SUPPLEMENTAL INFORMATION

Accelerated progression of chronic lymphocytic leukemia in E μ -TCL1 mice expressing catalytically inactive RAG1

Vincent K. Nganga, Victoria L. Palmer, Hina Naushad, Michele D. Kassmeier, Dirk K. Anderson, Greg A. Perry, Nathan M. Schabla, and Patrick C. Swanson

SUPPLEMENTAL METHODS

Mice

Genotyping for the dnRAG1 and E μ -TCL1 transgenes was performed as described ^{1,2}. Cohorts were either sacrificed at predetermined ages (6, 12, 24, and 36 weeks), or when they became moribund. All mice were housed in individually ventilated microisolator cages in an AAALAC certified animal facility in accordance with university and federal guidelines, and mouse protocols were approved by the Creighton University Institutional Animal Care and Use Committee. Survival data was obtained by monitoring a cohort of 11 E μ -TCL1 and 14 DTG mice until the animals became visibly ill and necessitated euthanasia. This data was used to generate Kaplan-Meier plots to compare survival characteristics between the genotypes and was further analyzed for significance using the log-rank test.

Flow cytometry and cell sorting

Single-cell suspensions prepared from spleen, bone marrow, lymph nodes, and peripheral blood were depleted of red blood cells by hypotonic lysis and stained with fluorochrome-conjugated antibodies as described earlier ³. The following antibodies were used: BD Biosciences (San Jose, CA) anti-B220-PE-TXRD (RA3-6B2), anti-CD19-APC-Cy7 (ID3), anti-CD5-biotin (53-7.3), anti-CD21/CD35-PE (7G6), anti-CD11b-PE (M1/70), anti-CD23-Biotin (B3B4), anti-CD4-APC-Cy7 (GK1.5), and anti-CD25-PE-Cy7 (PC61), and eBioscience (San Diego, CA) anti-CD5-PE (53-7.3), anti-IgM-APC (II/41), anti-IgD-FITC (11-26c), anti-CD3-APC (145-2C11), anti-CD8-A700 (53-6.7), anti-TCRβ-FITC (H57-597). Samples stained with biotinylated antibodies were detected using streptavidin-Qdot585 (Invitrogen, Carlsbad, CA). Data collection and cell sorting was performed using a FACSAria flow cytometer (BD Biosciences). Data was analyzed using the FlowJo software (Tree Star, Inc. Ashland, OR).

Ig gene analysis

To analyze clonality and V(D)J recombination status, genomic DNA was isolated from spleen tissue using the Wizard Genomic DNA Purification Kit (Promega, Madison, WI), and 10-15 μ g was digested overnight with EcoR1, separated on a 0.8% agarose gel, transferred to Amersham Hybond-N+ nylon membrane (GE Healthcare, Piscataway, NJ) and hybridized with a ³²P-labeled J_H probe. Phosphor images were acquired using a Typhoon 9410 variable mode imager (GE Healthcare).

To analyze Ig gene usage and mutational status, RNA was isolated from spleen tissue obtained from three ill Eµ-TCL1 and three ill DTG mice using the Ambion RiboPure Kit (Novagen) according to manufacture instructions. cDNA was prepared from 1µg of RNA in a 20µL reaction using First Strand cDNA Synthesis Kit (Novagen) with oligo(dT) primers according to manufacturer instructions. Ig genes were amplified from cDNA (1-2µL) by PCR using Platinum *Taq* DNA Polymerase High Fidelity (Invitrogen) and MuIgV_H5'- A to -F forward and MuIgMV_H3'-1 reverse primers to amplify heavy chain sequences (Mouse Ig-Primer Sets, Novagen), and mouse universal 5 M κ forward and 3 κ C re verse primers⁴ to amplify light chain sequences.

PCR products were gel-isolated using the GeneJET Gel Extraction Kit (Fermentas, Thermo Scientific, Waltham, MA) and cloned into the PCR 2.1 TOPO TA vector (Invitrogen). Isolated colonies were grown in minicultures overnight and plasmid DNA was purified using the E.Z.N.A Plasmid Mini Kit I (Omega Bio-Tek, Norcross, GA). For both heavy and light chain genes, at least 10 independent clones per mouse were sequenced using a commercial vendor (ACGT, Inc., Wheeling, IL). Sequences, with primer sites omitted, were analyzed using IMGT/V-QUEST tool (http://www.imgt.org) to identify Ig gene usage, mutations, and CDR3 composition and isoelectric point.

Microarray

Total RNA was isolated from sorted splenic CD19⁺B220^{hi}CD5⁻ B cells obtained from WT mice or splenic CD19⁺CD5⁺ B cells obtained from dnRAG1, Eµ-TCL1 and DTG mice using the Ribopure kit (Ambion, Austin, TX) according to manufacturer instructions. Biotin-end labeled cDNA was prepared from total RNA (100-200 ng) using whole transcript labeling kits from either Affymetrix (Affymetrix, Santa Clara, CA) or Ambion per manufacturer instructions. Resultant cDNA was hybridized overnight to Mouse Gene 1.0 ST Arrays and washed, stained, and scanned using the Affymetrix GeneChip system with a 3000 7G Affymetrix scanner at the University Nebraska Medical Center Microarray Core Facility. All procedures were conducted following Affymetrix suggested protocols. Array data sets were normalized using the Robust Multichip Average (RMA) algorithm included in the Affymetrix Expression Console software. Further analyses were performed using dChip (http://biosun1.harvard.edu/complab/dchip/)⁵.

Data sets obtained from 12 week-old animals and those obtained from splenic and peritoneal B1a B cells, and splenic developing (transitional T1-T3), mature (marginal zone and mature follicular), and activated (germinal center) subsets available within the NCBI GEO series GSE15907 through the Immunological Genome Project Consortium (ImmGen)⁶ were normalized using the RMA algorithm in the Affymetrix Expression Console. Batch effects were adjusted using ComBat⁷. A hierarchical cluster was generated using dChip using 102 genes with the greatest variation that were identified by the filtering criteria which set the standard deviation for logged data between 1.10 and 1000, and an expression level at greater than or equal to 5.65 in 25% of samples. Principal component analysis was also performed by dChip using the filtered gene set.

Real-time quantitative PCR

Primer sets used for qPCR are as follows:

Prl2a1

Forward: 5'-GGAAAAGAGCAATGGACTCCTGG-'3; Reverse: 5'-CAGTCTCTGACTTCAAGGATGCC-'3

<u>II10</u>

Forward: 5'-CGGGAAGACAATAACTGCACCC-'3; Reverse: 5'-CGGTTAGCAGTATGTTGTCCAGC-'3

Sox4

Forward: 5'-GCCTCCATCTTCGTACAACC-'3; Reverse: 5'-AGTGAAGCGCGTCTACCTGT-'3

<u>Rgs13</u>

Forward: 5'-CTACATCCAGCCACAGTCTCCT-'3; Reverse: 5'-TGAGCTTCTTCAAAGCATGTTTGAG-'3

Sell

Forward: 5'-ATGGTGAGCATCCCAGCCTA -'3; Reverse: 5'-CCCCTTCCAGCATTCCATCA-'3

Actin beta

Forward: 5'-AGAGGGAAATCGTGCGTGAC -'3; Reverse: 5'-CAATAGTGACCTGGCCGT -'3

Figure S1. Histological and flow cytometric evaluation of ill Eµ-TCL1 mice and DTG mice.

(A) Peripheral blood smears of ill E μ -TCL1 and DTG mice at end point were stained with Wright-Giemsa and imaged as in Fig. 2A (400x). Magnified images of representative cells are shown in the inset. (B) Flow cytometry was used to analyze splenic lymphocytes from three different ill E μ -TCL1 mice (top row) and DTG mice (bottom row) for the expression of sIgM, B220, and CD11b on CD19⁺CD5⁺ B cells. Histograms for the three different mice are shown as solid, dashed, and dotted lines.

Figure S2. Characterization of CLL-like disease progression in DTG mice.

(A) Flow cytometry was used to compare the expression of CD5, sIgM, sIgD, CD21, CD23, and CTLA4 expression on splenic WT CD19⁺B220^{hi} B cells to splenic CD19⁺B220^{lo} B cells from dnRAG1, Eµ-TCL1 mice and DTG mice. Spleen weights (B) and white blood cell (WBC) counts (C) were compared for WT, dnRAG1, Eµ-TCL1 mice and DTG mice at either 6, 12, 24, and 36 weeks of age (B) or at 36 weeks of age only (C). Error bars represent the standard error of the mean. 5-6 animals of each genotype were analyzed at each time point. Values obtained for DTG mice are significantly different from those obtained for WT, dnRAG1, or Eµ-TCL1 mice (*, p<0.05; ***, p<0.001). (D) The percentages of gated CD3⁺TCRβ⁺ lymphocytes that are CD4⁺, CD8⁺, or CD4⁺CD25⁺ T cells (top) and the absolute numbers of these T cell populations (bottom) in the lymph nodes and spleen of 36 week-old WT, dnRAG1, Eµ-TCL1, and DTG mice (n=8-14 per genotype) as determined by flow cytometry are shown in bar graph format. Error bars represent the standard error of the mean. Statistically significant differences (p<0.05) between values obtained for DTG mice relative to WT (*a*), dnRAG1 (*b*), or Eµ-TCL1 (*c*) mice are indicated.

Figure S3. Histology of bone marrow and kidney sections of 36 week-old WT, dnRAG1, E μ -TCL1, and DTG mice.

Paraffin-embedded bone marrow and kidney sections were developed with hematoxylin and eosin. Images in columns 1 and 3 (100x for bone marrow, and 200x for kidney) were acquired using a Nikon i80 microscope and DigiFire camera running ImageSys digital imaging software (Soft Imaging Systems GmBH, Munster, Germany). Bone marrow images in column 2 (1000x) were acquired using a Nikon i80 microscope and Nikon Digital Sight DS-F1 camera running the NIS-Elements Imaging software version 2.33. Bone marrow and kidney show little or no abnormal infiltration at this time point. Scale bars: bone marrow, 200 μ M; kidney, 100 μ M.

Figure S4. Analysis of SCID mice engrafted with leukemic B cells from DTG mice.

SCID mice receiving either no cells or 1×10^6 sorted CD19⁺CD5⁺ B cells from one of two different 36 week-old DTG mice (cells from each DTG mouse were transferred into two SCID recipients; n=4 total) were sacrificed at 3 months post-transfer. Spleen weights were measured (A), and the percentage (B) and/or absolute number (C) of CD19⁺IgM⁺ B cells were determined in spleen, bone marrow (BM), lymph node (LN), and peripheral blood (PB).

(A) The gene expression profiles of sorted B cells from 12 week-old mice in this study were compared to those from normal developing, mature, and activated B cell subsets by unsupervised hierarchical clustering analysis. Clustering was performed by dChip on batch effect-corrected \log_2 expression values for 102 genes (rows) and 33 arrays (columns), which includes those from sorted splenic WT CD19⁺B220^{hi}CD5⁻ (WT) and transgenic CD19⁺B220^{lo}CD5⁺ (dnRAG1, Eµ-TCL1, and DTG) B cells from 12 week-old mice reported here, and those obtained from sorted splenic and peritoneal B1a cells (B1a-Sp and B1a-PC), splenic transitional B cells (T1-T3-Sp), splenic marginal zone (MZ-Sp) and follicular B cells (Fo-Sp), and splenic germinal center (GC-Sp) B cells available through the ImmGen database⁶. Red and green intensities indicate high to low gene expression, respectively. The dendrogram shows the relationships between the populations. (B) Principal component analysis. PCA was performed on 102 genes identified in (A) by dChip.

Figure S6. CD23 expression on leukemic cells from an ill DTG mouse.

Flow cytometry was used to compare CD23 expression on $CD19^+B220^{lo}$ B cells from the Eµ-TCL1 mouse (M52) and the ill DTG mouse (F57) used for the comparative gene expression analysis found in Table S5, which showed that Fcer2a (CD23) was upregulated ~32-fold on $CD19^+CD5^+$ B cells from the DTG mouse relative to those from the Eµ-TCL1 mouse.

