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Two regions of mouse rDNA were sequenced. One contained the last 323
nucleotides of the external transcribed spacer and the first 595 nucleotides of 18S
rRNA; the other spanned the entire internal transcribed spacer and included the 3’
end of 18S rRNA, 5.8S rRNA, and the 5’ end of 28S rRNA. The mature rRNA
sequences are very highly conserved from yeast to mouse (unit evolutionary
period, the time required for a 1% divergence of sequence, was 30 x 10° to 100 x
10° years). In 18S rRNA, at least some of the evolutionary expansion and increase
in G+C content is due to a progressive accretion of discrete G+ C-rich insertions.
Spacer sequence comparisons between mouse and rat rRNA reveal much more
extensive and frequent insertions and substitutions of G+C-rich segments. As a
result, spacers conserve overall G+C richness but not sequence (UEP, 0.3 x 10°
years) or specific base-paired stems. Although no stems analogous to those
bracketing 16S and 23S rRNA in Escherichia coli pre-tTRNA are evident, certain
features of the spacer regions flanking eucaryotic mature rRNAs are conserved
and could be involved in rRNA processing or ribosome formation. These
conserved regions include some short homologous sequence patterns and closely

spaced direct repeats.

rDNA is evolutionarily conserved as a multi-
gene family. The long precursor rRNA tran-
scripts always contain a spacer region at the 5’
end (external transcribed spacer) followed by
the rRNA sequence for the smaller ribosomal
subunit (16S to 18S). Another spacer (internal
transcribed spacer [ITS]) is then transcribed
before the rRNA for the larger subunit (23S to
28S). In addition, smaller RNAs usually inter-
rupt the internal spacer: specific tRNAs be-
tween the bacterial 16S and 23S rRNAs, and
5.8S rRNA between the eucaryotic 18S and 28S
rRNAs. The precursor RNA is cleaved at a
number of sites to yield the mature RNAs, and
spacer sequences are totally degraded during
processing (16).

As one might expect for a structural RNA, the
similarity in precursor organization and process-
ing extends to features of the mature rRNA
primary sequence. For example, particular
bases are methylated, and some sequences are
highly conserved in similar rRNAs from differ-
ent species (8). Conservation of secondary
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structure features has also been suggested (9).
The high degree of evolutionary relatedness
among mature rRNAs is undoubtedly due to
their important role in the synthesis of proteins.

Nevertheless, mature rRNA species tend to
become longer and, among the eucaryotes, in-
creasingly G+C rich during evolution, for un-
known reasons. For example, the Escherichia
coli 23S rRNA is 3,000 nucleotides long with
53.5% G+C; the human 28S rRNA is 4,200
nucleotides long with 68% G+C (8). Transcribed
spacer sequences show an even greater increase
in size and G+C content during evolution. The
number of spacer nucleotides in the primary
rRNA transcript increases from about 1,400 in
E. coli to about 6,800 in humans, and the G+C
content increases 1.5-fold (8).

Unlike mature rRNAs, however, transcribed
spacer sequences diverge rapidly. Not only is
there no detectable homology between yeast and
Xenopus laevis spacers, but eucaryotic spacers
have no known function. In contrast, E. coli
spacer sequences flanking 16S and 23S rRNA
base pair to form double-stranded stems which
are the sites of initial cleavages in E. coli pre-
rRNA (4). Such stems have not been detected in
either yeast or X. laevis pre-rRNAs, but eucary-
otic spacer sequences may have other conserved
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features that might specify processing cleavage
sites, regulate the structure and replication of
rDNA, or control transport of nascent ribo-
somes to the cytoplasm.

To identify conserved features and the basis
of the evolutionary trends in rDNA length and
G+C content, we have sequenced 3,282 nucleo-
tides of mouse rDNA; the regions include the
entire internal transcribed spacer and the se-
quence surrounding the 5’ terminus of 18S
rRNA (see Fig. 1). The primary and possible
secondary structures of the mouse sequences
were then extensively analyzed and compared
with those from E. coli, yeast, X. laevis, and rat.

These analyses suggest that the primary se-
quence of the ITS diverges very rapidly. How-
ever, high G+C content and a capacity to form
stable secondary structures are maintained in
spacer sequences by the continued insertion and
deletion of short G+C-rich regions. Other struc-
tural features are evident which, combined with
the analysis of pre-rRNA processing sites, per-
mit a search for possible cleavage signals (2, 3).

