
 1

Supplementary Notes

1. Parallel Low-order PC Algorithm (PLPC)

1.1. Preliminaries

We proposed a parallel constraint-based algorithm for Bayesian network learning and included it into

LegumeGRN. We consider using our previous developed LPC algorithm [1] to do parallelization for gene

network predictions. An important reason for this is that this algorithm is the pairwise conditional

independence (CI) tests used in this algorithm are easy to distribute into multicore systems and can

therefore be carried out concurrently (i.e., effective parallelization can be achieved).

Before introducing this algorithm, we will give formal notations and definitions of Bayesian Networks

(BNs) in this section. Most of information in this section can be found in most books on BNs, such as

Ref. [2].

Let V denote a non-empty finite set of random variables. A Bayesian network (BN) for V is defined by a

pair <G,Θ>.

The structural model is a directed acyclic graph (DAG) G=(V,E), in which nodes represent variables in V

(in BN, variable and node can then be used interchangeably) and the set of edges E is all edges between

nodes in V. We use the notation Xi  Xj if and only if there is a directed edge between two nodes Xi and

Xj, and Xi ― Xj if and only if there is an undirected edge between Xi and Xj. The parents of a node Xi

(written Parents(G, Xi)) is the set of nodes that have directed edges to Xi. The adjacency set of a node Xi

in graph G, denoted by Adjacencies(G, Xi), are all nodes that are directly connected to Xi by an edge. The

elements of Adjacencies(G, Xi) are also called neighbors of Xi or adjacent to Xi. We call the set of edges

connecting the k nodes a path from X1 to Xk. Xj is called a descendant of Xi, and Xi is called an ancestor of

Xj if there is a path from Xi to Xj, and Xj is called a non-descendant of Xi if Xj is not a descendant of Xi. For

each node there is a probability distribution at that node given the state of its parents in G, denoted by

P(Xi|Parents(G, Xi)). Θ are parameters specifying all these probabilities. BNs follow the Markov

condition, stating that given its parents each variable is independent of its non-descendants. Under the

Markov assumption, each BN specifies a decomposition of the joint distribution over all distributions of

the nodes, in a unique way: P(V)=ΠXiV P(Xi|Parents(G, Xi)).

It is necessary to give a brief description of the conditional independence (CI) relation. Xi and Xj are said

to be conditionally independent given S (where Xi V , Xj  V and S  V/{Xi, Xj}) if P(S) ≠ 0 and one of

the following holds: 1) P(Xi | Xj, S) = P(Xi|S) and P(Xi|S) ≠ 0, P(Xj,S) ≠ 0; 2) P(Xi|S) = 0 or P(Xj|S) = 0.

This CI relation is denoted by I(Xi, Xj|S). A CI relation is characterized by its order, which is simply the

number of variables in the conditioning set S.

A criterion called d-separation captures exactly the CI relationships that are implied by the Markov

condition. We say Xi and Xj are d-separated by a node set S V\{Xi, Xj} in G if every path between Xi and

Xj is blocked by S. A path between Xi and Xj is blocked by S if one of the following holds: (1) WS and

W does not have converging arrows along the path between Xi and Xj, or (2) W has converging arrows

along the path and neither W nor any of its descendants are in S. Here, we say a node W has converging

 2

arrows along a path if two edges on the path point to W. A probability distribution Θ on V is said to be

faithful with respect to a graph G if conditional independencies of the distribution can be inferred from

so-called d-separation in the graph G and vice-versa. More precisely, faithfulness of Θ with respect to G

means: for any Xi, Xj V with Xi ≠ Xj and any set S V\{Xi, Xj}, Xi and Xj are conditionally independent

given S if and only if node Xi and node Xj are d-separated by the set S. Based on the faithfulness

assumption, we use information theoretic measures to detect conditional independence relation, then use

the concept of d-separation to infer the structures of BNs.

The nodes Xi, Xj and Xk form a v-structure in a DAG G when XiXjXk is the subgraph of G induced by

Xi, Xj and Xk. Two DAGs are equivalent if and when they represent the same d-separation statements. The

equivalence class of a DAG G is the set of DAGs that are equivalent to G. Even given an infinite number

of observations, we cannot distinguish among the different DAGs of an equivalence class. Using

published results [3], we can characterize equivalent classes more precisely: two DAGs are equivalent if,

and only if, they have the same skeleton and the same v-structures. The skeleton of any DAG is the

undirected graph resulting from ignoring the directionality of every edge. A common tool for visualizing

equivalence classes of DAGs is a partial directed acyclic graph (PDAG), which is a graph that contains

both directed and undirected edges. There may be more than one PDAG that correspond to the same

equivalence class because extra undirected edges can be oriented sometimes. Thus, completed PDAG

(CPDAG) is proposed to represent an equivalence class uniquely [4]. The CPDAG corresponding to an

equivalence class is the PDAG consisting of a direct edge for every compelled edge in the equivalence

class, and an undirected edge for every reversible edge in the equivalence class. A directed edge Xi  Xj

is compelled in G if for every DAG G' equivalent to G, XiXj exists in G'. CPDAGs are also called

maximally oriented graphs. Several orientation rules can be used to generate a CPDAG. The connections

(edges) in a BN can be used to interpret causal relationships between nodes.

