Rapid and accurate identification of *in vivo*-induced haploid seeds based on oil content in maize

Albrecht E. Melchinger¹, Wolfgang Schipprack¹, Tobias Würschum², Shaojiang Chen³, Frank Technow¹

¹ Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70599 Stuttgart, Germany

² State Plant Breeding Institute, University of Hohenheim, 70599 Stuttgart, Germany

³ National Maize Improvement Center of China, China Agricultural University, 100193 Beijing, China

Corresponding author: Albrecht E. Melchinger, e-mail: melchinger@uni-hohenheim.de,

SUPPLEMENTARY INFORMATION

Supplementary Table S1 | Numerical examples

		UH601						
_	PDH3 x PDH8	F103 x F087	P204 x P211	S072 x P213				
Means ^a (OC in %)								
$\overline{x}_{ \circ}$	3.76a	4.15a	3.44a	3.35a				
$\overline{x}_{_{\lozenge}}$	9.91d	9.91d	9.91d	11.63c				
\overline{x}_H	4.16b	4.56b	3.89b	3.58a				
\overline{x}_C	5.64c	6.63c	5.88c	5.57b				
Phenotypic variances (OC in%)								
σ_H^2	0.84	1.05	0.98	0.44				
σ_C^2	0.61	0.26	0.22	0.30				
Threshold for OC-	Threshold for OC-based classification (OC in %)							
t ^b	4.50	5.50	4.75	4.40				
Haploid induction rate (HIR)								
GS	8.90	9.82°	15.60 ^d	9.14				
OC	8.55	9.13	13.18	9.47				
R1-nj	5.01	n.d. ^e	n.d.	n.d.				
False-discovery rate (FDR)								
OC	0.18	0.21	0.30	0.10				
R1-nj	0.21	n.d.	n.d.	n.d.				
False-negative rate (FNR)								
OC	0.21	0.01	0.04	0.10				
R1-nj	0.56	n.d.	n.d.	n.d.				

Means $(\overline{x}_{\varphi}, \overline{x}_{z})$ of source germplasm (\mathfrak{P}) and inducer (\mathfrak{T}) as well as means $(\overline{x}_{H}, \overline{x}_{C})$ and phenotypic variances $(\sigma_{H}^{2}, \sigma_{C}^{2})$ for oil content (OC) of haploid (H) or diploid crossing (C) seeds in four induction crosses in maize, threshold t for OC-based classification of H vs. C seeds, estimates of haploid induction rate (HIR), false discovery rate (FDR) and false

negative rate (FNR) determined from the "gold standard" (GS) and classification based on the OC or the RI-nj marker.

- Numbers followed by the same letter in a column are not different from each other at P <
 0.05 based on a t-test according to Snedecor and Cochran (1980, p. 97)
- b Threshold t used for classification based on OC
- Extrapolated from the total number of seeds classified based on OC (T = C : N_T = 7914 and T = H : N_T = 795) and estimates of the *FDR* and *FNR* determined from the GS test results with a random subset of these seeds (T = C : N = 213 and T = H: N = 682)
- Extrapolated from the total number of seeds classified based on OC (T = C : N_T = 3426 and T = H : N_T = 474) and estimates of the *FDR* and *FNR* determined from the GS test results with a random subset of these seeds (T = C : N = 205 and T = H: N = 318)
- e n.d.= not determined

Supplementary Table S2 | Numerical examples

Induction cross	Gold	Result of test T				
	standard	OC < t	OC ≥ <i>t</i>	N^a	N_T^b	
(PHD3 x PDH8) x UH600	D = H	101	27	128		
<i>t</i> ^c = 4.50 %	D = C	22	1288	1310		
(F103 x F087) x UH600 ^d	D = H	577	5	682	795	
<i>t</i> = 5.50 %	D = C	105	208	213	7914	
(P204 x P211) x UH600 ^c	D = H	294	11	305	474	
t = 4.75 %	D = C	24	194	218	3426	
(S072 x P213) x UH601	D = H	76	8	84		
t = 4.40 %	D = C	11	824	919		
Classification based on R1-nj marker						
		T = W	T = P			
(PHD3 x PDH8) x UH600	D = H	57	71	128		
	D = C	15	1295	1310		

Classification of haploid (H) vs. diploid crossing (C) seeds in four induction crosses in maize based on (i) their oil content (OC < t or OC $\ge t$) or (ii) expression of the R1-nj marker (W = white vs. P = purple) in their embryo and (iii) the "gold standard" results.