MATERIALS AND METHODS

Mouse rDNA sequencing. Regions near the termini of
mouse (MOPC myeloma) 18S, 5.8S, and 28S rRNAs
were sequenced from rDNA subclones 5A, 6, and 7,
all containing inserts into plasmid pBR322 as de-
scribed by Bowman et al. (2). Each subclone was
mapped extensively with restriction enzymes; those
sites used for end labeling of sequenced fragments are
indicated in Fig. 1. Sequencing was essentially as
described by Maxam and Gilbert (19), with restriction
fragments 5’ end labeled with polynucleotide kinase.
Labeled fragments were extracted from polyacryl-
amide gels by electroelution (B. K. Saha, S. Stretlow,
and D. Schiessinger, J. Biochem. Biophys. Methods,
in press) and were suitable for subsequent restriction
enzyme cleavage, strand separation, or sequencing.
Computer-predicted restriction sites calculated from
the final confirmed sequence matched precisely with
actual cleavage patterns for 31 restriction enzymes.

Computer analysis. Sequence editing and restriction
enzyme analysis were facilitated by modifications by
W. Barnes (Washington University School of Medi-
cine) of the programs of Staden (26). Dot matrix
analysis of sequence homologies (see Fig. 5) was
generated by a program of W. Barnes and G. Zyda
(unpublished, Washington University School of Medi-
cine). More specific alignment of the rDNA sequences
was accomplished with the aid of a gapping program
(15; adapted for use here by M. Brandenberg) which
selects regions of high homology and allows the user to
introduce deletions for the best fit of those regions.
Like the dot matrix program, this program was most
useful for the rDNA sequence when we searched for
regions with homology of at least 20 out of 30 bases.
Prediction of possible pre-rRNA secondary structure
was assisted by the SEQ program of the MOLGEN
project (Stanford University) at the National Institutes
of Health SUMEX-AIM facility. Dyad symmetries
constructed by SEQ were plotted on a matrix (see Fig.
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7) with an adjunct program by M. Brandenberg. This
program sorts the data into groups based on the
predicted total free energy of each dyad symmetry and
then plots the locations of base-paired regions with
respect to each sequence. Additional programs by M.
Brandenberg aided in displaying homologous se-
quence alignment and permitted searches for perfect
and imperfect sequence repeats. The SEQ program
was also used to determine nucleotide frequencies and
to help identify homologous sequences between spe-
cies.

Calculations of the rate of rDNA evolution. Sequence
alignments of mature rDNA from different species and
ITSs from mouse and rat have permitted us to estimate
the rate of evolution for these regions. In calculating
conservation and divergence of a given pair of se-
quences, a gap introduced in the alignment was scored
as a single mismatch, and the percentage of divergence
was corrected for multiple base change events (20).
From fossil records of evolutionary divergence of
species (10, 18), the corrected percentage of diver-
gence can be used to estimate the unit evolutionary
period (UEP), the time (in millions of years) required
to accumulate a 1% divergence between two initially
identical sequences (36).

RESULTS

Mouse rDNA sequences. Figure 1 shows the
strategy used for sequencing the indicated
rDNA segments. The Maxam-Gilbert method
was adequate for these studies, although the
high G+C content of the internal spacer tended
to produce compressed bands on gels. There-
fore, répeated analyses of both strands from
multiple restriction sites was often necessary to
yield an unequivocal sequence. The sequences
derived are listed in Fig. 2. Termini of the
mature TRNAs were located along the rDNA
sequence from their previously determined ter-
minal sequences (13, 14) or by S1 nuclease
mapping techniques (2, 3). The G+C content of
the various mature rRNA segments varied from
45.9 to 56.2%; the G+C content of spacer seg-
ments was much higher, ranging from 70.1 to
75.3%.

Analysis of mature rRNA sequences. The se-
quences determined for portions of mouse 18S,
28S, and 5.8S rRNAs were compared with the
published sequences of E. coli (5), yeast (21, 22,
25, 33, 34), X. laevis (17, 23, 24), and rat (7, 29).
As expected, alignment of these sequences (Fig.
3) indicates that the segments of mouse mature
rRNAs are highly homologous to the mature
rRNAs from other eucaryotic species (70 to 87%
homologous to yeast, 89 to 100% homologous to
X. laevis). This suggests that the majority of
these sequences are critical for eucaryotic ribo-
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somal assembly, structure, or function. In con-
trast, mouse and E. coli rRNAs were only 45.4%
homologous in the best computer-assisted align-
ment of this region, although some regions of
better homology were evident, such as nucleo-
tides 367 through 384 and 767 through 820.