1.2. Algorithm and parallelization method

In this section, we present a new parallel algorithm for learning a PDAG from a database D with p nodes

and n cases (called sample size). In our case, D represents a microarray dataset with p genes and n

measurements/chips. The algorithm adopts similar procedures to those used in the classical PC-algorithm

(named after its authors Peter and Clark) [5] but it requires only low-order CI tests and uses parallel

computing, therefore, named a parallel low-order PC-algorithm, or PLPC. Thus, this algorithm can scale

up to a dataset with several thousand nodes.

The formal pseudo-code of the PLPC-algorithm is presented in Supplemental Table 1. In this algorithm, it

receives a dataset D, significance level ε, and maximal order ord of CI tests as input, and returns a PDAG

as output. This PLPC-algorithm consists of two phases: CI tests and an orientation phase.

In the first phase, we use ord to limit the highest order in CI tests, i.e., only 0-ord CI tests are allowed in

the algorithm. Generally, we specify ord as 2 or 3. Thus, only low-order CI tests are used in the first

phase. There are two reasons to use low-order CI tests in first phase. Firstly, only performing low-order

CI tests can restrain computational complexity. Although the PC-algorithm is able to apply for sparse

graphs with several thousands of nodes, in worst case, the order may grow to p-2 and is still infeasible for

large networks. Secondly, CI results are more reliable in low order tests. In the CI definition, to test

P(X|S), if there are many variables in the conditioning set S, there may be very few examples in the data

set that satisfies a particular value assignment for S, and P(X|S) may be inaccurate if there is noise in the

 3

examples. Similar issues may occur for P(X|Y,S). Thus, the high-order CI tests are hard to estimate if the

sample size is small.

To guarantee that causal relationships inferred by this algorithm are correct, we need to perform extra

tests in the orientation phase.

In the first phase, G is initiated as a fully connected undirected graph. Then, iterative CI tests are

performed for each connected node pair given a node subset S taken from neighbor nodes of the

connected node pairs. Under the DAG faithful assumption, correlations or non-correlations, direct or

indirect correlations between node pairs can be distinguished by CI tests. In this procedure, we used

depD(Xi, Xj|S) as a measure of the strength of the conditional dependence between Xi and Xj given S with

respect to D. In order to decide if I(Xi, Xj|S) is true or not, depD(Xi, Xj|S) runs a partial correlation

coefficient calculation when D is continuous and then uses ε as the significance level. In our algorithm,

the partial correlation coefficient calculation follows the method previously used in [5,6] and is described

in the next section.

We applied the parallel computing in the first phase. The CI tests in the constraint-based algorithm are

distributed into multiple available processors and run in parallel. The lines 9-18 are the loop of

parallelization and share the variables G and Sepset.

Comparing to our previous LPC, another modification is that the PLPC algorithm stores all the adjacent

nodes of each node into an array (a(G,Xi)) before CI tests are performed (lines 4-6). This is the same idea

used in the PC-stable algorithm [7], a recent variant of the original PC algorithm. The study [7] showed

that the skeleton inferred from this new approach is more stable.

Typically, the CI tests take most of execution time. Therefore, the running time can be significantly

reduced if CI tests are executed on several cores in parallel. Nowadays, multicore processors become the

norm, thus, we can use the parallel loop (parfor) provided by the Matlab parallel toolbox to parallelize the

lines 9-18 of Supplemental Table 1. To meet the requirements of this toolbox, we record G into two

different data structure forms, one is the adjacency matrix (or a two-dimensional array) A as usual and the

second one is one-dimensional array A1 [0 to p×(p-1)/2-1] containing the elements on upper triangle of

this adjacency matrix. Each node pair can be represented by value 1 or 0 in this one-dimensional array,

with indicating that these two nodes are connected or disconnected. The element Ai,j(i<j) in the adjacency

matrix can be converted as an index (i-1)p+j-(i-1)i/2-i in the one-dimensional array A1.

Using the adjacency matrix A, it will be easy to search adjacent nodes for each node and get related

conditioning sets in line 10 of the PLPC algorithm. This adjacency matrix will not be updated during the

parallel for loop (lines 9 to 18). Thus, it is equivalent to save the adjacent nodes for each node before CI

tests as the PC-stable algorithm.

The node pairs are distributed equally among the available processors, each processor will carry out CI

tests for assigned node pairs. The one-dimensional array A1 is shared by multiple cores, and each element

(entry) in this array is only updated by the processor which the corresponding node pair is running at.

After each parallel loop ends, the values in A will be updated according to the newest values in A1 which

reflect the newest connection status of the network G. Thus, two data structures keep consistent again

before enter next round for higher order CI tests.

