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Figure S1. Experimental depletion of innate lymphoid cells results in
dysregulated adaptive immune cell responses to commensal bacteria.

a-d, Defined age- and sex-matched CD90-disparate mouse chimeras were
continuously treated with anti-CD90.2 monoclonal antibody for 14 days and
examined for the frequency of splenic Ki-67+ CD4* T cells (top) and CD44hish
CD62L"w CD4* T cells (bottom) (a), quantified frequencies of splenic Ki-67*
CD4* T cells (left) and CD44hish CD62L'>w CD4* T cells (right) (b), spleen weight
(c) and relative optical density (OD) values of serum IgG specific to commensal
bacteria (d). Flow cytometry plots are gated on live CD4* CD3* T cells (a). Data
are representative of 2 independent experiments containing 3-5 mice per
group. Results are shown as the means +/- s.e.m. * p <0.05, **p <0.01, "™ p
< 0.001 (two-tailed students t-test).
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Figure S2. Genetic deletion or experimental blockade of IL-22, IL-17A, IL-
23p19 or IL-17RA does not result in dysregulated adaptive immune cell
responses to commensal bacteria. a-c, Defined age- and sex-matched
control and cytokine-deficient mice, or C57BL/6 mice that were continuously
treated with monoclonal antibodies for 14 days, were examined for the frequency
of splenic Ki-67+ CD4* T cells (top) and CD44hish CD62L'v CD4* T cells (bottom)
(a,d,g), spleen weight (b,e,h) and relative optical density (OD) values of serum
IgG specific to commensal bacteria (c,f,i). Flow cytometry plots are gated on live
CD4* CD3* T cells (a,d,g). Data are representative of 2 independent
experiments containing 3-5 mice per group. Results are shown as the means +/-
s.e.m.
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Figure S3. RORyt* group 3 innate lymphoid
cells are enriched in MHCIl-associated
gene transcripts as compared to RORyt* T
helper 17 cells. DAVID pathway analysis of
GO terms enriched in the transcriptional
profiles of in vitro differentiated Th17 cells and
group 3 RORyt* ILCs (top) and heat map of
selected lymphoid-associated and MHCII-
associated gene transcripts (bottom).
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Figure S4. Expression of MHCII on group 1 and group 2 ILCs.
a-f, Gating strategy to identify total Lineage- ILCs (a), group 2 ILCs
(b) and group 1 ILCs (d,e). Expression of MHCII in GATA-3* group 2
ILCs (c) and T-bet* RORyt- group 1 ILCs subsets (e,f) in the small
intestine of naive mice. Data are representative of 2 independent
experiments containing 2-3 mice per group.
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Figure S5. T-bet- NKp46- RORyt* ILCs are enriched in MHCIl-associated gene transcripts as
compared group 1, group 2 and T-bet* NKp46*- RORyt* ILCs. a, DAVID pathway analysis of GO
terms enriched in the transcriptional profiles of splenic NK cells and group 3 RORyt* ILCs (top) and
heat map of selected lymphoid-associated and MHCIl-associated gene transcripts (bottom). b,
DAVID pathway analysis of GO terms enriched in the transcriptional profiles of group 2 ILCs and
group 3 RORyt* ILCs (top) and heat map of selected lymphoid-associated and MHCII-associated
gene transcripts (bottom). ¢, Heat map of selected lymphoid-associated and MHCIl-associated gene
transcripts in the transcriptional profiles of ILC subgroups distinguished by RORyt and NKp46.
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Figure S6. MHCII expression is enriched in RORyt* ILCs in lymphoid
tissues. Lineage CD45* RORyt* ILCs were examined for expression of MHCII in
various lymphoid and mucosal tissues. Data are representative of 2 independent
experiments containing 2-3 mice per group.
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Figure S7. Phenotypic analysis of MHCII* RORyt* ILCs. mLN
cells from RORyt-eGFP mice were gated as Lineage- CD45*
RORYyt-eGFP* and expression of defined surface makers on MHCI|I
expressing ILCs quantified (a). Expression of IL-22, IL-17A and
IFN-y by MHCII* ILCs following 4 hours ex vivo restimulation with
IL-23 (b). Data are representative of 2 independent experiments
containing 2-3 mice per group.
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Figure S8. ILC-T cell interactions limit the magnitude of T cell
responses to commensal bacteria-specific antigens. a, Sort-purified
CBir1 TCR transgenic CD4* T cells were transferred into congenically
marked hosts with or without co-transfer of sort-purified and CBir1 peptide
pulsed ILCs. 24 hours later mice were systemically challenged with CBir1
peptide. b-d Three days following peptide challenge, recovery of total
transgenic T cells from the spleen was quantified (b,c) and peptide-specific
IFN-y production was quantified following in vitro restimulation (d). Data are
representative of 2 independent experiments containing 2-3 mice per group.
Results are shown as the means +/- s.e.m. * p < 0.05 (two-tailed students t-
test).
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Figure S9. Deletion of RORyt* innate lymphoid cell-intrinsic
MHCII does not alter ILC frequency or cytokine production.