Of particular interest are the very G+C-rich
insertions in mouse 18S rRNA as compared with
X. laevis or yeast 18S rRNA. Figure 4 shows
that the size and number of these insertions
progressively increase from yeast to mouse se-
quences and that these insertions can form sta-
ble hairpin structures. The increasing size of
mature rRNA during evolution may thus be due,
at least in part, to the insertion of these G+C-
rich sequences (see below).

Analysis of spacer rRNA sequences. The tran-
scribed spacer sequences have diverged so rap-
idly that no alignment could be constructed
between mouse and X. laevis or between mouse
and yeast ITS sequences. Only when the mouse
ITSs were compared with those of rat could an
alignment be generated. Figure 5 displays the
mouse-rat ITS comparison on a matrix, in which
every line indicates a sequence homology of at
least 20 out of 30 consecutive nucleotides. Be-
cause the ITS sequences are of comparable
length in mouse and rat, homologies near the
diagonal of the graph are regions similar in
location as well as sequence.

An optimized sequence comparison of the
mouse and rat ITS regions was derived from Fig.
5 and from searches with a computer program
that introduces gaps to improve sequence align-
ment. The result (Fig. 6) indicates which stretch-
es of sequence are more conserved between the
two species; a histogram below the matrix plot
in Fig. 5 shows the extent of divergence across
segments of the spacer (calculated from the
alignment of Fig. 6). The histogram also maps
four regions (a, b, c, and d) of the rat ITS
previously identified as highly homologous
(~75%) to X. laevis ITS sequences (29). Howev-
er, none of these regions corresponds to those
ITS sequences that are the most conserved
between rat and mouse. We have not found any
long spacer sequences that are highly conserved
in all three species.

The spacer sequences near the termini of
mature mouse and rat rRNA sequences are no
more homologous than other regions of their
ITSs. However, a role for these particular se-
quences in rRNA processing or ribosome forma-
tion is more likely because of homologies with
X. laevis flanking spacer sequences; the similar-
ities extend for 10 to 20 nucleotides after the 3’

FIG. 2. Mouse rDNA sequence. Termini of mature RNA determined from known rRNA sequences (see tex.t)
and from S1 nuclease analysis (2). ETS, External transcribed spacer. Note that the sequence of 18S rRNA is
interrupted at the vertical line (nucleotide 918); the remaining 18S sequence is from the 3’ end of the rRNA.
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FIG. 4. Location and possible structure of the insertions found in mouse and X. laevis 18S rDNA as
compared with yeast 18S rDNA. The vertical arrows indicate the borders of homologous sequences, at which
inserts occur in higher organisms. Asterisks denote the actual inserted nucleotides. Numbering corresponds to

the sequence in Fig. 2.

end of 5.8 rRNA and possibly for 4 to 7
nucleotides after the 3’ end of 18S rRNA (Fig.
3). In addition, all three vertebrate species have
a block of pyrimidines 5 to 15 nucleotides up-
stream from the 5’ terminus of 28S rRNA, and
all the eucaryotes show at least five additional
purines beyond the 3’ terminus of 18S rRNA.
Analyses of possible secondary structure. Pos-
sible dyad symmetries near the ends of mature
rRNA termini and in the adjoining spacers were
determined by computer-assisted analysis. The
most stable structures (AG < -15 kcal) are
represented in a matrix (Fig. 7) for the available
sequences of X. laevis and mice. Hairpin loops
are located along the diagonal, indicating base
pairing between nearby pre-rRNA sequences.
Larger loops arising from possible long-range
base pairing appear at appropriate distances
from the diagonal. For each loop, the thickness
of the enclosing oval corresponds to the AG® of
the base-paired stem (see legend to Fig. 7).
Amid the complexity of the graphs, some
features stand out. First, the potential for struc-
ture formation is very great within each spacer
region, and many stable base pairings are possi-

ble, even between ITS 1 and ITS 2. Nearly every
stretch of 20 nucleotides can potentially match
with at least one other stretch, and some short
regions show many possible matches with se-
quences scattered throughout the pre-rRNA.

