (S18) suggests

f1
f2
·f2∆C − h
f1∆C − h

≈ yA2
y∗
, such that pH∗ ≈ KA

2 +log10

(
h− f1∆C
h− f2∆C

)
−log10

(
f1
f2

)
.

(S22)
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As tested by various numerical examples, the second term is dominated by
the last term in Eq. (S22). This suggests that the coupling between different
types of receptors does not affect the inversion point significantly. For this
reason, we will assume C11 = C12 and C22 = C21 for simplicity in the rest of
this Supporting Information. Under this condition, Eqs. (S14) and (S15) at
the inversion point pH∗ will reduce to (for q = 1, 2):

daq/dpH = aq(aq − 1)g′q(pH∗). (S23)

As the second condition required for precision sensing, the inversion point
pH∗ needs to be “attractive”, which is ensured only if

S ′(pH∗) ≡ dS

dpH
|pH∗ > 0. (S24)

By Eq. (S23), we can calculate that

S ′(pH∗) =
d2aq

dpH2 = (2aq− 1)aq(aq− 1)[g′q(pH∗)]2 +aq(aq− 1)g′′q (pH∗). (S25)

Suppose that both a1 and a2 are perfectly adapted to a0 ≡ kR/(kR + kB). If
a0 ≤ 1/2 (which is the case for the wild-type E. coli), then the first term in
Eq. (S25) is obviously nonnegative. Thus, our main interest is the sign of the
second term there. For this reason, we just need to examine the particular
case that a0 = 1/2 (i.e., kR = kB) which makes the first term vanish. Direct
calculation of g′′q (pH) yields

S ′(pH) =
d2aq

dpH2 =
ln(10)2

4
×

2∑
q=1

fqy

[
yAq

(y + yAq )2
−

yIq
(y + yIq )

2

]
. (S26)

For the scheme KI
2 < KA

1 ≈ KA
2 < KI

1 (such that yI1 � yA1 ≈ yA2 � yI2 and
yI1 � y � yI2) considered in our main text, Eq. (S26) can be simplified:

S ′(pH) ≈ ln2(10)

4

[
yyA2

(y + yA2 )2
− f1y

yI1
− f2y

I
2

y

]
≈ ln2(10)

4
× yyA2

(y + yA2 )2
> 0.

(S27)
The positive sign above indicates that the inversion point is indeed an at-
tractive fixed point.

In the main text, we have considered another scheme for pH sensing:
KI

2 ≈ KA
1 < KA

2 < KI
1 (i.e., yI2 ≈ yA1 � yA2 � yI1 and yI2 ≈ yA1 � y � yI1).

Then Eq. (S19) reduces to:

f1
f2

=
(yA2 − yI2)(y∗ + yI1)

(yI1 − yA1 )(y∗ + yA2 )
≈ yA2
yI1
× yI1

(y∗ + yA2 )
=

yA2
y∗ + yA2

, (S28)
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which leads to

y∗ ≈ (f2/f1 − 1)yA2 or pH∗ ≈ KA
2 + log10(f2/f1 − 1). (S29)

The inversion point pH∗ decreases with the Tar/Tsr ratio f1/f2 and exists
only if f1 < f2. The second condition Eq. (S24) is also satisfied in this case:

S ′(pH) ≈ ln2(10)

4

[
f2yy

A
2

(y + yA2 )2
− f1y

yI1
+

(f1 − f2)yA1
y

]
≈ f2 ×

ln2(10)

4
× yyA2

(y + yA2 )2
> 0, (S30)

which is roughly proportional to f2, the fraction of Tsr.

2D Simulation for Bacterial pH Taxis

In this supplementary section, we provide details about the 2D simulation al-
gorithm for bacterial pH taxis. This model is based on the Signaling Pathway-
based E. coli Chemotaxis Simulator (SPECS) proposed in Ref. [2]. This sim-
ulator allows us to study the chemotaxis behaviors in an environment with
spatiotemporal complexity. In this 2D model for pH taxis, the state of Tar
or Tsr is represented by its average kinase activity aq(t) and average methy-
lation level mq(t) at time t for q = 1, 2. The external environment is defined
by pH(x, t) at the physical point x and time t. Since we consider a stable
gradient here, the pH level only depends on the spatial variable. At each
time step, each individual cell will sense its local pH level which leads to the
changes of its kinase activities and methylation levels, {a1,2(t),m1,2(t)}. The
total kinase activity a(t) = f1a1(t) + f2a2(t) regulates the switching prob-
ability P (a(t)) of the flagellar motor between CCW and CW states. This
switching behavior finally leads to the tumble and run motion of the cell.
When the cell moves to a new position in the next time step, the algorithm
repeats itself as the cell senses a new pH value.