Expression of B cell receptor signaling genes in 12 week-old mice

Prtpn22 3.15 2.92 2.91 protein tyrosine phosphatase, non-receptor type 22 (lymphoid) Nfatc1 2.32 2.46 2.29 nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent Cd5 1.91 1.85 1.86 CD5 antigen Ptpn11 1.44 1.26 1.26 protein tyrosine phosphatase, non-receptor type 11 Pilrb2 1.15 1.08 1.09 paired immunoglobin-like type 2 receptor beta 2 Pilrb1 -1.01 1.07 1.05 paired immunoglobin-like type 2 receptor beta 1 Syk -1.06 -1.17 -1.12 spleen tyrosine kinase Grb2 -1.26 -1.22 -1.16 growth factor receptor bond protein 2 Ptpre -1.25 -1.42 -1.17 protein tyrosine phosphatase, non-receptor type 6 Cd81 -1.13 -1.19 CD81 antigen CD79A Cd79a -1.30 -1.19 CD79A antigen (immunoglobulin-associated alpha) Cd79b -1.26 -1.25 -1.26 Cd19 -1.16 -1.25 -1.26		I	Fold change		
Natcl 2.32 2.46 2.29 nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent Cd5 1.91 1.85 1.86 CD5 antigen Ptpn11 1.44 1.26 1.26 protein tyrosine phosphatase, non-receptor type 11 Pilrb2 1.15 1.08 1.09 paired immunoglobin-like type 2 receptor beta 2 Pilrb1 -1.01 1.07 1.05 paired immunoglobin-like type 2 receptor beta 1 Syk -1.06 -1.17 -1.12 spleen tyrosine kinase Grb2 -1.26 -1.22 -1.16 growth factor receptor bound protein 2 Ptpre -1.25 -1.42 -1.17 protein tyrosine phosphatase, non-receptor type, C Ptpre -1.22 -1.40 -1.17 protein tyrosine phosphatase, non-receptor type 6 Cd41 -1.13 -1.19 CD81 antigen Cd794 Cd79a -1.30 -1.19 -1.21 CD79A antigen (immunoglobulin-associated alpha) Cd79b -1.26 -1.25 -1.26 CD19 antigen Cd72 -1.17	Gene Symbol	dnRAG1/WT	TCL1/WT	DTG/WT	Gene Description
Cd5 1.91 1.85 1.86 CD5 antigen Ptpn11 1.44 1.26 1.26 protein tyrosine phosphatase, non-receptor type 11 Pilrb2 1.15 1.08 1.09 paired immunoglobin-like type 2 receptor beta 2 Pilrb1 -1.01 1.07 1.05 paired immunoglobin-like type 2 receptor beta 1 Syk -1.06 -1.17 -1.12 spleen tyrosine kinase Grb2 -1.26 -1.22 -1.16 growth factor receptor bound protein 2 Ptpre -1.25 -1.42 -1.17 protein tyrosine phosphatase, non-receptor type 6 Cd81 -1.13 -1.19 CD81 antigen Cd79a -1.30 -1.19 CD9A antigen (immunoglobulin-associated alpha) Cd79a -1.26 -1.25 -1.23 CD79A antigen -1.26 -1.26 Cd19 -1.16 -1.25 -1.26 CD19 antigen -1.27 -1.35 -1.30 insistol polyphosphate-5-phosphatase D Cd72 -1.17 -1.75 -1.30 insistol polyphosphate-5-phosphatase D -1.31	Ptpn22	3.15	2.92	2.91	protein tyrosine phosphatase, non-receptor type 22 (lymphoid)
Print 1.44 1.26 1.26 protein tyrosine phosphatase, non-receptor type 11 Pilrb2 1.15 1.08 1.09 paired immunoglobin-like type 2 receptor beta 2 Pilrb1 -1.01 1.07 1.05 paired immunoglobin-like type 2 receptor beta 1 Syk -1.06 -1.17 -1.12 spleen tyrosine kinase Grb2 -1.26 -1.22 -1.16 growth factor receptor bound protein 2 Ptpre -1.25 -1.42 -1.17 protein tyrosine phosphatase, receptor type, C Ptpre -1.22 -1.40 -1.17 protein tyrosine phosphatase, receptor type 6 Cd81 -1.13 -1.13 -1.13 CD79A antigen (immunoglobulin-associated alpha) Cd79a -1.30 -1.19 CD81 antigen Cd794 Cd79b -1.26 -1.25 -1.23 CD79B antigen Cd72 -1.17 -1.75 -1.30 CD72 antigen Lyn -1.31 -1.40 -1.35 Yamaguchi asrcoma viral (v-yes-1) oncogene homolog Btk -1.42 -1.43	Nfate1	2.32	2.46	2.29	nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent
Pilrb2 1.15 1.08 1.09 paired immunoglobin-like type 2 receptor beta 2 Pilrb1 -1.01 1.07 1.05 paired immunoglobin-like type 2 receptor beta 1 Syk -1.06 -1.17 -1.12 spleen tyrosine kinase Grb2 -1.26 -1.22 -1.16 growth factor receptor bound protein 2 Ptpre -1.25 -1.42 -1.17 protein tyrosine phosphatase, receptor type, C Ptpre -1.22 -1.40 -1.17 protein tyrosine phosphatase, receptor type 6 Cd81 -1.13 -1.13 -1.19 CD81 antigen Cd79a -1.30 -1.25 -1.23 CD79A antigen (immunoglobulin-associated alpha) Cd79b -1.26 -1.25 -1.26 CD19 antigen Cd719 -1.16 -1.25 -1.26 CD19 antigen Cd72 -1.17 -1.75 -1.30 CD72 antigen Cd72 -1.17 -1.75 -1.30 inositol polyphosphate-5-phosphatase D Lyn -1.31 -1.40 -1.35 Yamaguchi ascoma viral (v-yes-1) oncogene homolog Btk -1.42 -1.43	Cd5	1.91	1.85	1.86	CD5 antigen
Pilrb1 -1.01 1.07 1.05 paired immunoglobin-like type 2 receptor beta 1 Syk -1.06 -1.17 -1.12 spleen tyrosine kinase Grb2 -1.26 -1.22 -1.16 growth factor receptor bound protein 2 Ptpre -1.25 -1.42 -1.17 protein tyrosine phosphatase, receptor type, C Ptpn6 -1.22 -1.40 -1.17 protein tyrosine phosphatase, non-receptor type 6 Cd81 -1.13 -1.13 -1.19 CD81 antigen Cd79a -1.30 -1.19 -1.21 CD79A antigen (immunoglobulin-associated alpha) Cd79b -1.26 -1.25 -1.26 CD19 antigen Cd719 -1.16 -1.25 -1.26 CD19 antigen Cd72 -1.17 -1.75 -1.30 CD72 antigen Inpp5d -1.27 -1.35 -1.30 insoitol polyphosphate-5-phosphatase D Lyn -1.31 -1.40 -1.35 Yamaguchi sarcoma viral (v-yes-1) oncogene homolog Btk -1.42 -1.43 -1.59 Bruton agammaglobulinemia tyrosine kinase Fcgr2b -1.33 -1.52 <td>Ptpn11</td> <td>1.44</td> <td>1.26</td> <td>1.26</td> <td>protein tyrosine phosphatase, non-receptor type 11</td>	Ptpn11	1.44	1.26	1.26	protein tyrosine phosphatase, non-receptor type 11
Syk -1.06 -1.17 -1.12 spleen tyrosine kinase Grb2 -1.26 -1.22 -1.16 growth factor receptor bound protein 2 Ptpre -1.25 -1.42 -1.17 protein tyrosine phosphatase, receptor type, C Ptpre -1.22 -1.40 -1.17 protein tyrosine phosphatase, non-receptor type 6 Cd81 -1.13 -1.13 -1.19 CD81 antigen Cd79a -1.30 -1.19 -1.21 CD79A antigen (immunoglobulin-associated alpha) Cd79b -1.26 -1.25 -1.26 CD19 antigen Cd719 -1.16 -1.25 -1.26 CD19 antigen Cd72 -1.17 -1.75 -1.30 CD72 antigen Inpp5d -1.27 -1.35 -1.30 inositol polyphosphate-5-phosphatase D Lyn -1.31 -1.40 -1.35 Yamaguchi sarcoma viral (v-yes-1) oncogene homolog Btk -1.42 -1.43 -1.59 Bruton agammaglobulinemia tyrosine kinase Fcgr2b -1.33 -1.52 -1.60 Fc receptor	Pilrb2	1.15	1.08	1.09	paired immunoglobin-like type 2 receptor beta 2
Grb2 -1.26 -1.22 -1.16 growth factor receptor bound protein 2 Ptpre -1.25 -1.42 -1.17 protein tyrosine phosphatase, receptor type, C Ptpn6 -1.22 -1.40 -1.17 protein tyrosine phosphatase, non-receptor type 6 Cd81 -1.13 -1.13 -1.19 CD81 antigen Cd79a -1.30 -1.19 -1.21 CD79A antigen (immunoglobulin-associated alpha) Cd79b -1.26 -1.25 -1.23 CD79B antigen Cd719 -1.16 -1.25 -1.26 CD19 antigen Cd72 -1.17 -1.75 -1.30 CD72 antigen Inpp5d -1.27 -1.35 -1.30 ID72 antigen Lyn -1.31 -1.40 -1.35 Yamaguchi sarcoma viral (v-yes-1) oncogene homolog Bk -1.42 -1.43 -1.59 Bruton agammaglobulinemia tyrosine kinase Fcgr2b -1.33 -1.52 -1.60 Fc receptor, IgG, low affinity IIb Pagl -2.00 -1.93 -2.15 phosphoprotein associate	Pilrb1	-1.01	1.07	1.05	paired immunoglobin-like type 2 receptor beta 1
Ptpre -1.25 -1.42 -1.17 protein tyrosine phosphatase, receptor type, C Ptpn6 -1.22 -1.40 -1.17 protein tyrosine phosphatase, receptor type, C Cd81 -1.13 -1.13 -1.19 CD81 antigen Cd79a -1.30 -1.19 -1.21 CD79A antigen (immunoglobulin-associated alpha) Cd79b -1.26 -1.25 -1.23 CD79B antigen Cd19 -1.16 -1.25 -1.26 CD19 antigen Cd72 -1.17 -1.75 -1.30 CD72 antigen Inpp5d -1.27 -1.35 -1.30 inositol polyphosphate-5-phosphatase D Lyn -1.31 -1.40 -1.35 Yamaguchi sarcoma viral (v-yes-1) oncogene homolog Bk -1.42 -1.43 -1.59 Bruton agammaglobulinemia tyrosine kinase Fcgr2b -1.33 -1.52 -1.60 Fc receptor, IgG, low affinity IIb Pag1 -2.00 -1.93 -2.15 phosphoprotein associated with glycosphingolipid microdomains 1 Cd22 -3.05 -2.60	Syk	-1.06	-1.17	-1.12	spleen tyrosine kinase
Propho -1.22 -1.40 -1.17 protein tyrosine phosphatase, non-receptor type 6 Cd81 -1.13 -1.13 -1.19 CD81 antigen Cd79a -1.30 -1.19 -1.21 CD79A antigen (immunoglobulin-associated alpha) Cd79b -1.26 -1.25 -1.23 CD79B antigen Cd19 -1.16 -1.25 -1.26 CD19 antigen Cd72 -1.17 -1.75 -1.30 CD72 antigen Inpp5d -1.27 -1.35 -1.30 inositol polyphosphate-5-phosphatase D Lyn -1.31 -1.40 -1.35 Yamaguchi sarcoma viral (v-yes-1) oncogene homolog Btk -1.42 -1.3 -1.59 Bruton agammaglobulinemia tyrosine kinase Fcgr2b -1.33 -1.52 -1.60 Fc receptor, IgG, low affinity IIb Pagl -2.00 -1.93 -2.15 phosphoprotein associated with glycosphingolipid microdomains 1 Cd22 -3.05 -2.60 -3.04 CD22 antigen	Grb2	-1.26	-1.22	-1.16	growth factor receptor bound protein 2
Cd81 -1.13 -1.19 CD81 antigen Cd79a -1.30 -1.19 -1.21 CD79A antigen (immunoglobulin-associated alpha) Cd79b -1.26 -1.25 -1.23 CD79B antigen Cd19 -1.16 -1.25 -1.26 CD19 antigen Cd72 -1.17 -1.75 -1.30 CD72 antigen Inpp5d -1.27 -1.35 -1.30 insistol polyphosphate-5-phosphatase D Lyn -1.31 -1.40 -1.55 Yamaguchi sarcoma viral (v-yes-1) oncogene homolog Btk -1.42 -1.43 -1.59 Bruton agammaglobulinemia tyrosine kinase Fcgr2b -1.33 -1.52 -1.60 Fc receptor, IgG, low affinity IIb Pagl -2.00 -1.93 -2.15 phosphoprotein associated with glycosphingolipid microdomains 1 Cd22 -3.05 -2.60 -3.04 CD22 antigen	Ptprc	-1.25	-1.42	-1.17	protein tyrosine phosphatase, receptor type, C
Cd79a -1.30 -1.19 -1.21 CD79A antigen (immunoglobulin-associated alpha) Cd79b -1.26 -1.25 -1.23 CD79B antigen Cd19 -1.16 -1.25 -1.26 CD19 antigen Cd72 -1.17 -1.75 -1.30 CD72 antigen Inpp5d -1.27 -1.35 -1.30 CD72 antigen Lyn -1.31 -1.40 -1.35 Yamaguchi sarcoma viral (v-yes-1) oncogene homolog Btk -1.42 -1.43 -1.59 Bruton agammaglobulinemia tyrosine kinase Fegr2b -1.33 -1.52 -1.60 Fe receptor, IgG, Iow affinity IIb PagI -2.00 -1.93 -2.15 phosphoprotein associated with glycosphingolipid microdomains 1 Cd22 -3.05 -2.60 -3.04 CD22 antigen	Ptpn6	-1.22	-1.40	-1.17	protein tyrosine phosphatase, non-receptor type 6
Cd79b -1.26 -1.25 -1.23 CD79B antigen Cd19 -1.16 -1.25 -1.26 CD19 antigen Cd72 -1.17 -1.75 -1.30 CD72 antigen Inpp5d -1.27 -1.35 -1.30 inositol polyphosphate-5-phosphatase D Lyn -1.31 -1.40 -1.35 Yamaguchi sarcoma viral (v-yes-1) oncogene homolog Btk -1.42 -1.43 -1.59 Bruton agammaglobulinemia tyrosine kinase Fcgr2b -1.33 -1.52 -1.60 Fc receptor, IgG, Iow affinity IIb Pagl -2.00 -1.93 -2.15 phosphoprotein associated with glycosphingolipid microdomains 1 Cd22 -3.05 -2.60 -3.04 CD22 antigen	Cd81	-1.13	-1.13	-1.19	CD81 antigen
Cd19 -1.16 -1.25 -1.26 CD19 antigen Cd72 -1.17 -1.75 -1.30 CD72 antigen Inpp5d -1.27 -1.35 -1.30 inositol polyphosphate-5-phosphatase D Lyn -1.31 -1.40 -1.35 Yamaguchi sarcoma viral (v-yes-1) oncogene homolog Btk -1.42 -1.43 -1.59 Bruton agammaglobulinemia tyrosine kinase Fcgr2b -1.33 -1.52 -1.60 Fc receptor, IgG, Iow affinity IIb Pag1 -2.00 -1.93 -2.15 phosphoprotein associated with glycosphingolipid microdomains 1 Cd22 -3.05 -2.60 -3.04 CD22 antigen	Cd79a	-1.30	-1.19	-1.21	CD79A antigen (immunoglobulin-associated alpha)
Cd72 -1.17 -1.75 -1.30 CD72 antigen Inpp5d -1.27 -1.35 -1.30 inositol polyphosphate-5-phosphatase D Lyn -1.31 -1.40 -1.35 Yamaguchi sarcoma viral (v-yes-1) oncogene homolog Btk -1.42 -1.43 -1.59 Bruton agammaglobulinemia tyrosine kinase Fcgr2b -1.33 -1.52 -1.60 Fc receptor, IgG, Iow affinity IIb Pag1 -2.00 -1.93 -2.15 phosphoprotein associated with glycosphingolipid microdomains 1 Cd22 -3.05 -2.60 -3.04 CD22 antigen	Cd79b	-1.26	-1.25	-1.23	CD79B antigen
Inpp5d-1.27-1.35-1.30inositol polyphosphate-5-phosphatase DLyn-1.31-1.40-1.35Yamaguchi sarcoma viral (v-yes-1) oncogene homologBtk-1.42-1.43-1.59Bruton agammaglobulinemia tyrosine kinaseFcgr2b-1.33-1.52-1.60Fc receptor, IgG, low affinity IIbPag1-2.00-1.93-2.15phosphoprotein associated with glycosphingolipid microdomains 1Cd22-3.05-2.60-3.04CD22 antigen	Cd19	-1.16	-1.25	-1.26	CD19 antigen
Lyn -1.31 -1.40 -1.35 Yamaguchi sarcoma viral (v-yes-1) oncogene homolog Btk -1.42 -1.43 -1.59 Bruton agammaglobulinemia tyrosine kinase Fcgr2b -1.33 -1.52 -1.60 Fc receptor, IgG, low affinity IIb Pagl -2.00 -1.93 -2.15 phosphoprotein associated with glycosphingolipid microdomains 1 Cd22 -3.05 -2.60 -3.04 CD22 antigen	Cd72	-1.17	-1.75	-1.30	CD72 antigen
Btk -1.42 -1.43 -1.59 Bruton agammaglobulinemia tyrosine kinase Fcgr2b -1.33 -1.52 -1.60 Fc receptor, IgG, low affinity IIb Pagl -2.00 -1.93 -2.15 phosphoprotein associated with glycosphingolipid microdomains 1 Cd22 -3.05 -2.60 -3.04 CD22 antigen	Inpp5d	-1.27	-1.35	-1.30	inositol polyphosphate-5-phosphatase D
Fcgr2b -1.33 -1.52 -1.60 Fc receptor, IgG, low affinity IIb PagI -2.00 -1.93 -2.15 phosphoprotein associated with glycosphingolipid microdomains 1 Cd22 -3.05 -2.60 -3.04 CD22 antigen	Lyn	-1.31	-1.40	-1.35	Yamaguchi sarcoma viral (v-yes-1) oncogene homolog
Pagl -2.00 -1.93 -2.15 phosphoprotein associated with glycosphingolipid microdomains 1 Cd22 -3.05 -2.60 -3.04 CD22 antigen	Btk	-1.42	-1.43	-1.59	Bruton agammaglobulinemia tyrosine kinase
Cd22 -3.05 -2.60 -3.04 CD22 antigen	Fcgr2b	-1.33	-1.52	-1.60	Fc receptor, IgG, low affinity IIb
	Pagl	-2.00	-1.93	-2.15	phosphoprotein associated with glycosphingolipid microdomains 1
Cr2 (CD21) -4.49 -4.50 -5.39 complement receptor 2	Cd22	-3.05	-2.60	-3.04	CD22 antigen
	Cr2 (CD21)	-4.49	-4.50	-5.39	complement receptor 2