Second, the capacity for the formation of
stable secondary structure is far lower in mature
rRNA sequences. These regional differences in
the potential for secondary structure are most
extreme in the X. laevis matrix, in which the
complete 18S rRNA sequence can be compared
with three spacer regions.

Third, the regions with a high density of
potential secondary structure approach, but do
not usually include, the termini of certain mature
rRNA species. In fact, windows of sequence
with far less capacity to form dyads extend up to
60 nucleotides from the termini into spacer re-
gions. In some cases, the border of a window is
very well defined, e.g., the spacer sequence
proximal to the 5’ end of 5.8S rRNA (Fig. 7).
The same windows appear in the matrix analy-
ses of rat rDNA (data not shown).

Fourth, no dyad symmetries are observed
with the stability, length, or relative position of

FIG. 3. Alignment of rDNA sequences corresponding to mature rRNA of different species. Mouse rDNA is
compared with available sequences of rats, X. laevis, and Saccharomyces cerevisiae (ITS sequences from
Saccharomyces carisbergenesis); an alignment to E. coli 16S rRNA is also included for the S’ portion of mouse
18S rRNA. Deletions (dashed lines) have been introduced in each sequence to maximize homology. The mouse
rDNA sequence is presented in the top row, and numbers relate directly to the nucleotide sequence number in
Fig. 2. Nucleotides that differ from the mouse rDNA sequence are indicated in the corresponding rows for each
species, and spaces represent complete identity with the mouse sequence. Dots indicate absence of sequence

data for a given region.
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FIG. 5. Matrix comparison of mouse and rat rDNA sequences spanning the ITSs. (A) Each line indicates a
region of homology of at least 20 out of 30 bases identical. Homologies appearing close to the diagonal are those
that also correspond closely in relative location within the two sequences. (B) Bars represent corrected
percentage of divergence (see text) between aligned regions of the mouse and rat rDNAs. The coordinates for
sequence location match those in A, and each bar corresponds to a line of mouse rDNA sequence from Fig. 5
(mature rRNA sequences are represented by separate bars). Lines a through d show the location of mouse rDNA
regions corresponding to those of rat spacer rDNA that have relatively high homology to X. laevis rDNA (29).

those that form stems to enclose 16S and 23S
rRNA sequences in E. coli pre-TRNA (4).

DISCUSSION

A curious feature of phylogeny, ‘namely the
progressive increase in length and G+C content
of mature and spacer rRNA, can now be exam-

ined by comparative sequence analysis. One can
also assess whether the evolution of any spacer
sequences is constrained in a way which implies
functions in rRNA metabolism.

Evolution of mature rDNA sequences. Se-
quence comparisons of procaryotic rDNAs indi-
cate that the primary sequences of rRNA are
highly conserved. E. coli and Bacillus brevis

FIG. 6. Computer-assisted alignment of mouse (M) and rat (R) rDNA sequences spanning ITS 1, ITS 2, and
adjacent mature rRNAs. Asterisks indicate homologous bases; gaps in both sequences have been introduced to

maximize homology.
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FIG. 7. Matrix representation of possible secondary structure in mouse (A) and X. laevis (B) pre-rRNA. Each
matrix indicates the location of possible dyad symmetries based on a computer search for base pairing
sequences. Finest gradations on each axis represent distances of 25 nucleotides. Lines within ovals correspond
to the sequence coordinates and length of each strand in a base-paired stem; the surrounding oval indicates
relative stability of the structure. The stability (AG®) of each possible stem is calculated according to the rules of
Tinoco et al. (30, 31) and the free energy calculations of Borer et al. (1). Thinnest oval = lowest stability range:
—25 kcal < AG® = —15 kcal. Middle range: —35 kcal < AG® < —25 kcal. Highest range: AG® =< —35 kcal. Points
near the diagonal indicate the smallest (hairpin) loops between closely spaced sequences. The mouse rDNA
matrix has a dotted line denoting a gap in the available sequence data for 185 rRNA. Conditions for dyad
symmetry search: homology of =70%; =7 bases paired; loopouts within the stem limited to single base bulges;
any mismatches within the stem must be followed by =3 matched base pairs; G-U pairing is allowed.

rDNAs have long, nearly identical regions with
an occasional sequence insertion or deletion
(37). The extra or missing sequences in one or

another species appear to be within largely self-

contained regions dominated by short-range
structure. Models of procaryotic rRNA second-
ary structure also show considerable overall
conservation (27, 28, 37, 39). These observa-

tions are consistent with the similar function and
common antibiotic sensitivity of ribosomes from
many bacterial sources (32).