The dynamics of the signaling pathway for pH sensing is governed by the
Ising-type model outlined in the main text. We use the same parameter set
given in Table 1 for the signaling module which produces the total kinase
activity a(t) over time for each cell and drives its tumble or run motion
in space. A phenomenological model is used here to model the bacterial
motion. Let r = 0, 1 represent the tumble and run state of the cell. For
the time period t → t + ∆t, a cell switches from state r to state 1 − r with
probability Pr([CheY p](t))∆t, where [CheY p](t) is assumed to be linearly
proportional to the kinase activity a(t). According to the measurements by
6



Cluzel et al. [3], the ratio between the two probability rates for one flagellar
motor can be described as:

P1([CheY p])

P0([CheY p])
=

[CheY p]H

KH
1/2

, (S31)

with the Hill coefficient H ≈ 10 and the constant K1/2 ≈ 3µM . We assume
that the tumble time is constant P0([CheY p]) = τ−10 where τ0 ≈ 0.2sec is
the average duration of the tumble state. Then, the average run time is
τ1 ≈ 0.8sec in steady state, and the probability rate to switch from the run
state to the tumble state is given by:

P1([CheY p]) = τ−10

[CheY p]H

KH
1/2

. (S32)

After a tumbling episode, a new run direction is chosen randomly with the
run velocity v0 = 16.5µm/sec. A small time step ∆t = 0.1sec is chosen in
our simulations to resolve the average tumbling time.

Due to the Brownian fluctuation of the medium, the rotational diffusion
of the chemotactic cell can be captured by adding a small Gaussian random
angle δθ to the direction of the velocity in every run time step [2]: θ → θ+δθ.
The amplitude of this rotational diffusion angle ∆θ ≡

√
〈δθ2〉 is estimated to

be about 10 degrees. We also implement appropriate boundary condition to
ensure the cells swim in the specified region. The following table summarizes
other parameters used in our 2D simulator for bacterial pH taxis.

Table S1: Other parameters used in the 2D Monte Carlo simulation.
Parameter Value

Total Simulation Time 2000 sec
Time Step, ∆t 0.1 sec

Number of Cells 100
Channel Length 600 µm
Channel Width 300 µm
Hill Coeff., H 10.3

Ave. Run Velocity, v0 16.5 µm/sec
Ave. Run Time, τ1 0.8 sec

Const. Tumble Time, τ0 0.2 sec
Ave. Directional Change 30 per sec

pH Gradient (∆pH) 1 per 200µm
7



An Extended Model Integrating both pH and

Chemical Sensing

In this supplementary section, we describe an extended Ising-type model
which integrates both pH and chemical signals. We start by assuming that
the external pH signal modulates the receptor-kinase activity primarily by
affecting the periplasmic domain, a process independent of the ligand binding
to chemoreceptors. Then, each single receptor can be characterized by five
state variables (q, lc, lp, s,m) which are labeled as subscripts: q defines the
type of receptor with q = 1 for Tar and q = 2 for Tsr; lc = 0, 1 denotes the
chemical ligand binding state; lp = 0, 1 indicates the proton “binding” state
of the receptor; s = 0, 1 represents the inactive or active conformation of the
receptor; and m ∈ [0, 4] records the receptor’s methylation level. Thus, the
free energy of an individual receptor is given by

Hq,lc,lp,s,m = µcq · lc + µpq · lp + (EL,c
q · lc + EL,p

q · lp + EM
q,m + EC

q ) · s, (S33)

where µcq = ln(KI,c
q /[L]q) and µcq + EL,c

q = ln(KA,c
q /[L]q) are the chemical

potentials of the inactive and active ligand-bound receptors, respectively.
Here, [L]q is the concentration of ligand that specifically binds to the type-

q receptor. We use KI,c
1 = 18.1µM , EL,c

1 = 8 for Tar and KI,c
2 = 6µM ,

EL,c
2 = 3 for Tsr [4, 5]. Other parameters including µpq , E

L,p
q , EM

q,m, and EC
q

were defined by Eqs. (2-4) in the main text.
For a type-q receptor at methylation state m, it can be in any of the

following 23 = 8 states in the (lc, lp, s) subspace: (0, 0, 0), (0, 1, 0), (1, 0, 0),
(1, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1), and (1, 1, 1), with the corresponding ener-
gies (in the units of the thermal energy kBT ) given by:

Hq,0,0,0,m = 0, (S34)

Hq,0,1,0,m = µpq , (S35)

Hq,1,0,0,m = µcq, (S36)

Hq,1,1,0,m = µcq + µpq , (S37)

Hq,0,0,1,m = EM
q,m + EC

q , (S38)

Hq,0,1,1,m = µpq + EL,p
q + EM

q,m + EC
q , (S39)

Hq,1,0,1,m = µcq + EL,c
q + EM

q,m + EC
q , (S40)

Hq,1,1,1,m = µpq + µcq + EL,p
q + EL,c

q + EM
q,m + EC

q . (S41)