Expression of B cell receptor signaling genes in older mice

	F	old change		
Gene Symbol	dnRAG1/WT	TCL1/WT	DTG/WT	Gene Description
Ptpn22	2.55	2.82	3.12	protein tyrosine phosphatase, non-receptor type 22 (lymphoid)
Cd5	2.34	3.29	2.24	CD5 antigen
Nfate1	2.62	2.72	1.64	nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent
Ptpn11	1.82	1.40	1.46	protein tyrosine phosphatase, non-receptor type 11
Cd81	-1.15	1.11	1.17	CD81 antigen
Grb2	-1.03	1.00	1.13	growth factor receptor bound protein 2
Syk	1.11	1.61	1.06	spleen tyrosine kinase
Cd79a	-1.12	-1.10	1.01	CD79A antigen (immunoglobulin-associated alpha)
Fcgr2b	-1.53	1.27	1.00	Fc receptor, IgG, low affinity IIb
Cd79b	-1.10	-1.02	-1.02	CD79B antigen
Pilrb2	1.00	-1.18	-1.03	paired immunoglobin-like type 2 receptor beta 2
Cd72	-1.06	-2.86	-1.12	CD72 antigen
Lyn	-1.12	1.01	-1.16	Yamaguchi sarcoma viral (v-yes-1) oncogene homolog
Inpp5d	-1.59	-1.42	-1.16	inositol polyphosphate-5-phosphatase D
Pilrb1	-1.08	1.10	-1.18	paired immunoglobin-like type 2 receptor beta 1
Ptpn6	-1.02	-1.30	-1.20	protein tyrosine phosphatase, non-receptor type 6
Btk	-1.28	-1.30	-1.36	Bruton agammaglobulinemia tyrosine kinase
Cd19	-1.12	-1.12	-1.40	CD19 antigen
Ptprc	-1.35	-1.33	-1.50	protein tyrosine phosphatase, receptor type, C
Pag1	-3.24	-6.53	-1.82	phosphoprotein associated with glycosphingolipid microdomains 1
Cd22	-3.38	-1.20	-2.99	CD22 antigen
Cr2 (CD21)	-12.25	-26.54	-10.40	complement receptor 2

Figure S7. Hierarchical clustering analysis of data sets from 12 week-old and older WT and transgenic animals using genes involved in B cell receptor signaling.

A supervised hierarchical clustering analysis was performed using a set of 22 genes known to play a role in B cell receptor signaling pathways. The relative expression of these genes in WT $CD19^{+}B220^{hi}CD5^{-}B$ cells compared to transgenic $CD19^{+}CD5^{+}B$ cells is shown at right for 12 week old mice (top panel) and older animals (bottom panel).