Analogous to the similarities among procary-

otic rRNAs, antibiotic sensitivities and function-
al characteristics of yeast ribosomes are largely
the same as those of mammalian ribosomes (32),
and the mature rRNA sequences have corre-
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FIG. 7. Continued.

spondingly high homology. Some of the base
substitutions from yeasts to X. laevis to mice
(Fig. 3) may be compensatory base changes (see
also reference 24). Even the G+C-rich inserts
within the 18S rRNA sequences of mice and X.
laevis probably form stable hairpin stems (Fig.
4) and may not disturb the structure of neighbor-
ing segments.

These G+C-rich inserts are quite unlike the
introns observed in genes coding for proteins
since they are not removed from the RNA by
processing. The insertion of these elements can
account for at least part of the progressive
lengthening of mature rRNA during evolution as
well as the trend toward higher G+C content.
For example, the first 595 nucleotides of 18S
rRNA from yeast, X. laevis, and mice show
G+C contents of 40.9, 52.1, and 56.2%, respec-
tively.

The rate of evolution of mature rRNA se-
quences can be estimated from the corrected
percentage of divergence (calculated from pair-
wise comparison of the aligned mouse, X. laevis,
and yeast sequences) and from the approximate
dates of divergence of these organisms. A 1%
change in the nucleotide sequence of the mature
rRNAs (the UEP) takes 30 x 10° to 100 x 10°
years. The divergence of mature rRNAs is much
slower than that of protein-encoding genes like
globin (from DNA sequence data: UEP; 10 X
10° years) (12) or pregroinsulin (from DNA
sequences: UEP, 5 x 10°to 25 x 10° years) (20).
Although change occurs faster than in histone
H4 (from protein sequences: UEP, 400 x 10°
years) (36), the mature rRNA sequences are
among the most highly conserved that have been
studied.

Evolution and function of spacer sequences.
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Two trends are apparent in the evolution of
eucaryotic transcribed spacer regions. Analo-
gous to the expansion of mature rRNAs, the
length of spacers increases progressively from
yeast to X. laevis to mouse (363 to 561 to 998
nucleotides for ITS 1; 235 to 263 to 1,018 nucleo-
tides for ITS 2). Second, the proportion of G+C
is much higher in vertebrate spacers than in
yeast: for example, the yeast ITS 1 contains
35.2% G+C, compared with 83.9% in X. laevis
and 70.1% in mouse.

One mechanism for the expansion of the spac-
ers may involve repeated insertion of small
G+C-rich sequences. The frequency of these
events is apparent in the comparison of mouse
and rat ITSs (Fig. 6), in which the optimized
alignment contains 28 deletions and 25 insertions
in the mouse spacer. Although rare deletions or
insertions are as large as 120 nucleotides, nearly
all are in the range of 4 to 40 nucleotides. Thus,
small regions of the spacers may be continually
deleted, and as in mature rRNA, small G+C-
rich segments may be inserted. However, it is
also possible that the rare insertion of large
segments (see ITS 2, Fig. 6) may be the major
mechanism for the expansion of spacer se-
quences during evolution.

The rate of insertion (greater than 3 nucleo-
tides) in the mouse versus the rat ITSs is about
1.5 insertions per 100 nucleotides per 100 x 10°
years. The corresponding rate for insertions into
the first 500 nucleotides of mature 18S rRNA for
mouse versus X. laevis or X. laevis versus yeast
is about 10-fold lower (0.05 to 0.16 per 100
nucleotides per 100 x 10° years). The slower
accumulation of insertions in the mature se-
quences is consistent with the slower increase in
length of mature versus spacer sequences. It
could reflect additional mechanisms for varia-
tion in the spacer sequence; alternatively, the
rates of insertion might be comparable, but
many insertions into mature rRNA could be
lethal or disadvantageous.