Under the quasi-equilibrium approximation, the probability for the receptor
to be in each of the 8 states follows the Boltzmann distribution which is pro-
portional to exp (−Hq,lc,lp,s,m). So the average activity of the type-q receptor
8



at methylation state m is given by:

〈a〉q,m =
e−Hq,0,0,1,m + e−Hq,0,1,1,m + e−Hq,1,0,1,m + e−Hq,1,1,1,m∑

lc

∑
lp

∑
s exp (−Hq,lc,lp,s,m)

. (S42)

The extended model is completed by including Eqs. (6) and (7) for the
methylation kinetics in the main text. We have presented in the Discussion
section the simulation result of this model for Tar-only mutant which was pre-
adapted to pH0 = 7.0 and [MeAsp]0 = 10−1KI,c

1 prior to stimulation/changes
of both pH and [MeAsp]. Since Tar elicits an attractant response to [MeAsp]
yet a repellent response to an increase of pH, the model predicts a “neutral”
response curve along which the effects of changing pH and [MeAsp] cancel
out with each other. This prediction can be easily tested by experiments and
will tell us, for example, whether the proton “binding” process is relatively
independent of the (chemical) ligand binding process.

This extended model also allows us to study how the presence of chemical
attractants affects the pH responses. In Fig. S1, we plot the pH responses
of Tar-only and Tsr-only mutants in the absence (solid lines) or presence
(dashed lines) of attractant (100µM MeAsp for Tar and 100µM serine for
Tsr). These mutants were pre-adapted to their respective attractant prior
to stimulation of pH changes (increasing pH steps from pH=6.5 to pH=9.2
with step size ∆pH=0.3). Fig. S1 shows the amplitude of the adaptive pH
responses right after the stimulation versus the ambient pH prior to each
stimulation. One can see that the presence of the ligands (MeAsp and serine)
weakens the pH responses of Tar and Tsr, respectively. This is in qualitative
agreement with the experimental data [6].

A Model Variant with Methylation Level De-

pendence

In the Ising-type model we described in the main text, the dissociation con-
stants KI,A

q are assumed to be constant for simplicity. In principle, these pa-
rameters may depend on the receptor methylation level, i.e. KI,A

q = KI,A
q (m),

as suggested by pH sensing experiments in Ref. [6]. However, our simula-
tions demonstrate that, regardless of the methylation level dependence, the
push-pull mechanisms works for pH sensing as long as the opposing sensors
(Tar and Tsr) dominate different pH regimes.

In this supplementary section, we discuss model variants considering the
methylation level dependence. For example, we can fix KI

1 = 9.0 and KA
1 =

7.0 for Tar, and assume that KA
2 = 8.0 and KI

2 (m) = 6.0 + 0.5m for Tsr. It
9



follows that µ2(m) = ln(10)·[pH−KI
2 (m)] and EL

2 (m) = ln(10)·[KI
2 (m)−KA

2 ],
both depending on the Tsr methylation level m. Fig. S1 shows that this
methylation dependence does not change the sign of the Tsr response to pH
stimuli (ambient pH: 5.0 → 9.8). As a result (Fig. S2), this model still
contains an inversion pH point around pH 7.0 for the wild-type strain (with
f1 = f2 = 1/2). We have tried other forms of methylation level dependence:
for example, fixing KA

2 = 8.0 and KI
2 = 6.0 for Tsr, and assuming that

KI
1 (m) = 9.0− 0.5m and KA

1 = 7.0 for Tar. Similar to the result in Fig. S2,
we found an inversion pH point around pH= 8.0 for the wild-type strain with
f1 = f2 = 1/2. As long as the methylation changes do not change the order
of KI

q and KA
q , there could be an inversion pH point in our model. Simulation

results for different model variants do not alter our main conclusion that the
existence of an inversion pH point requires the opposite responses of Tar and
Tsr which should dominate in different pH regimes.
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Figure S1: Responses of the Tar-only (red symbols) and Tsr-only (blue sym-
bols) mutants to steps of increasing pH in the absence (solid lines) or pres-
ence (dashed lines) of their respective attractant: 100µM MeAsp for Tar and
100µM serine for Tsr. The ambient pH0 ranges from 6.5 to 8.9 with the step
size ∆pH=0.3)
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Figure S2: Responses of the Tsr-only mutant and the wild-type strain to
steps of increasing pH. In this simulation, we have chosen KA

2 = 8.0 and
KI

2 (m) = 6.0+0.5m for Tsr. (A) Steps of increasing pH levels, with ambient
pH0: 5.0 → 9.8 with ∆pH=0.3. (B) Response of the Tsr-only mutant. (C)
Response of the wild-type cell (the Tar/Tsr ratio f1 = f2 = 1/2), together
with the average activities contributed by Tar (red dotted line) and Tsr (blue
dashed line).
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