Table S1. Analysis of IgVH sequences from ill Eµ-TCL1 and DTG mice

		VII cons [†]	Identity to			CDR3 [‡]		VH gene reported reactivity
Mouse ID	Clone #(s)	VH gene	germline	D gene	J gene		pI	
	A01,A11 A06	5-12*01 5-12*01	100%	1-1*01 1-1*01	4*01 4*01	CARKRAGYGSREYAMDYW	8.97 8.97	
	A06 A02,A07	5-12*01 5-12*01	99.65% 100%	1-1*01 4-1*01	4*01 1*03	CARKRAGYGSREYAMDYW CARLNWGVGYFDVW	8.97 6.15	
	A03 A05	5-4*01 5-6*01	99.65% 100%	1-1*01	4*01 4*01	CAREL <u>GD</u> YGREVYAMDYW	4.42	
		7-3*01	100%	1-1*01 1-2*01	4*01 3*01	CARHGSNYDHYAMDYW	6.48 6.10	Sm ⁸
	A08					CARCS <u>PYD</u> AWFAYW		Sm
Eµ-TCL1	B01	1-22*01	100%	3-1*01	1*03	CARSGAGYYWYFDVW	6.14	
M1	B05,B07	1-52*01	100%	2-5*01	1*03	CARYYSNYWYFDVW	6.14	
	B11	1-52*01	99.65%	2-5*01	1*03	CARYYSNYWYFDVW	6.14	
	B02	1-52*01	99.31%	2-5*01	1*03	CARYYSNYWYFDVW	6.14	
	B03-2	1-52*01	100%	2-14*01	2*01	CARISANLLEDYW	4.44	G 8 DY19 DY11
	B04	1-81*01	100%	1-1*01	2*01	CARAD <mark>YYGSS</mark> YGGDYW	4.44	Sm ⁸ , DNA ⁹ , ssDNA ¹
	B09	14-3*01	100%	2-5*01	1*03	CATYYSNYVRFAYW	8.19	
	B06	1-62-2*01	99.65%	1-1*01	1*03	CARHEDY YYGSS WYFDVW	4.17	T1 . 11
	B10	1-78*01	98.61%	2-4*01	3*01	CARGIYYDYDVFYW	4.44	Thymocyte ¹¹
	B01,B02, B03, B04-2,							
Eµ-TCL1	B05-2, B06, B08, E01,							
F13	E02, E03, E04, E05,	1 50401	1000/	0.5801	1402		6.1.4	
	E06, E07	1-52*01	100%	2-5*01	1*03	CARYYSNYWYFDVW	6.14	
	B07, B09-2, E08,	1-52*01	99.65%	2-5*01	1*03	CARYYSNYWYFDVW	6.14	
	B04, B06, B07, B08							
	B09, B11, E01, E08,		1000		2461	0.1.0117		DDV + 12
	E09	1-55*01	100%	1-1*01	2*01	CASIY <mark>YYGSS</mark> YYFDYW	3.75	DNA ¹²
		1-85*01						
		(unproductive						
Eµ-TCL1	DOL DO2 DO2 D10	- stop codons,	1000/		2401	0 + D + + //D 1 // /	210	
F26	B01, B02, B03, B10	out of frame)	100%	2-5*01	2*01	CAR**#DYW	NR	
		1-72*01						
	E02 E02 E04 E05	(unproductive						
	E02, E03, E04, E05 E06, E07, E10, E08	- stop codons, out of frame)	100%	2-3*01	1*03	CA*MVT#WYFDVW	NR	VH gene report
Mouse ID		•	100% Identity to germline	2-3*01 D gene	1*03 J gene			VH gene report reactivity
Mouse ID	E06, E07, E10, E08	out of frame)	Identity to			CA*MVT#WYFDVW CDR3 [‡] CITTVVABYFDYW	NR	VH gene report reactivity
Mouse ID	E06, E07, E10, E08 Clone #(s)	out of frame) VH gene [†]	Identity to germline	D gene	J gene	cdr3 [‡]	рІ	reactivity
Mouse ID	E06, E07, E10, E08 Clone #(s) B01, B02	out of frame) VH gene [†] 1-15*01	Identity to germline 100%	D gene 1-1*01	J gene 2*01	CDR3[‡] CITTVVABYFDYW	pI 5.45	DNA ¹²
Mouse ID	E06, E07, E10, E08 Clone #(s) B01, B02 B03, B14	out of frame) VH gene [†] 1-15*01 1-15*01	Identity to germline 100% 99.65%	D gene 1-1*01 1-1*01	J gene 2*01 2*01	CDR3[‡] CITTVVABYFDYW CITTVVABYFDYW	pI 5.45 5.45	DNA ¹² Thymocyte ¹¹
Mouse ID	E06, E07, E10, E08 Clone #(s) B01, B02 B03, B14 B05, B11	out of frame) VH gene 1-15*01 1-15*01 1-55*01	Identity to germline 100% 99.65% 100%	D gene 1-1*01 1-1*01 1-1*01	J gene 2*01 2*01 2*01	CDR3[‡] CITTVVABYFDYW CITTVVABYFDYW CARGY <mark>YYGSS</mark> YFDYW	pI 5.45 5.45 6.14	DNA ¹²
	E06, E07, E10, E08 Clone #(s) B01, B02 B03, B14 B05, B11 B07	out of frame) VH gene 1-15*01 1-55*01 1-55*01 1-78*01	Identity to germline 100% 99.65% 100% 99.65%	D gene 1-1*01 1-1*01 1-1*01 none	J gene 2*01 2*01 2*01 2*01 2*01	CDR3[‡] CITTVVABYFDYW CITTVVABYFDYW CARGY <mark>YYGSS</mark> YFDYW CARNW	pI 5.45 5.45 6.14 8.25	DNA ¹² Thymocyte ¹¹
	E06, E07, E10, E08 Clone #(s) B01, B02 B03, B14 B05, B11 B07 B04	out of frame) VH gene [†] 1-15*01 1-55*01 1-78*01 5-17*01	Identity to germline 100% 99.65% 100% 99.65% 100%	D gene 1-1*01 1-1*01 1-1*01 none 2-12*01	J gene 2*01 2*01 2*01 2*01 1*03	CDR3 [‡] CITTVVABYFDYW CITTVVABYFDYW CARGY <mark>YYGSS</mark> YFDYW CARNW CAIYYRYFDVW	pI 5.45 5.45 6.14 8.25 6.14	DNA ¹² Thymocyte ¹¹
<u>Mouse ID</u> DTG M19	E06, E07, E10, E08 Clone #(s) B01, B02 B03, B14 B05, B11 B07 B04 B08	out of frame) VH gene 1-15*01 1-55*01 1-55*01 1-55*01 5-17*01 5-17*01	Identity to germline 100% 99.65% 100% 99.65% 100% 100%	D gene 1-1*01 1-1*01 1-1*01 none 2-12*01 2-5*01	J gene 2*01 2*01 2*01 2*01 1*03 2*01	CDR3[‡] CITTVVABYFDYW CITTVVABYFDYW CARGY <mark>Y 76SS</mark> YFDYW CARNW CAIYYRYFDVW CAMAYYSNYFDYW	pI 5.45 5.45 6.14 8.25 6.14 3.75	DNA ¹² Thymocyte ¹¹
	E06, E07, E10, E08 Clone #(s) B01, B02 B03, B14 B05, B11 B07 B04 B08 B15	out of frame) VH gene 1-15*01 1-55*01 1-58*01 5-17*01 5-17*01 5-17*01	Identity to germline 100% 99.65% 100% 99.65% 100% 100%	D gene 1-1*01 1-1*01 1-1*01 none 2-12*01 2-5*01 2-4*01	J gene 2*01 2*01 2*01 1*03 2*01 3*01	CDR3 [‡] CITTVVABYFDYW CITTVVABYFDYW CARGY <mark>Y YGSS</mark> YFDYW CARW CAIYYRYFDVW CAIYYRYFDVW CAMAYYSNYFDYW CAKLRRFAYW	pI 5.45 5.45 6.14 8.25 6.14 3.75 10.02	DNA ¹² Thymocyte ¹¹
	E06, E07, E10, E08 Clone #(s) B01, B02 B03, B14 B05, B11 B07 B04 B08 B15 C10	out of frame) VH gene 1-15*01 1-15*01 1-58*01 1-78*01 5-17*01 5-17*01 5-17*01 5-17*01	Identity to germline 100% 99.65% 100% 100% 100% 100% 99.65%	D gene 1-1*01 1-1*01 1-1*01 none 2-12*01 2-5*01 2-4*01 1-1*01	J gene 2*01 2*01 2*01 2*01 1*03 2*01 3*01 2*01	CDR3 [‡] CITTVVABYFDYW CITTVVABYFDYW CARGY <mark>Y YGSS</mark> YFDYW CARNW CAIYYRYFDVW CAMAYYSNYFDYW CAKLRRFAYW CARDITTVVAPDYW	pI 5.45 5.45 6.14 8.25 6.14 3.75 10.02 4.44	DNA ¹² Thymocyte ¹¹
	E06, E07, E10, E08 Clone #(s) B01, B02 B03, B14 B05, B11 B07 B04 B08 B15 C10 C01	out of frame) VH gene 1-15*01 1-15*01 1-58*01 1-78*01 5-17*01 5-17*01 5-17*01 5-17*01	Identity to germline 100% 99.65% 100% 100% 100% 100% 99.65%	D gene 1-1*01 1-1*01 1-1*01 none 2-12*01 2-5*01 2-4*01 1-1*01	J gene 2*01 2*01 2*01 2*01 1*03 2*01 3*01 2*01	CDR3 [‡] CITTVVABYFDYW CITTVVABYFDYW CARGY <mark>Y YGSS</mark> YFDYW CARNW CAIYYRYFDVW CAMAYYSNYFDYW CAKLRRFAYW CARDITTVVAPDYW	pI 5.45 5.45 6.14 8.25 6.14 3.75 10.02 4.44	DNA ¹² Thymocyte ¹¹
	E06, E07, E10, E08 Clone #(s) B01, B02 B03, B14 B05, B11 B07 B04 B08 B15 C10 C01 C02, C03, C04, C05,	out of frame) VH gene 1-15*01 1-55*01 1-55*01 1-78*01 5-17*01 5-17*01 5-17*01 9-3*01	Identity to germline 100% 99.65% 100% 99.65% 100% 100% 100% 99.65%	D gene 1-1*01 1-1*01 1-1*01 none 2-12*01 2-5*01 2-4*01 1-1*01 1-3*01	J gene 2*01 2*01 2*01 2*01 1*03 2*01 3*01 3*01	CDR3 [‡] CITTVVABYFDYW CITTVVABYFDYW CARGY <mark>YYGSS</mark> YFDYW CARNW CAIYYRYFDVW CAMAYYSNYFDYW CAMAYYSNYFDYW CAKLRRFAYW CARDITTVVAPDYW CARECPL <u>T</u> WSWFAYW	pI 5.45 5.45 6.14 8.25 6.14 3.75 10.02 4.44 6.10	DNA ¹² Thymocyte ¹¹
	E06, E07, E10, E08 Clone #(s) B01, B02 B03, B14 B05, B11 B07 B04 B08 B15 C10 C01 C02, C03, C04, C05, C06, C07, C09	out of frame) VH gene 1-15*01 1-55*01 1-55*01 1-78*01 5-17*01 5-17*01 5-17*01 9-3*01	Identity to germline 100% 99.65% 100% 99.65% 100% 100% 100% 99.65%	D gene 1-1*01 1-1*01 1-1*01 none 2-12*01 2-5*01 2-4*01 1-1*01 1-3*01	J gene 2*01 2*01 2*01 2*01 1*03 2*01 3*01 3*01	CDR3 [‡] CITTVVABYFDYW CITTVVABYFDYW CARGY <mark>YYGSS</mark> YFDYW CARNW CAIYYRYFDVW CAMAYYSNYFDYW CAMAYYSNYFDYW CAKLRRFAYW CARDITTVVAPDYW CARECPL <u>T</u> WSWFAYW	pI 5.45 5.45 6.14 8.25 6.14 3.75 10.02 4.44 6.10	DNA ¹² Thymocyte ¹¹
	E06, E07, E10, E08 Clone #(s) B01, B02 B03, B14 B05, B11 B07 B04 B08 B15 C10 C01 C02, C03, C04, C05, C06, C07, C09 A02, A03, A05, A06,	out of frame) VH gene 1-15*01 1-58*01 1-58*01 5-17*01 5-17*01 5-17*01 5-17*01 2-5*01	Identity to germline 100% 99.65% 100% 99.65% 100% 100% 99.65% 99.65% 100%	D gene 1-1*01 1-1*01 1-1*01 2-12*01 2-5*01 2-4*01 1-1*01 1-3*01 2-3*01	J gene 2*01 2*01 2*01 1*03 2*01 3*01 2*01 3*01 3*01	CDR3[‡] CITTVVABYFDYW CITTVVABYFDYW CARGY <mark>Y YGSS</mark> YFDYW CARW CAIYYRYFDVW CAIYYRYFDVW CAIYYRYFDVW CAKLRRFAYW CARDITTVVAPDYW CARECPL <u>T</u> WSWFAYW CAK <u>E</u> GYYAPFAYW	pI 5.45 5.45 6.14 8.25 6.14 3.75 10.02 4.44 6.10 6.14	DNA ¹² Thymocyte ¹¹
