Supplementary Information

Lossless hybridization between photovoltaic and thermoelectric devices

Kwang-Tae Park^{1§}, Sun-Mi Shin^{1§}, Abdullah S. Tazebay⁴, Han-Don Um¹, Jin-Young Jung¹, Sang-Won Jee⁴, Min-Wook Oh², Su-Dong Park², Bongyoung Yoo³, Choongho Yu⁴* and Jung-Ho Lee¹*

¹ Department of Chemical Engineering, Hanyang University, Ansan, 426-791, Korea.

² Creative Electrotechnology Research Center, Korea Electrotechnology Research Institute (KERI), Changwon, 642-120, Korea.

³ Department of Materials Engineering, Hanyang University, Ansan, 426-791, Korea.

⁴Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, United States.

*Correspondence and requests for materials should be addressed to J.-H.L. (jungho@hanyang.ac.kr) or C.Y. (chyu@tamu.edu)

[§]These authors contributed equally to this work.

1

Fig. S1 (a) Schematic illustration of the hybrid circuit when the contact between PV and TE is switched. (b) The comparison of the light J-V characteristics of the H21S under ΔT . The black solid-curve represents the J-V characteristic of the sole PV cell. A sign reversion in V_{TE} on the TE output reduces the J_{sc} and V_{oc} of the hybrid circuit.

Fig. S2 (a) The comparison of the light J-V characteristics of the H21S under various ΔT . (b) Output power of the sole PV and H21S as the function of voltage. The output power curve rises with the increase of ΔT , and each has its maximum at a specific voltage. (c) J-V curves of the T21S under various ΔT . (d) Output power curves of the T21S as a function of voltage.

Fig. S3 (a) The comparison of the light J-V characteristics of the H12S under various ΔT . (b) Output power of the sole PV and H12S as the function of voltage. (c) Dependence of the current at maximum power point I_{mpp} (black) and the voltage at maximum power point V_{mpp} (blue) under the various ΔT . (d) J-V characteristics of the sole PV (dotted-line) and the H12S (solid-line) under irradiation of different light intensity. The ΔT in H12S is fixed at 10 °C.

Fig. S4 Calculated *J*–*V* (solid-line) and *P*–*V* (dotted-line) plots for H19L at Δ T=19 °C (a) and H21S at Δ T=8 °C (b). The red lines are for redesigned H19L whose cross-sectional area and number of each leg are all increased by a factor of 1.5. The improved design increases the packing densities of legs to 83% for T19L and 91% for T21S with the same *R_i* (1.9 Ω for T19L and 2.1 Ω for T21S).

Fig. S5 Calculated output powers for solar irradiances of 1000, 800, 500 W/m^2 . Solid-lines are for a simple summation of the PV and T21S, and the dotted-lines are for H21S. The variation of incoming solar fluxes emulates the actual solar conditions.