The mechanism by which these G+C-rich
insertions are generated can only be the object
of speculation. Zea mays chloroplast 23S rRNA
contains insertions compared with E. coli 23S
rRNA (11). Many of these insertions are flanked
by short direct repeats and contain inverted
repeats. Similarly, the insertion into the mouse
sequence at nucleotides 574 through 596 is
flanked by a direct repeat (nucleotides 565
through 573 and 613 through 620) and contains
an inverted repeat (see Fig. 3 and 4). Because
flanking direct repeats and internal inverted re-
peats are characteristic of bacterial insertion
sequences (6), it has been proposed that the Z.
mays insertions are insertion sequence-like ele-
ments (11). Another possibility is that the inser-
tions were generated by slippage of the two

Mot. CELL. BioL.

DNA strands during DNA replication (12). This
mechanism has been suggested for the insertion
or deletion of sequences near direct or inverted
repeats. However, the sequences surrounding
the mouse inserts and the inserts themselves are
not entirely consistent with any present model
for the generation of deletions or insertions. This
may be due to divergence of these sequences
after the insertion event.

The comparison of mouse and rat ITSs also
demonstrates that base substitutions occur at a
high rate within these sequences. The overall
rate corresponds to a UEP of 0.3 x 10° years.
This is comparable to the UEPs of 1 X 10°to 6 X
10° years calculated for base changes within
noncoding regions, 5’ flanking regions, and in-
tron sequences in human B-like globin genes
(12). We conclude that the drift of internal
spacer sequences is largely dispersive and at
least as fast as the divergence rate of any other
gene sequences analyzed. This suggests that the
vast majority of the ITS has no functions strictly
dependent upon its primary sequence.

The one feature of the spacer sequences that
is highly conserved among vertebrates is their
high G+C content. One speculation is that the
structure or replication of rDNA involves a
modified conformation (38) that is dependent
upon high G+C DNA. The high G+C content
could also be important for the formation of
stems and loops within spacer sequences. Inter-
estingly, transcribed spacers from yeast and
other lower eucaryotes contain a high percent-
age of A+T instead of G+C. Perhaps the small
size of these spacers (as compared with those in
vertebrates) obviates the need for high G+C
DNA, or perhaps the high A+T content favors a
structure analogous to that favored by high G+C
content.

Evolution of sequences near mature rRNA ter-
mini. Of any regions within the transcribed
spacers, sequences bordering mature rRNA ter-
mini seem most likely to function during rRNA
metabolism. Therefore, flanking spacer regions
were searched for evolutionarily conserved fea-
tures. Short stretches of sequence conservation
near mature rRNAs have already been men-
tioned. Another type of evolutionary consisten-
cy is a conserved pattern of repeats near the
mature rRNA termini (Fig. 8). Direct 4-nucleo-
tide repeats are found at the 3' ends of 18S and
5.8S rRNAs from mouse, X. laevis, yeast, and
rat (all perfect repeats except near the rat 18S
terminus). These repeats have different se-
quences in different organisms but are located at
nearly identical positions. Less suggestive im-
perfect repeats of 5 to 7 nucleotides are seen at
the 5’ ends of 18S, 5.8S, and 28S, rRNA in all
four species, always with a single nucleotide
stutter (e.g., ABCD ..., ABXCD...). The
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FIG. 8. Short repeated sequences near mature rRNA termini. Perfect repeats are associated with 3’ termini of
each mature rRNA species; imperfect repeats are found near 5’ ends. Only those repeats that are the longest and
show some evolutionary consistency in relative location are indicated here.

evolutionary conservation of these repeats sug-
gests that they may play some role in ribosome
formation or pre-rRNA processing (2).

Our analysis also suggests that pre-rRNA is
composed of two types of evolutionarily con-
served structural domains. The first is character-
ized by an enormous potential for secondary
structure within and between transcribed spac-
ers (Fig. 7). These sequences may be knotted
into very stable stems, as suggested by visual-
ization of pre-rRNA structure by electron mi-
croscopy (35). The mature rRNA sequences and
the regions 10 to 50 nucleotides from their
termini seem to represent another type of struc-
tural domain without much possibility for the
formation of stable stems. The boundaries of

these two domains are fairly sharp and are found
in all vertebrate pre-rRNA sequences analyzed
(rat data not shown). Of the thousands of possi-
ble dyad symmetries distributed throughout
both domains, only a few involve base pairing
with sequence at a mature rRNA terminus.
These stems are not conserved in sequence or
location and therefore are not analogous. Thus,
the mechanism of rRNA processing in mammali-
an cells may be very different from the bacterial
paradigm and is considered further in the accom-
panying paper (3).
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