	E06, E07, E10, E08 Clone #(s) B01, B02 B03, B14 B05, B11 B07 B04 B08 B15 C10 C01 C02, C03, C04, C05, C06, C07, C09 A02, A03, A05, A06, A09	out of frame) VH gene 1-15*01 1-55*01 1-55*01 1-78*01 5-17*01 5-17*01 5-17*01 2-5*01 2-5*01 5-12*01	Identity to germline 100% 99.65% 100% 99.65% 100% 100% 99.65% 99.65% 100%	D gene 1-1*01 1-1*01 1-1*01 none 2-12*01 2-5*01 2-4*01 1-1*01 1-3*01 2-3*01 3-2*02	J gene 2*01 2*01 2*01 2*01 3*01 3*01 3*01 3*01 4*01	CDR3 [‡] CITTVVABYFDYW CITTVVABYFDYW CARGY <mark>Y YGSS</mark> YFDYW CARGYW CARYYSNYFDVW CAIYYRYFDVW CAIYYRYFDVW CARAYYSNYFDYW CAKLRRFAYW CARECPL <u>T</u> WSWFAYW CARECPL <u>T</u> WSWFAYW CARHSSGYAMDYW	pI 5.45 5.45 6.14 8.25 6.14 3.75 10.02 4.44 6.10 6.14 7.17	DNA ¹² Thymocyte ¹¹
	E06, E07, E10, E08 Clone #(s) B01, B02 B03, B14 B05, B11 B07 B04 B08 B15 C10 C01 C02, C03, C04, C05, C06, C07, C09 A02, A03, A05, A06, A09 A07	out of frame) VH gene 1-15*01 1-55*01 1-55*01 1-57*01 5-17*01 5-17*01 5-17*01 5-17*01 5-17*01 5-17*01 5-17*01 5-17*01 5-17*01 5-17*01 5-12*01	Identity to germline 100% 99.65% 100% 99.65% 100% 100% 99.65% 99.65% 100% 99.65%	D gene 1-1*01 1-1*01 1-1*01 none 2-12*01 2-5*01 2-4*01 1-1*01 1-3*01 2-3*01 3-2*02 3-2*02	J gene 2*01 2*01 2*01 1*03 2*01 3*01 2*01 3*01 3*01 4*01 4*01	CDR3 [‡] CITTVVABYFDYW CITTVVABYFDYW CARGY <mark>Y YGSS</mark> YFDYW CARGY CARW CAIYYRYFDVW CAIYYRYFDVW CAMAYYSNYFDYW CAKLRRFAYW CARLYYW CARECPL <u>T</u> WSWFAYW CARECPL <u>T</u> WSWFAYW CARHSSGYAMDYW CARHSSGYAMDYW	pI 5.45 5.45 6.14 8.25 6.14 3.75 10.02 4.44 6.10 6.14 7.17 7.17	DNA ¹² Thymocyte ¹¹ DNA ¹³
DTG M19	E06, E07, E10, E08 Clone #(s) B01, B02 B03, B14 B05, B11 B07 B04 B08 B15 C10 C01 C02, C03, C04, C05, C06, C07, C09 A02, A03, A05, A06, A09 A07 A01, A10	out of frame) VH gene 1-15*01 1-55*01 1-55*01 1-78*01 5-17*01 5-17*01 5-17*01 5-17*01 5-17*01 2-5*01 5-12*01 5-12*01 5-12*01	Identity to germline 100% 99.65% 100% 100% 100% 99.65% 99.65% 100% 100% 99.65% 99.65%	D gene 1-1*01 1-1*01 1-1*01 none 2-12*01 2-5*01 2-4*01 1-1*01 1-3*01 2-3*01 3-2*02 3-2*02 4-1*01	J gene 2*01 2*01 2*01 2*01 3*01 2*01 3*01 3*01 4*01 4*01 2*01	CDR3 [‡] CITTVVABYFDYW CITTVVABYFDYW CARGY <mark>YYGSS</mark> YFDYW CARNW CAIYYRYFDVW CAMAYYSNYFDYW CAKLRRFAYW CARLRFAYW CARECPL <u>T</u> WSWFAYW CARECPL <u>T</u> WSWFAYW CARHSSGYAMDYW CARHSSGYAMDYW CARHSLDLDYW CARHTTVVASYWYFDVW	pI 5.45 5.45 6.14 8.25 6.14 3.75 10.02 4.44 6.10 6.14 7.17 7.17 5.61	DNA ¹² Thymocyte ¹¹ DNA ¹³
	E06, E07, E10, E08 Clone #(s) B01, B02 B03, B14 B05, B11 B07 B04 B08 B15 C10 C01 C02, C03, C04, C05, C06, C07, C09 A02, A03, A05, A06, A09 A07 A01, A10	out of frame) VH gene 1-15*01 1-55*01 1-55*01 1-78*01 5-17*01 5-17*01 5-17*01 5-17*01 5-17*01 2-5*01 5-12*01 5-12*01 5-12*01	Identity to germline 100% 99.65% 100% 100% 100% 99.65% 99.65% 100% 100% 99.65% 99.65%	D gene 1-1*01 1-1*01 1-1*01 none 2-12*01 2-5*01 2-4*01 1-1*01 1-3*01 2-3*01 3-2*02 3-2*02 4-1*01	J gene 2*01 2*01 2*01 2*01 3*01 2*01 3*01 3*01 4*01 4*01 2*01	CDR3 [‡] CITTVVABYFDYW CITTVVABYFDYW CARGY <mark>YYGSS</mark> YFDYW CARNW CAIYYRYFDVW CAMAYYSNYFDYW CAKLRRFAYW CARDITTVVAPDYW CARECPL <u>T</u> WSWFAYW CARESGYAMDYW CARHSSGYAMDYW CARHSLDLDYW	pI 5.45 5.45 6.14 8.25 6.14 3.75 10.02 4.44 6.10 6.14 7.17 7.17 5.61	DNA ¹² Thymocyte ¹¹
DTG M19	E06, E07, E10, E08 Clone #(s) B01, B02 B03, B14 B05, B11 B07 B04 B08 B15 C10 C01 C02, C03, C04, C05, C06, C07, C09 A02, A03, A05, A06, A09 A07 A01, A10 A08	out of frame) VH gene 1-15*01 1-55*01 1-78*01 1-78*01 5-17*01 5-17*01 5-17*01 5-17*01 2-5*01 5-12*01 5-12*01 5-12*01 5-6*01	Identity to germline 100% 99.65% 100% 99.65% 100% 100% 99.65% 99.65% 99.65% 99.65%	D gene 1-1*01 1-1*01 1-1*01 2-12*01 2-5*01 2-4*01 1-1*01 1-3*01 2-3*01 3-2*02 3-2*02 4-1*01 1-1*01	J gene 2*01 2*01 2*01 2*01 3*01 3*01 3*01 4*01 4*01 1*03	CDR3 [‡] CITTVVABYFDYW CITTVVABYFDYW CARGY <mark>YYGSS</mark> YFDYW CARNW CAIYYRYFDVW CAMAYYSNYFDYW CAKLRRFAYW CARLRFAYW CARECPL <u>T</u> WSWFAYW CARECPL <u>T</u> WSWFAYW CARHSSGYAMDYW CARHSSGYAMDYW CARHSLDLDYW CARHTTVVASYWYFDVW	pI 5.45 5.45 6.14 8.25 6.14 3.75 10.02 4.44 6.10 6.14 7.17 7.17 5.61 7.17	DNA ¹² Thymocyte ¹¹ DNA ¹³
DTG M19	E06, E07, E10, E08 Clone #(s) B01, B02 B03, B14 B05, B11 B07 B04 B08 B15 C10 C01 C02, C03, C04, C05, C06, C07, C09 A02, A03, A05, A06, A09 A07 A01, A10 A08 B06	out of frame) VH gene 1-15*01 1-55*01 1-78*01 1-78*01 5-17*01 5-17*01 5-17*01 5-17*01 2-5*01 5-12*01 5-12*01 5-12*01 5-6*01	Identity to germline 100% 99.65% 100% 99.65% 100% 100% 99.65% 99.65% 99.65% 99.65%	D gene 1-1*01 1-1*01 1-1*01 2-12*01 2-5*01 2-4*01 1-1*01 1-3*01 2-3*01 3-2*02 3-2*02 4-1*01 1-1*01	J gene 2*01 2*01 2*01 2*01 3*01 3*01 3*01 4*01 4*01 1*03	CDR3 [‡] CITTVVABYFDYW CITTVVABYFDYW CARGY <mark>YYGSS</mark> YFDYW CARNW CAIYYRYFDVW CAMAYYSNYFDYW CAKLRRFAYW CARLRFAYW CARECPL <u>T</u> WSWFAYW CARECPL <u>T</u> WSWFAYW CARHSSGYAMDYW CARHSSGYAMDYW CARHSLDLDYW CARHTTVVASYWYFDVW	pI 5.45 5.45 6.14 8.25 6.14 3.75 10.02 4.44 6.10 6.14 7.17 7.17 5.61 7.17	DNA ¹² Thymocyte ¹¹ DNA ¹³
DTG M19	E06, E07, E10, E08 Clone #(s) B01, B02 B03, B14 B05, B11 B07 B04 B08 B15 C10 C00 C02, C03, C04, C05, C06, C07, C09 A02, A03, A05, A06, A09 A07 A01, A10 A08 B06 C01, C02, C05, C07,	out of frame) VH gene 1-15*01 1-5*01 1-5**01 1-5**01 5-17*01 5-17*01 5-17*01 5-17*01 5-17*01 5-17*01 5-12*01 5-12*01 5-12*01 5-6*01 1-9*01	Identity to germline 100% 99.65% 100% 99.65% 100% 100% 99.65% 99.65% 100% 100% 99.65% 99.65% 99.65% 99.65%	D gene 1-1*01 1-1*01 1-1*01 2-5*01 2-4*01 1-1*01 3-2*02 3-2*02 4-1*01 1-1*01 1-1*01	J gene 2*01 2*01 2*01 2*01 3*01 3*01 3*01 4*01 4*01 4*01 1*03 3*01	CDR3 [‡] CITTVVABYFDYW CITTVVABYFDYW CARGY Y GSS YFDYW CARGY Y GSS YFDYW CARW CARYYSNYFDVW CARYYSNYFDYW CARATTTVVAPDYW CARECPL <u>T</u> WSWFAYW CARHSSGYAMDYW CARHSSGYAMDYW CARHSSGYAMDYW CARHSSGYAMDYW CARHSSGYAMDYW CARHSSGYAMDYW CARHTVVASYWYFDVW CARDYGSSYGGFAYW	pI 5.45 5.45 6.14 8.25 6.14 3.75 10.02 4.44 6.10 6.14 7.17 7.17 5.61 7.17 6.14	DNA ¹² Thymocyte ¹¹ DNA ¹³
DTG M19	E06, E07, E10, E08 Clone #(s) B01, B02 B03, B14 B05, B11 B07 B04 B08 B15 C10 C01 C02, C03, C04, C05, C06, C07, C09 A02, A03, A05, A06, A09 A07 A01, A10 A08 B06 C01, C02, C05, C07, C08, C09-2	out of frame) VH gene 1-15*01 1-55*01 1-55*01 1-78*01 5-17*01 5-17*01 5-17*01 5-17*01 5-17*01 5-17*01 5-12*01 5-12*01 5-12*01 5-6*01 1-9*01 2-2*01	Identity to germline 100% 99.65% 100% 99.65% 100% 100% 99.65% 99.65% 99.65% 99.65% 99.65% 99.65% 99.65% 99.31%	D gene 1-1*01 1-1*01 1-1*01 2-12*01 2-5*01 2-4*01 1-1*01 3-2*02 3-2*02 4-1*01 1-1*01 1-1*01 2-4*01	J gene 2*01 2*01 2*01 1*03 2*01 3*01 2*01 3*01 4*01 4*01 4*01 1*03 3*01 2*01 2*01 3*01	CDR3 [‡] CITTVVABYFDYW CITTVVABYFDYW CARGY Y GSS YFDYW CARGY Y GSS YFDYW CARW CARYYSNYFDVW CARYYSNYFDYW CARATITTVVAPDYW CARECPL <u>T</u> WSWFAYW CARHSSGYAMDYW CARHSSGYAMDYW CARHSSGYAMDYW CARHSSGYAMDYW CARHGLDLDYW CARHTVVASYWYFDVW CARYDYAAYYFDYW	pI 5.45 5.45 6.14 8.25 6.14 3.75 10.02 4.44 6.10 6.14 7.17 7.17 5.61 7.17 6.14 4.44	DNA ¹² Thymocyte ¹¹ DNA ¹³
DTG M19	E06, E07, E10, E08 Clone #(s) B01, B02 B03, B14 B05, B11 B07 B04 B08 B15 C10 C01 C02, C03, C04, C05, C06, C07, C09 A02, A03, A05, A06, A09 A07 A01, A10 A08 B06 C01, C02, C05, C07, C08, C09-2 C03, C04, C06 B08, B10	out of frame) VH gene 1-15*01 1-55*01 1-55*01 1-78*01 5-17*01 5-17*01 5-17*01 5-17*01 5-17*01 5-17*01 5-12*01 5-12*01 5-6*01 1-9*01 2-2*01 2-2*01 1-70*01(ψ)	Identity to germline 100% 99.65% 100% 99.65% 100% 100% 99.65% 99.65% 99.65% 99.65% 99.65% 99.31% 100% 99.65% 99.65%	D gene 1-1*01 1-1*01 1-1*01 none 2-12*01 2-5*01 2-4*01 1-1*01 3-2*02 3-2*02 4-1*01 1-1*01 2-4*01 2-4*01 1-1*01	J gene 2*01 2*01 2*01 2*01 3*01 2*01 3*01 3*01 4*01 4*01 4*01 2*01 1*03 3*01 2*01 1*03	CDR3 [‡] CITTVVABYFDYW CITTVVABYFDYW CARGY <mark>Y GSS</mark> YFDYW CARGY YSSYFDYW CARWW CAIYYRYFDVW CAMAYYSNYFDYW CAMAYYSNYFDYW CARECPL <u>T</u> WSWFAYW CARECPL <u>T</u> WSWFAYW CARHSSGYAMDYW CARHSSGYAMDYW CARHSSGYAMDYW CARHGLDLDYW CARHTVVASYWYFDVW CARYDYAAYYFDYW CARYDYAAYYFDYW CARYDYAAYYFDYW	pI 5.45 5.45 6.14 8.25 6.14 3.75 10.02 4.44 6.10 6.14 7.17 7.17 5.61 7.17 6.14 4.44 4.44 4.44 6.14-7.17	DNA ¹² Thymocyte ¹¹ DNA ¹³