a, b, Mouse strains crossed to generate MHCIIA'-C mice (a) and
expression of MHCII in gated populations in the mLN of control
H2-Ab1floxed mice (blue) or MHCIIALC mice (red) (b). ¢, d, H2-
Ab 1flexed mice or MHCIIALC mice were examined for the frequency
of lineage- CD90.2* CD25* ILCs (c) and IL-22* ILCs (d). Flow
cytometry plots are gated on Lineage- CD90.2* CD25* ILCs (c,d).
Data are representative of 2 independent experiments containing
3-5 mice per group. Results are shown as the means +/- s.e.m.
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Figure S10. Deletion of RORyt* innate lymphoid cell-intrinsic MHCIl does not alter the
frequency, phenotype or function of CD4* CD25* FoxP3* regulatory T cells. a-c, H2-Ab1floxed
mice or MHCIIALC mice were examined for the frequency (a) and total cell number of CD4* CD25*
FoxP3* T cells in the mLN and spleen (b) and colon (¢). Flow cytometry plots are gated on live
CD3* CD4* T cells in the mLN (a). d,e Expression of Helios and Neuropilin-1 in various tissues
(d) and GITR, CD103, CTLA-4 and PD1 in the mLN (e) were quantified on CD4* CD25* FoxP3* T
cells. f,g, Sort-purified CD4+ CD25* CD45RB'" regulatory T cells (>98% FoxP3*) were added to
sort-purified CFSE-labeled effector T cells (CD4*, CD25-, CD45RB") in the presence of purified
CD11c* DCs and soluble anti-CD3 (f) and CFSE dilution was quantified (g). h,i H2-Ab17ox¢d mice
or MHCIIALC mice were examined for expression levels of /110 (h) or Tgfb (i) in the colon. NS, not
significant. Data are representative of 2 independent experiments containing 1-3 mice per group
or 2-4 in vitro replicates. Results are shown as the means +/- s.e.m. *** p < 0.001 (two-tailed
students t-test).
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Figure S11. Thymic selection is not affected by the deletion of ILC-intrinsic MHCII.
Defined age- and sex-matched mouse strains were examined for thymocyte maturation
and peripheral TCR usage. a-c, Gating strategy to identify stages of thymocyte
development (a). H2-Ab1flexed mice or MHCIIALC mice were examined for the frequency
of thymocytes at different stages of development (b). Expression of TCR vf3 chains in
splenic CD4* T cells (c). Data are representative of 2 independent experiments
containing 2-3 mice per group. Results are shown as the means +/- s.e.m.
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Figure S12.

mice per group. Results are shown as the means +/- s.e.m.

IL-17A

H2-Ab11

MHCllale

0.3

MHCllale

Intestinal inflammation is not the result of dysbiosis in the absence of RORyt*
innate lymphoid cell-intrinsic MHCII. The composition of the intestinal microbiota was examined in
defined age- and sex-matched co-housed mouse strains. a-f Relative abundance of family-level
commensal bacteria obtained from 16S pyrosequencing of the luminal colonic contents of age-matched
littermate H2-Ab17x¢d mice and MHCIIA'LC mice (a) and list of detected bacterial families (b). Transfer of
cecal contents from littermate H2-Ab1%oxed mice and MHCIIA'C mice to germ free mice via oral gavage
and assessment of splenic weight (¢), commensal bacteria antigen-specific serum IgG (d), CD4* T cell
cytokine production (e) and colon histology (f) 6 weeks following transfer. Data are representative 5
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Figure S13. Innate lymphoid cells orchestrate intestinal homeostasis through regulation of
innate and adaptive immune cell responses. Previous studies have identified that ILCs can
influence intestinal homeostasis through innate cytokine-mediated regulation of intestinal epithelial
cells. Production of IL-17A and IL-22 can act on intestinal epithelial cells to promote inflammation,
innate immunity and regulate intestinal barrier function. In addition this report identifies that ILCs
can modulate CD4* T cell responses to commensal bacteria through expression of MHCII. ILC-
intrinsic MHCII limits the development of pathologic commensal bacteria-responsive CD4* T cells
to orchestrate intestinal homeostasis.



