Probeset ID	p-value	Fold-Change (high CI vs. low CI)	
Upregulated miRs			
hsa-miR-150	0.044	3.89	
hsa-miR-449b	0.012	2.76	
hsa-miR-196a	0.010	2.71	
hsa-miR-516a-3p	0.019	2.23	
hsa-let-7i	0.026	2.10	
hsa-miR-520c-5p	0.028	2.03	
hsa-miR-300	0.030	2.03	
Downregulated miRs			
mdv1-miR-M6	0.020	-2.04	
hsa-miR-130a*	0.048	-2.09	
hsa-miR-212	0.016	-2.15	
hsa-miR-369-3p	0.027	-2.21	
ebv-miR-BART18-5p	0.007	-2.21	
hsa-miR-558	0.028	-2.27	
hsa-miR-141*	0.002	-2.45	
hsa-miR-186	0.034	-2.73	
hsa-miR-122*	0.026	-2.77	

Supplemental table 1. miRs with over 2-fold change identified by Affymetrix microRNA microarray in renal biopsies from patients with lupus nephritis

Supplemental table 1. Sixteen miRs were identified to have over 2-fold change on microarray analysis in the renal biopsies with high chronicity index (CI) compared to low CI in lupus nephritic patients.

Gene Name	Primer ID	
miR-150	ID 000473	
U48	ID 001006	
SOCS1	Hs00705164_s1	
Fibronectin (FN)	Hs00365052_m1	
Collagen I (COL1)	Hs00164004_m1	
Collagen III (COL3)	Hs00943809_m1	
TGF-β1	Hs00998133_m1	
GAPDH	Hs99999905_m1	

Supplemental table 2. Primer IDs used in Taqman RT-PCR from Applied Biosystem

Antibody name	Host	Dilution (ug/ml)	Company	Catalog #
COL1	Rabbit	10 ug/ml	ThermoScientific	PA1-26204
SOCS1	Rabbit	2 ug/ml	Abcam	ab62584
TGF-β1	Mouse	5 ug/ml	Abcam	ab27969
FN	Mouse	10 ug/ml	Santa Cruz	sc-18825
COL3	Mouse	10 ug/ml	Acris	AF5810
CD45	Mouse	1 ug/ml	Dako	M0701
Alexa-594 /488 donkey anti- rabbit/mouse IgG	Donkey	1:300	Invitrogen	A21202 A21203 A21207 A21206

Supplemental table 3. Antibodies used in immunostaining in renal biopsies from lupus nephritis

Renal cells	Primary human	Primary human	Human podocyte
	renal proximal tubular enitbelial	mesangial cells	cell line
Treatment Agents	cells (PTCs)	(14103)	
miR-150 analog	10nM	50nM	Unable transfect
Cat #MIN0000451 (Qiagen)		501111	endore transfeet
miR analog negative control	10 nM	50nM	N/A
Cat#1027280 (Qiagen)	TOHIVI		
miR-150 inhibitor	25nM	N/A	Unable transfect
Cat # 4464084 (Ambion)	2.511111		
mirVana [™] miRNA Inhibitor			
Negative Control #1	25nM	N/A	N/A
Cat#4464076 (Ambion)			
SOCS1 siRNA	20 nM	50nM	Unable transfect
Cat# s16468 (Ambion)	2011111		
siRNA negative control #1	20mM	50nM	N/A
Cat# 4390843 (Ambion)	201111		
human TGF-β1 (hTGF-β1)	250ma/m1	nl 10ng/ml	10ng/ml
Cat# 100B (R & D)	230pg/ml		

miR-150 ISH

Supplemental Figure 1. Association between total infiltrating cells and miR-150 in kidney biopsies from lupus nephritis. Faint miR-150 staining (arrow) on *in situ* hybridization (ISH) was seen in the infiltrating cells in the tubulointerstitium with no difference between the kidneys with low miR-150 and low chronicity (CI) (A-1) and the kidneys with high miR-150 and high CI (A-2) compared to the tubules with strong miR-150 positive signals (A-2). Larger insets are high magnification of the small areas. Renal miR-150 does not correlate with activity index (AI) (A-3). Immunofluorescent staining of CD45, a marker of pan-leukocytes including mononuclear and polymorphonuclear cells, in renal biopsies (B1-5). CD45+ cells were near absent in normal kidney (B-1). In kidneys with high miR-150 and CI, CD45+ cells significantly increased in the kidney with high AI (B-2) compared to the kidney with low AI (B-3). A significant positive correlation was seen between CD45+ area and AI (B-4) but not seen between CD45+ area and renal miR-150 level (B-5).

(A) miR-150 in PTCs with miR-150 transfection

Supplemental figure 2. Dose optimization of miR-150 analog in primary normal human renal proximal tubular epithelial cells (PTCs) and mesangial cells (MCs). miR-150 was easily transfected into PTCs and 10nM of miR-150 could increase 10 cycles 48hr after the transfection compared to miR analog negative control (miR-ANC) (A). 50nM of miR-150 analog is needed to obtain a significant suppression of SOCS1 protein in MCs.

Supplemental figure 3. The constitutive and hTGF- β 1- induced expression of miR-150 is the same in podocytes kept under nonpermissive culture condition (37 °C) for 5 and 14 days. There is no difference of miR-150 expressions between day 7 and day 16 in untreated podocytes or podocytes treated with hTGF- β 1 for 48hr which induces miR-150 expression at both time points. *p<0.01 (hTGF- β 1 vs. untreated)

(A) Tubulointerstitium

Supplemental Figure 4. The quantification of SOCS1 immunofluorescent staining in renal biopsies from lupus nephritis. The expression of SOCS1 increased in kidneys with low miR-150 and CI and decreased in kidneys with high miR-150 and CI compared to normal kidneys (statistical significance are not given due to two normal kidneys). SOCS1 significantly decreased in the kidneys with high miR-150 and CI compared to the kidneys with low miR-150 and CI and expression of CI in either tubularinterstitium (A) or glomeruli (B).