DTG M19	E06, E07, E10, E08 Clone #(s) B01, B02 B03, B14 B05, B11 B07 B04 B08 B15 C10 C01 C02, C03, C04, C05, C06, C07, C09 A02, A03, A05, A06, A09 A07 A01, A10 A08 B06 C01, C02, C05, C07, C08, C09-2 C03, C04, C06	out of frame) VH gene 1-15*01 1-55*01 1-55*01 1-55*01 1-57*01 5-17*01 5-17*01 5-17*01 5-17*01 5-17*01 5-17*01 5-12*01 5-12*01 5-12*01 5-6*01 1-9*01 2-2*01 2-2*01	Identity to germline 100% 99.65% 100% 99.65% 100% 100% 99.65% 99.65% 99.65% 99.65% 99.65% 99.31% 100% 99.65%	D gene 1-1*01 1-1*01 1-1*01 2-12*01 2-5*01 2-4*01 1-1*01 3-2*02 3-2*02 4-1*01 1-1*01 1-1*01 2-4*01 2-4*01	J gene 2*01 2*01 2*01 1*03 3*01 2*01 3*01 3*01 4*01 4*01 4*01 2*01 1*03 3*01 2*01 3*01 2*01 2*01 3*01 2*01 2*01 3*01 2*01 2*01 3*01 2*0	CDR3 [‡] CITTVVABYFDYW CITTVVABYFDYW CARGY <mark>Y GSS</mark> YFDYW CARGY YSSYFDYW CARYYRYFDVW CANAYYSNYFDYW CARAYYSNYFDYW CARLRFAYW CARLTTVVAPDYW CARECPL <u>T</u> WSWFAYW CARHSSGYAMDYW CARHSSGYAMDYW CARHSSGYAMDYW CARHSSGYAMDYW CARHGLDLDYW CARHGLDLDYW CARHTVVASYWYFDVW CARYDYAAYYFDYW CARYDYAAYYFDYW CARFYYGSSWYFDVW	pI 5.45 5.45 6.14 8.25 6.14 3.75 10.02 4.44 6.10 6.14 7.17 7.17 5.61 7.17 6.14 4.44 4.44	DNA ¹² Thymocyte ¹¹ DNA ¹³
DTG M19	E06, E07, E10, E08 Clone #(s) B01, B02 B03, B14 B05, B11 B07 B04 B08 B15 C10 C01 C02, C03, C04, C05, C06, C07, C09 A02, A03, A05, A06, A09 A07 A01, A10 A08 B06 C01, C02, C05, C07, C08, C09-2 C03, C04, C06 B08, B10 A03, A07, A10, A11	out of frame) VH gene 1-15*01 1-55*01 1-55*01 1-78*01 5-17*01 5-17*01 5-17*01 5-17*01 5-17*01 5-12*01 5-12*01 5-6*01 1-9*01 2-2*01 2-2*01 2-2*01 1-70*01(ψ) 5-6*01	Identity to germline 100% 99.65% 100% 99.65% 100% 100% 99.65% 99.65% 99.65% 99.65% 99.65% 99.65% 99.65% 99.65%	D gene 1-1*01 1-1*01 none 2-12*01 2-4*01 1-1*01 1-3*01 2-3*01 3-2*02 3-2*02 4-1*01 1-1*01 1-1*01 2-4*01 2-4*01 2-1*01 2-1*01	J gene 2*01 2*01 2*01 2*01 3*01 2*01 3*01 3*01 4*01 4*01 4*01 1*03 3*01 2*01 1*03 3*01	CDR3 [‡] CITTVVABYFDYW CITTVVABYFDYW CARGY <mark>YYGSS</mark> YFDYW CARNW CAIYYRYFDVW CAMAYYSNYFDYW CAMAYYSNYFDYW CARLRFAYW CARDITTVVAPDYW CARECPL <u>T</u> WSWFAYW CARHSSGYAMDYW CARHSSGYAMDYW CARHSSGYAMDYW CARHSLDLDYW CARHSLDLDYW CARHSCARYW CARHYGSSWYFDVW CARYDYAAYYFDYW CARFYYGSSWYFDVW CARHYGNYWFAYW CARHYGNYWFAYW	pI 5.45 5.45 6.14 8.25 6.14 3.75 10.02 4.44 6.10 6.14 7.17 7.17 5.61 7.17 6.14 4.44 4.44 4.44 6.14-7.17 8.22 8.22	DNA ¹² Thymocyte ¹¹ DNA ¹³
DTG M19	Clone #(s) B01, B02 B03, B14 B05, B11 B07 B04 B08 B15 C10 C01, C02, C03, C04, C05, C06, C07, C09 A02, A03, A05, A06, A09 A07 A01, A10 A08 B06 C01, C02, C05, C07, C08, C09-2 C03, C04, C06 B08, B10 A03, A07, A10, A11 A04, A08 A09	out of frame) VH gene 1-15*01 1-15*01 1-55*01 1-78*01 5-17*01 5-17*01 5-17*01 5-17*01 5-17*01 2-5*01 5-12*01 5-12*01 5-6*01 1-9*01 2-2*01 2-2*01 1-70*01(ψ) 5-6*01 5-6*01	Identity to germline 100% 99.65% 100% 99.65% 100% 100% 99.65% 99.65% 99.65% 99.65% 99.65% 99.65% 99.65% 99.65% 99.65% 99.65% 99.65%	D gene 1-1*01 1-1*01 1-1*01 2-12*01 2-5*01 2-4*01 1-3*01 2-3*01 3-2*02 3-2*02 4-1*01 1-1*01 2-4*01 2-4*01 2-1*01 2-1*01 2-1*01	J gene 2*01 2*01 2*01 2*01 3*01 3*01 3*01 4*01 4*01 4*01 2*01 1*03 3*01 2*01 2*01 3*01	CDR3 [‡] CITTVVABYFDYW CITTVVABYFDYW CARGY <mark>YYGSS</mark> YFDYW CARGYYYFDVW CARW CAIYYRYFDVW CAMAYYSNYFDYW CAMAYYSNYFDYW CARLECPL <u>T</u> WSWFAYW CARECPL <u>T</u> WSWFAYW CARHSSGYAMDYW CARHSSGYAMDYW CARHSSGYAMDYW CARHSSGYAMDYW CARHTVVASYWYFDVW CARHTVVASYWYFDYW CARYDYAAYYFDYW CARHYGSSWYFDVW CARHYGNYWFAYW CARHYGNYWFAYW CARHYGNYWFAYW	pI 5.45 5.45 6.14 8.25 6.14 3.75 10.02 4.44 6.10 6.14 7.17 7.17 5.61 7.17 6.14 4.44 4.44 4.44 6.14-7.17 8.22 8.22 8.22	DNA ¹² Thymocyte ¹¹ DNA ¹³
DTG M19 DTG F20	E06, E07, E10, E08 Clone #(s) B01, B02 B03, B14 B05, B11 B07 B04 B08 B15 C10 C01 C02, C03, C04, C05, C06, C07, C09 A02, A03, A05, A06, A09 A07 A01, A10 A08 B06 C01, C02, C05, C07, C08, C09-2 C03, C04, C06 B08, B10 A03, A07, A10, A11 A04, A08	out of frame) VH gene 1-15*01 1-15*01 1-58*01 5-17*01 5-17*01 5-17*01 5-17*01 5-17*01 2-5*01 5-12*01 5-12*01 5-12*01 5-6*01 1-9*01 2-2*01 1-70*01(ψ) 5-6*01 5-6*01 5-6*01 5-6*01 5-6*01	Identity to germline 100% 99.65% 100% 99.65% 100% 100% 99.65% 99.65% 99.65% 99.65% 99.65% 99.31% 100% 99.65% 99.65%	D gene 1-1*01 1-1*01 none 2-12*01 2-4*01 1-1*01 1-3*01 2-3*01 3-2*02 3-2*02 4-1*01 1-1*01 1-1*01 2-4*01 2-4*01 2-1*01 2-1*01	J gene 2*01 2*01 2*01 2*01 3*01 3*01 3*01 4*01 4*01 4*01 1*03 3*01 2*01 1*03 3*01 3*01 2*01 3*01	CDR3 [‡] CITTVVABYFDYW CITTVVABYFDYW CARGY <mark>YYGSS</mark> YFDYW CARNW CAIYYRYFDVW CAMAYYSNYFDYW CAMAYYSNYFDYW CARLRFAYW CARDITTVVAPDYW CARECPL <u>T</u> WSWFAYW CARHSSGYAMDYW CARHSSGYAMDYW CARHSSGYAMDYW CARHSLDLDYW CARHSLDLDYW CARHSCARYW CARHYGSSWYFDVW CARYDYAAYYFDYW CARFYYGSSWYFDVW CARHYGNYWFAYW CARHYGNYWFAYW	pI 5.45 5.45 6.14 8.25 6.14 3.75 10.02 4.44 6.10 6.14 7.17 7.17 5.61 7.17 6.14 4.44 4.44 4.44 6.14-7.17 8.22 8.22	DNA ¹² Thymocyte ¹¹ DNA ¹³
DTG M19 DTG F20	Clone #(s) B01, B02 B03, B14 B05, B11 B07 B04 B08 B15 C10 C01, C02, C03, C04, C05, C06, C07, C09 A02, A03, A05, A06, A09 A07 A01, A10 A08 B06 C01, C02, C05, C07, C08, C09-2 C03, C04, C06 B08, B10 A03, A07, A10, A11 A04, A08 A09	out of frame) VH gene 1-15*01 1-5*01 1-5*01 1-5*01 1-5*01 1-5*01 5-17*01 5-17*01 5-17*01 5-17*01 5-17*01 2-5*01 5-12*01 5-12*01 5-12*01 5-12*01 5-6*01 1-9*01 2-2*01 1-70*01(\psi) 5-6*01 5-6*01 5-6*5*01	Identity to germline 100% 99.65% 100% 99.65% 100% 100% 99.65% 99.65% 99.65% 99.65% 99.65% 99.65% 99.65% 99.65% 99.65% 99.65% 99.65%	D gene 1-1*01 1-1*01 1-1*01 2-12*01 2-5*01 2-4*01 1-3*01 2-3*01 3-2*02 3-2*02 4-1*01 1-1*01 2-4*01 2-4*01 2-1*01 2-1*01 2-1*01	J gene 2*01 2*01 2*01 2*01 3*01 3*01 3*01 4*01 4*01 4*01 2*01 1*03 3*01 2*01 2*01 3*01	CDR3 [‡] CITTVVABYFDYW CITTVVABYFDYW CARGY <mark>YYGSS</mark> YFDYW CARGYYYFDVW CARW CAIYYRYFDVW CAMAYYSNYFDYW CAMAYYSNYFDYW CARLECPL <u>T</u> WSWFAYW CARECPL <u>T</u> WSWFAYW CARHSSGYAMDYW CARHSSGYAMDYW CARHSSGYAMDYW CARHSSGYAMDYW CARHTVVASYWYFDVW CARHTVVASYWYFDYW CARYDYAAYYFDYW CARHYGSSWYFDVW CARHYGNYWFAYW CARHYGNYWFAYW CARHYGNYWFAYW	pI 5.45 5.45 6.14 8.25 6.14 3.75 10.02 4.44 6.10 6.14 7.17 7.17 5.61 7.17 6.14 4.44 4.44 4.44 6.14-7.17 8.22 8.22 8.22	DNA ¹² Thymocyte ¹¹ DNA ¹³
DTG M19	Clone #(s) B01, B02 B03, B14 B05, B11 B07 B04 B08 B15 C10 C01, C02, C03, C04, C05, C06, C07, C09 A02, A03, A05, A06, A09 A07 A01, A10 A08 B06 C01, C02, C05, C07, C08, C09-2 C03, C04, C06 B08, B10 A03, A07, A10, A11 A04, A08 A09	out of frame) VH gene 1-15*01 1-15*01 1-58*01 5-17*01 5-17*01 5-17*01 5-17*01 5-17*01 2-5*01 5-12*01 5-12*01 5-12*01 5-6*01 1-9*01 2-2*01 1-70*01(ψ) 5-6*01 5-6*01 5-6*01 5-6*01 5-6*01	Identity to germline 100% 99.65% 100% 99.65% 100% 100% 99.65% 99.65% 99.65% 99.65% 99.65% 99.65% 99.65% 99.65% 99.65% 99.65% 99.65%	D gene 1-1*01 1-1*01 1-1*01 2-12*01 2-5*01 2-4*01 1-3*01 2-3*01 3-2*02 3-2*02 4-1*01 1-1*01 2-4*01 2-4*01 2-1*01 2-1*01 2-1*01	J gene 2*01 2*01 2*01 2*01 3*01 3*01 3*01 4*01 4*01 4*01 2*01 1*03 3*01 2*01 2*01 3*01	CDR3 [‡] CITTVVABYFDYW CITTVVABYFDYW CARGY <mark>YYGSS</mark> YFDYW CARGYYYFDVW CARW CAIYYRYFDVW CAMAYYSNYFDYW CAMAYYSNYFDYW CARLECPL <u>T</u> WSWFAYW CARECPL <u>T</u> WSWFAYW CARHSSGYAMDYW CARHSSGYAMDYW CARHSSGYAMDYW CARHSSGYAMDYW CARHTVVASYWYFDVW CARHTVVASYWYFDYW CARYDYAAYYFDYW CARHYGSSWYFDVW CARHYGNYWFAYW CARHYGNYWFAYW CARHYGNYWFAYW	pI 5.45 5.45 6.14 8.25 6.14 3.75 10.02 4.44 6.10 6.14 7.17 7.17 5.61 7.17 6.14 4.44 4.44 4.44 6.14-7.17 8.22 8.22 8.22	DNA ¹² Thymocyte ¹¹ DNA ¹³