^a N = number of germinated seeds in "gold standard" test

 $^{^{}b}$ N_{T} = Total number of seeds classified based on OC

^c Threshold *t* used for classification based on OC

^d Note that in theses crosses only a random subset of seeds was evaluated for the "gold standard" test

		T = tes		
		Н	С	
D = true status	Н	P[T=H,D=H] True positive (TP)	P[T=C,D=H] False negative (FN)	P [D = H]
	С	P[T=H,D=C] False positive (FP)	P[T=C,D=C] True negative (TN)	P [D = C]
		P [T = H]	P [T = C]	1

Figure S1 | Contingency table for seed classification.

Two-way contingency table of a binary classification test T showing the four possible outcomes (H = haploid seed; C = diploid crossing seed).

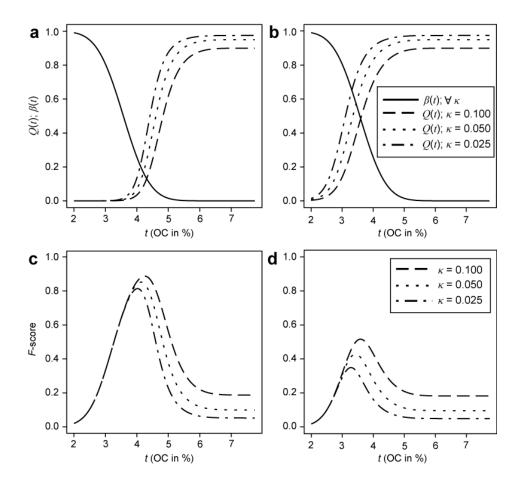


Figure S2 | Test performance in dependence on the selected threshold t.

False discovery rate Q(t) and false negative rate $\beta(t)$ (**a**,**b**) as well as F-score (**c**,**d**) for classification of seeds into haploid (H) and diploid crossing (C) seeds based on their oil content (OC in %) as a function of the threshold t (H: OC < t; C: OC $\geq t$). Assumptions are: (i) seeds were produced by pollination with a high oil (HO) inducer having a haploid induction rate (HIR) $\kappa = 0.100$, 0.050, 0.025, (ii) H seeds have a mean $\mu_H = 3.57\%$ and standard deviation $\sigma_H = 0.55\%$ for OC, and (iii) C seeds have a mean $\mu_C = 5.51\%$ (**a**,**c**) or 4.48% (**b**,**d**) and a standard deviation $\sigma_C = 0.66\%$.

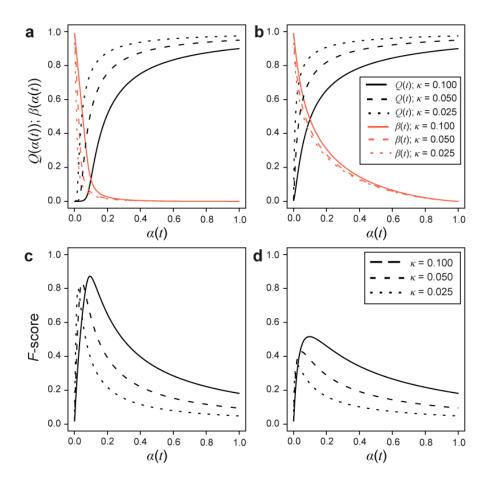


Figure S3 | Test performance in dependence on α .

False discovery rate Q(t) and false negative rate $\beta(t)$ (**a**,**b**) as well as F-score (**c**,**d**) for classification of seeds into haploid (H) and diploid crossing (C) seeds based on their oil content (OC in %) as a function of the proportion α of selected seeds. Assumptions are: (i) seeds were produced by pollination with a high oil (HO) inducer having a haploid induction rate (HIR) $\kappa = 0.100$, 0.050, 0.025, (ii) H seeds have a mean $\mu_H = 3.57\%$ and standard deviation $\sigma_H = 0.55\%$ for OC, and (iii) C seeds have a mean $\mu_C = 5.51\%$ (**a**,**c**) or 4.48% (**b**,**d**) and a standard deviation $\sigma_C = 0.66\%$ for oil content.