[†] VH genes highlighted in yellow appear in both Eµ-TCL1 and DTG mice; VH genes in bold red font were also identified in sequences analyzed by Yan *et al.*¹⁶. Pseudogenes are indicated by (ψ).

Tail *et al.* 1 recovere the interaction of (ψ).
 CDR3 sequences highlighted in green appear in both Eµ-TCL1 and DTG mice and were also identified in sequences analyzed by Yan *et al.*¹⁶ Mutated amino acid residues are underlined. Frameshift mutations and in-frame stop codons are indicated by (#) and (*), respectively.
 Sm, Smith antigen

Table S2. Analysis of IgVL sequences from ill $\ensuremath{\text{E}\mu\text{-}\text{TCL1}}$ and DTG mice

Mouse ID	Clone #(s)	Vĸ gene [†]	Identity to germline	Jk gene	CDR3 [‡]	pI	¥ Vк gene reported reactivitv
viouse ID			100%	2*01	CQQ <mark>GSSIP</mark> RTF	8.25	DNA ^{17,18} , PtC ¹⁹
	01,12,03,05,06, 08, 09	4-91*01			COO <mark>GSSIP</mark> RTF		DNA ^{17,18} , PtC ¹⁹
Eµ-TCL1	11	4-91*01	100%	4*01		8.25	$DNA^{17,18}$, PtC ¹⁹
M1	07	4-91*01	99.61%	2*01	CQQ <mark>GSSIP</mark> RTF	8.25	DNA ^{MA} , PtC
	02	1-133*01	99.63	2*01	CVQG <u>A</u> HFPYTF	7.17	20
	01,10,11,12,02,04,06,07	1-117*01	100%	4*01	CFQGSHVPLTF	7.17	Myeloperoxidase ²⁰ , DNA ^{9,13,18}
μ-TCL1	08	1-117*01	99.63%	4*01	CFQGSHVPLTF	7.17	
F13	09	1-117*01	97.41%	4*01	CFQGSHVPLTF	7.17	phosphocholine ²¹
	01,03,05,08,09,06	12-89*01	100%	2*01	CQNVLSTPPTF	5.49	
	10	12-89*01	99.61	2*01	CQNVLSTPPTF	5.49	
µ-TCL1	02	14-126*01	99.22%	1*01	CLQ <mark>HGESP</mark> WTF	5.45	Br-treated RBCs ²² , PtC ¹
F26	04, 07	14-126*01	100%	1*01	CLQ <mark>HGESP</mark> WTF	5.45	Br-treated RBCs ²² , PtC ¹
	04,05,07,09	<mark>4-91*01</mark>	100%	4*01	CQQ <mark>GSSIP</mark> RTF	8.25	DNA ^{17,18} , PtC ³
	06,08	<mark>4-91*01</mark>	99.61%	4*01	CQQ <mark>GSSIP</mark> RTF	8.25	DNA ^{17,18} , PtC ³
TG M19	11	4-91*01	100%	2*01	CQQ <mark>GSSIP</mark> RTF	8.25	DNA ^{17,18} , PtC ³
	02	<mark>4-91*01</mark>	100%	4*01	CQQ <mark>GSSIP</mark> RTF	8.25	DNA ^{17,18} , PtC ³
	03	3-2*01	100%	2*01	CQQ <u>SKEVP</u> YTF	6.15	DNA ^{2,7}
	01	14-126*01	100%	2*01	CLQ <mark>HGESP</mark> YTF	5.45	Br-treated RBCs ²² , PtC ¹
	10,11,13,14,04,07	14-126*01	100%	2*01	CLQ <mark>HGESP</mark> YTF	5.45	Br-treated RBCs ²² , PtC
	12	14-126*01	99.61%	2*01	CLQ <mark>HGESP</mark> YTF	5.45	Br-treated RBCs ²² , PtC ¹
TG F20	08	14-126*01	99.61	2*01	CL <u>R<mark>HGESP</mark>YTF</u>	7.17	Br-treated RBCs ²² , PtC
	05	4-77*01 (ψ)	100%	4*01	CQQWSSSPP#F	NR	
	06	4-77*01 (V)	99.60%	4*01	CQQWSSSPP#F	NR	
	14,08	14-126*01	100%	2*01	CLQ HGESP YTF	5.45	Br-treated RBCs22, PtC1
	02,05,06	14-126*01	99.61%	2*01	CLQ <mark>HGESP</mark> YTF	5.45	Br-treated RBCs22, PtC1
	07	14-126*01	100%	2*01	CLQ <mark>HGESP</mark> YT	not identified	Br-treated RBCs22, PtC1
	01	19-93*01	100%	1*01	CLQYDNLRTF	6.15	Sm ⁸ , DNA ¹³
	11	4-91*01	99.61%	5*01	COOGSSIPLTF	5.49	DNA ^{17,18} , PtC ¹⁹
TG F29	09	4-68*01	100%	5*01	COOWSSNPLTF	5.49	DNA ⁹
	at at	1-135*01					
		(unproductive,					
	03	out of frame)	100%	1*01	CWQGTHFP##TF	NR	DNA ^{9,10,13,17}

[†] V κ genes highlighted in yellow appear in both E μ -TCL1 and DTG mice; V κ genes in bold red font were also identified in sequences analyzed by Yan *et al.*¹⁶. Pseudogenes are indicated by (ψ).

Yan *et al.*⁽¹⁾. Pseudogenes are indicated by (ψ).
CDR3 sequences highlighted in green appear in both Eµ-TCL1 and DTG mice and were also identified in sequences analyzed by Yan *et al.*¹⁶
Frameshift mutations are indicated by (#). ¥

PtC, phosphatidylcholine; Br-treated RBCs, bromelain-treated red blood cells; Sm, Smith antigen;

Gene symbol	DTG/dnRAG1	Gene description
Neto2	5.26	neuropilin (NRP) and tolloid (TLL)-like 2
Vash2	1.88	vasohibin 2
Tubb3	1.86	tubulin, beta 3
Crip1	1.69	cysteine-rich protein 1 (intestinal)
Pdcd11g2	1.69	programmed cell death 1 ligand 2
Myadm	1.67	myeloid-associated differentiation marker
Fjx1	1.66	four jointed box 1 (Drosophila)
Tagln2	1.59	transgelin 2
Mid1	1.53	midline 1
Murc	1.48	muscle-related coiled-coil protein
Vim	1.48	vimentin
Olfr767	1.46	olfactory receptor 767
Tyrobp	1.45	TYRO protein tyrosine kinase binding protein
Cln3	1.44	ceroid lipofuscinosis, neuronal 3, juvenile (Batten, Spielmeyer-Vogt disease)
Lrrc8c	1.38	leucine rich repeat containing 8 family, member C
2010204K13Rik	1.34	RIKEN cDNA 2010204K13 gene
Nid1	1.34	nidogen 1
Ptk2	1.34	PTK2 protein tyrosine kinase 2
Gpr176	1.32	G protein-coupled receptor 176
Mad212	1.31	MAD2 mitotic arrest deficient-like 2 (yeast)
Rtn4rl1	1.31	reticulon 4 receptor-like 1
Ppp3ca	1.3	protein phosphatase 3, catalytic subunit, alpha isoform
Mirhg1	1.27	microRNA host gene 1 (non-protein coding)
Jup	1.26	junction plakoglobin
Vapb	1.23	vesicle-associated membrane protein, associated protein B and C
Slamf6	-1.33	SLAM family member 6
Cyb5b	-1.35	cytochrome b5 type B
Il2rb	-1.36	interleukin 2 receptor, beta chain
Trim7	-1.39	tripartite motif-containing 7
Hmgn3	-1.41	high mobility group nucleosomal binding domain 3
LOC635992	-1.44	similar to ubiquitin-conjugating enzyme E2 variant 2
Olfr99	-1.44	olfactory receptor 99
Rnu12	-1.45	RNA U12, small nuclear // RNA U12, small nuclear
Gm4383	-1.49	predicted gene 4383
4933404M02Rik		
	-1.52	RIKEN cDNA 4933404M02 gene
Pcp4	-1.6	Purkinje cell protein 4
Mpeg1	-1.63	macrophage expressed gene 1
Ferl5	-1.7	Fc receptor-like 5
Gm7285	-1.71	predicted gene 7285
V165-D-J-C mu	-1.76	IgM variable region
Mctp2	-1.77	multiple C2 domains, transmembrane 2
Ipcef1	-1.78	interaction protein for cytohesin exchange factors 1
Clec2d	-1.83	C-type lectin domain family 2, member d
Gm9912	-1.89	predicted gene 9912
Zfp420	-1.92	zinc finger protein 420
Slc15a2	-2.06	solute carrier family 15 (H+/peptide transporter), member 2
EG665955	-2.25	predicted gene, EG665955
Gm5571	-2.27	predicted gene 5571 // predicted gene 5571
Igj	-2.35	immunoglobulin joining chain
Lmo7	-3.14	LIM domain only 7

Table S3. Top 50 differentially expressed genes between 12 week dnRAG1 and DTG mice

		Fold change		
Gene Symbol	dnRAG1/WT	EµTCL1/WT	DTG/WT	Gene Description
1810046K07Rik	27.28	31.4	38.48	RIKEN cDNA 1810046K07 gene
Cyp11a1	11.31	14.22	26.34	cytochrome P450, family 11, subfamily a, polypeptide 1
Adm	36.41	25.5	23.38	adrenomedullin
Bmpr1a	10.04	17.82	19.52	bone morphogenetic protein receptor, type 1A
Pstpip2	25.95	53.52	18.61	proline-serine-threonine phosphatase-interacting protein 2
Bhlhe41	14.04	25.41	17.97	basic helix-loop-helix family, member e41
Ctla4	14.74	21.66	16.77	cytotoxic T-lymphocyte-associated protein 4
Vpreb3	-8.9	-13.56	-9.12	pre-B lymphocyte gene 3
Cr2	-12.25	-26.54	-10.4	complement receptor 2
Gm4955	-8.73	-12.58	-12.38	predicted gene 4955
Satb1	-9.08	-38.65	-13.07	special AT-rich sequence binding protein 1
Gpr171	-22.08	-24.98	-19.47	G protein-coupled receptor 171
Stat4	-25.5	-24.02	-21.45	signal transducer and activator of transcription 4
Lrrk2	-32.24	-37.39	-34.47	leucine-rich repeat kinase 2
I110*	11.93	12.7	13.91	interleukin 10

Table S4. Top common differentially expressed genes in older transgenic mice relative to WT mice

*II10 was not among the top 50 common differentially expressed genes in all pairwise comparisons.

Gene symbol*	DTG M53/ EµTCL1 M52 Fold change*	Gene description*
Prl2a1	269.40	prolactin family 2, subfamily a, member 1
Sox4	42.75	SRY-box containing gene 4
Prl8a2	21.45	prolactin family 8, subfamily a, member 2
Dpp4	18.78	dipeptidylpeptidase 4
Kenj5	16.97	potassium inwardly-rectifying channel, subfamily J, member 5
1300014I06Rik	14.56	RIKEN cDNA 1300014I06 gene
Rp1391	12.40	ribosomal protein L39-like
Rgs13	11.34	regulator of G-protein signaling 13
Xlr3b	11.27	X-linked lymphocyte-regulated 3B
Atp1b1	10.38	ATPase, Na+/K+ transporting, beta 1 polypeptide
Gm10561	10.21	predicted gene 10561
Tet1	10.18	tet oncogene 1
Scamp1	9.92	secretory carrier membrane protein 1
Gpr177	9.48	G protein-coupled receptor 177
Gm10384	9.15	predicted gene 10384
Wdfy3	9.00	WD repeat and FYVE domain containing 3
Atrnl1	8.60	attractin like 1
Dusp6	8.36	dual specificity phosphatase 6
Rgs18	8.26	regulator of G-protein signaling 18
1110032E23Rik	8.24	RIKEN cDNA 1110032E23 gene
Xlr3c	8.24	X-linked lymphocyte-regulated 3C
Xlr3a	7.85	X-linked lymphocyte-regulated 3A
F11r	7.68	F11 receptor
Tes Cada125	7.44	testis derived transcript
Cede125	7.25	coiled-coil domain containing 125
Zdhhc2	-8.43	zinc finger, DHHC domain containing 2
Cd68	-9.13	CD68 antigen
Cd3g	-9.21	CD3 antigen, gamma polypeptide
Gm410	-9.22	predicted gene 410
Kenn4	-9.25	potassium intermediate/small conductance calcium-activated channel, subfamily N, member 4
Fcgrt	-10.94	Fc receptor, IgG, alpha chain transporter
Igk-V28	-12.16	immunoglobulin kappa chain variable 28 (V28)
Ighv1-72	-12.48	immunoglobulin heavy variable V1-72
Apobec2	-12.89	apolipoprotein B mRNA editing enzyme, catalytic polypeptide 2
Fxyd5	-13.16	FXYD domain-containing ion transport regulator 5
Prkar2b	-13.75	protein kinase, cAMP dependent regulatory, type II beta
Fbxw13	-13.79	F-box and WD-40 domain protein 13
Ccbp2	-14.01	chemokine binding protein 2
Emr1	-14.46	EGF-like module containing, mucin-like, hormone receptor-like sequence 1
Slamf9	-15.19	SLAM family member 9
Gm5486	-17.14	predicted gene 5486
Gstt1	-17.57	glutathione S-transferase, theta 1
Anxa2	-20.23	annexin A2
Fgl2	-20.71	fibrinogen-like protein 2
LOC100047053	-21.50	similar to monoclonal antibody kappa light chain
Pdlim1	-27.54	PDZ and LIM domain 1 (elfin)
LOC674190	-30.31	similar to Ig heavy chain V region IR2 precursor
Igh	-33.42	immunoglobulin heavy chain complex
LOC100046894	-112.64	similar to Igk-C protein
V165-D-J-C mu	-317.51	IgM variable region

* Items listed in bold are found in both Tables S5 and S6

Gene symbol	DTG F57/ EµTCL1 M52 Fold change	Gene description
Prl2a1	200.97	prolactin family 2, subfamily a, member 1
Xist	95.10	inactive X specific transcripts
Prl8a2	66.42	prolactin family 8, subfamily a, member 2
Sox4	54.87	SRY-box containing gene 4
Car2	53.97	carbonic anhydrase 2
Gpr126	39.55	G protein-coupled receptor 126
Pfn2	35.98	profilin 2
Ср	34.95	ceruloplasmin
Tnip3	32.26	TNFAIP3 interacting protein 3
Fcer2a	31.59	Fc receptor, IgE, low affinity II, alpha polypeptide
		carboxypeptidase M
Cpm	30.20	
Gm10879	29.01	predicted gene 10879
Anxa1	25.91	annexin A1
Dusp4	25.75	dual specificity phosphatase 4
Abp1	23.25	amiloride binding protein 1 (amine oxidase, copper-containing)
Id2	21.62	inhibitor of DNA binding 2
Rnf128	18.68	ring finger protein 128
Fabp7	18.40	fatty acid binding protein 7, brain
Dusp6	17.93	dual specificity phosphatase 6
Slc22a21	15.49	solute carrier family 22 (organic cation transporter), member 21
Akt3	14.84	thymoma viral proto-oncogene 3
Scin	14.54	scinderin
Azgp1	13.03	alpha-2-glycoprotein 1, zinc
Igh-6	12.75	immunoglobulin heavy chain 6 (heavy chain of IgM)
Parp8	12.59	poly (ADP-ribose) polymerase family, member 8
Cln8	-6.79	ceroid-lipofuscinosis, neuronal 8
Neurod4	-7.26	neurogenic differentiation 4
Lrrc25	-7.52	leucine rich repeat containing 25
Gp49a	-7.74	glycoprotein 49 A
Tmprss13	-7.96	transmembrane protease, serine 13
Prkar2b	-8.03	protein kinase, cAMP dependent regulatory, type II beta
Emr1	-8.05	EGF-like module containing, mucin-like, hormone receptor-like sequence 1
Kdm5d	-8.51	lysine (K)-specific demethylase 5D
Sell	-9.15	selectin, lymphocyte
Cd9	-9.97	CD9 antigen
Fgl2	-10.09	fibrinogen-like protein 2
Cd3g	-10.35	CD3 antigen, gamma polypeptide
Uty	-10.71	ubiquitously transcribed tetratricopeptide repeat gene, Y chromosome
Fbxw13	-12.03	F-box and WD-40 domain protein 13
Ccbp2	-13.49	chemokine binding protein 2
Gstt1	-13.80	glutathione S-transferase, theta 1
Hpse	-13.87	heparanase
Lgals1	-14.20	lectin, galactose binding, soluble 1
V165-D-J-C mu	-14.31	IgM variable region
Igh	-16.44	immunoglobulin heavy chain complex
Cd36	-16.52	CD36 antigen
Ddx3y	-24.47	DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y-linked
Eif2s3y	-24.47	eukaryotic translation initiation factor 2, subunit 3, structural gene Y-linked
LOC674190	-24.72	similar to Ig heavy chain V region IR2 precursor
LOC100046894	-48.43	similar to Igk-C protein

Table S6. Top 50 differentially expressed genes between ill DTG mouse (F57) and Eµ-TCL1 mouse (M52)

* Items listed in bold are found in both Tables S5 and S6

SUPPLEMENTAL REFERENCES

- 1. Hassaballa AE, Palmer VL, Anderson DK, et al. Accumulation of B1-like B cells in transgenic mice over-expressing catalytically inactive RAG1 in the periphery. *Immunology*. 2011;134(4):469-486.
- 2. Bichi R, Shinton SA, Martin ES, et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. *Proc Natl Acad Sci U S A*. 2002;99(10):6955-6960.
- 3. Fusby JS, Kassmeier MD, Palmer VL, et al. Cigarette smoke-induced effects on bone marrow B-cell subsets and CD4(+):CD8(+) T-cell ratios are reversed by smoking cessation: Influence of bone mass on immune cell response to and recovery from smoke exposure. *Inhal Toxicol.* 2010; 22(9): 785-796.
- 4. Wang Z, Raifu M, Howard M, et al. Universal PCR amplification of mouse immunoglobulin gene variable regions: the design of degenerate primers and an assessment of the effect of DNA polymerase 3' to 5' exonuclease activity. *J Immunol Methods*. 2000;233(1-2):167-177.
- 5. Li C, Hung Wong W. Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. *Genome Biol*. 2001;2(8):RESEARCH0032.
- 6. Heng TS, Painter MW. The Immunological Genome Project: networks of gene expression in immune cells. *Nat Immunol.* 2008;9(10):1091-1094.
- 7. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. *Biostatistics*. 2007;8(1):118-127.
- 8. Bloom DD, Davignon JL, Retter MW, et al. V region gene analysis of anti-Sm hybridomas from MRL/Mp-lpr/lpr mice. *J Immunol*. 1993;150(4):1591-1610.
- 9. Krishnan MR, Jou NT, Marion TN. Correlation between the amino acid position of arginine in VH-CDR3 and specificity for native DNA among autoimmune antibodies. *J Immunol*. 1996;157(6):2430-2439.
- 10. Kofler R, Strohal R, Balderas RS, et al. Immunoglobulin kappa light chain variable region gene complex organization and immunoglobulin genes encoding anti-DNA autoantibodies in lupus mice. *J Clin Invest*. 1988;82(3):852-860.
- 11. Lehuen A, Bartels J, Kearney JF. Characterization, specificity, and IgV gene usage of anti-lymphocyte monoclonal antibodies from perinatal mice. *Int Immunol*. 1992;4(10):1073-1084.
- 12. Kitagawa Y, Okuhara E. The separation of three antibody populations from anti-poly(A).poly(U) antibodies elicited in mice or rabbits and antigenic features of poly(A).poly(U)). *Mol Immunol*. 1982;19(2):257-266.
- 13. Tillman DM, Jou NT, Hill RJ, Marion TN. Both IgM and IgG anti-DNA antibodies are the products of clonally selective B cell stimulation in (NZB x NZW)F1 mice. *J Exp Med.* 1992;176(3):761-779.
- 14. Mueller CM, Minnerath JM, Jemmerson R. B lymphocyte recognition of the self antigen mouse cytochrome C in different mouse strains: targeting of the same dominant epitope by naturally-occurring cells expressing distinct VH genes. *Mol Immunol*. 1997;34(12-13):843-853.
- 15. Monestier M, Kandiah DA, Kouts S, et al. Monoclonal antibodies from NZW x BXSB F1 mice to beta2 glycoprotein I and cardiolipin. Species specificity and charge-dependent binding. *J Immunol*. 1996;156(7):2631-2641.
- 16. Yan XJ, Albesiano E, Zanesi N, et al. B cell receptors in TCL1 transgenic mice resemble those of aggressive, treatment-resistant human chronic lymphocytic leukemia. *Proc Natl Acad Sci U S A*. 2006;103(31):11713-11718.
- Wloch MK, Alexander AL, Pippen AM, Pisetsky DS, Gilkeson GS. Differences in V kappa gene utilization and VH CDR3 sequence among anti-DNA from C3H-lpr mice and lupus mice with nephritis. *Eur J Immunol*. 1996;26(9):2225-2233.
- 18. Ibrahim SM, Weigert M, Basu C, Erikson J, Radic MZ. Light chain contribution to specificity in anti-DNA antibodies. *J Immunol*. 1995;155(6):3223-3233.
- 19. Pennell CA, Mercolino TJ, Grdina TA, Arnold LW, Haughton G, Clarke SH. Biased immunoglobulin variable region gene expression by Ly-1 B cells due to clonal selection. *Eur J Immunol*. 1989;19(7):1289-1295.
- 20. Jethwa HS, Clarke SH, Itoh-Lindstrom Y, Falk RJ, Jennette JC, Nachman PH. Restriction in V kappa gene use and antigen selection in anti-myeloperoxidase response in mice. *J Immunol*. 2000;165(7):3890-3897.
- 21. Guo WX, Burger AM, Fischer RT, Sieckmann DG, Longo DL, Kenny JJ. Sequence changes at the V-D junction of the VH1 heavy chain of anti-phosphocholine antibodies alter binding to and protection against Streptococcus pneumoniae. *Int Immunol*. 1997;9(5):665-677.
- 22. Reininger L, Ollier P, Poncet P, Kaushik A, Jaton JC. Novel V genes encode virtually identical variable regions of six murine monoclonal anti-bromelain-treated red blood cell autoantibodies. *J Immunol*. 1987;138(1):316-323.