 4

In the second phase, the orientation rules are applied to orient the graph skeleton. The key point of the

PLPC-algorithm is that the neighbor numbers for linked node pairs are checked before applying each

orientation rule, i.e., min(|Adjacencies(G, Xi)\{Xj}|, |Adjacencies(G, Xj)\{Xi}|) ≤ ord given the node pair

between Xi and Xj must be satisfied. This is a nontrivial step that must be completed before applying the

orientation rules in the second phase. The goal of this step is to ensure that the orientation rules in the

second phase are still correct when only 0-ord CI tests are performed in the first phase. First, the v-

structures are determined (lines 23-25 of Supplemental Table 1) for triple nodes Xi, Xj and Xk, if Xi and Xj,

and Xj and Xk are connected while Xi and Xk are not connected and XjSepset(Xi, Xk), then we can infer

directionality XiXjXk (any one of the three alternatives XiXjXk, XiXjXk and XiXjXk will

lead to I(Xi, Xk|Xj) and XjSepset(Xi, Xk), and thus cause a contradiction). The other four orientation rules

are given in lines 28-31 of the PLPC-algorithm (Supplemental Table 1). Those orientation rules (R1-R4)

are repeatedly used to determine the directions of remaining undirected edges until no more edges can be

oriented. The basic idea is to make sure that all other undirected edges can be oriented based on DAG

assumption. Based on previous theoretical analysis in [4], the completeness and correctness of those

orientation rules have been proved in [1] when only the low-order CI tests are used.

1.3. Partial correlation calculations
For conditional independence (CI) tests used in our algorithm, we followed the partial correlation

calculation used in [5,6], that is, the sample partial correlation ρX,Y|S, for any XV, YV, ZS and

SV\{X, Y}

)1)(1(2

\|,

2

\|,

\|,\|,\|,

|,

ZYXZYX

ZZYZZXZYX

YX

SS

SSS

S









 (1)

The 0th-order partial correlation ρX,Y|Ø is defined to be the regular Pearson correlation coefficient ρX,Y.

Actually, the k-th order partial correlation (i.e., with |S|=k) can be easily computed from three (k-1)th

order partial correlations. Thus, the sample partial correlation ρX,Y|S\Z can be calculated recursively by

using (1). With the assumption that all involved variables are multivariate Gaussian, the partial correlation

ρX,Y|S is zero if and only if X is conditional independent from Y given S.

For testing whether a partial correlation is zero or not, we apply Fisher’s z-transformation of the partial

correlation:




















ZYX

ZYX
YX

\|,

\|,

ˆ1

ˆ1
log

2

1
)|,(

S

S
S




z (2)

Classical decision theory yields the following rule when using significance level α. Reject the null-

hypothesis H0(X,Y|S): ρX,Y|S=0 against the two-sided alternative HA(X,Y|S): ρX,Y|S≠0 if

)2/1()|,(3 1  
SS YXm z (3)

where Φ(∙) denotes the cumulative distribution function of a Gaussian distribution with zero mean and

unit standard deviation and m is the sample size. Thus, the left-hand side of (3) is used as depD(X,Y|S) and

the right-hand side of (3) is used as the threshold ε in PLPC.

 5

2. Comparing to the related algorithm
The PC-stable algorithm [7] is a recent modification of the classic PC algorithm. In this algorithm, the

adjacency sets of all nodes are stored as a(Xi) in prior to CI tests under each order level l. The benefit of

this scenario is that a wrong edge deletion will not affect following CI tests because the mistakenly

removed edge at early stage will not change the adjacency nodes of all other nodes within a same order l,

thus, avoid more errors from CI tests. The experiments in [7] have showed that PC-stable performed

better than the original PC algorithm.

As mentioned in the last section, PLPC adopted the same idea of the PC-stable algorithm. The benefits

are two folds. Firstly, in this way, PLPC can gain performance improvement as the PC-stable. The second

one is addressing the technical constraint issue on the parallel computing. PLPC distributes the adjacency

matrix on each processor before performing CI tests, thus, it does not need to communicate between the

processors to modify the connections (edges) in the adjacency matrix (i.e., the two-dimensional array A)

when the CI tests are executed on different processors.

The main difference between the PC-stable and PLPC algorithm is the latter one, which uses parallel

computing and only carries out low order CI tests. Obviously, PLPC replaces full-order CI tests with

lower-order CI tests so as to obtain a CPDAG that can be regarded as an approximation of the results

returned by PC-stable while it can reduce the running time significantly. To check if PLPC still maintains

the similar performance as PC-stable and time efficiency, we ran several tests over simulation datasets.

3. Simulation tests

3.1. Simulation data

We followed the same procedure used in [7] to generate a random DAG with a given number of vertices p

and expected neighborhood size E(N). The vertices are topologically ordered from low to high node

number. We set E(N)=2. Only directions from a low order node to higher order nodes are allowed.

According to this probability, we generated a related adjacency matrix A for 1 if have a connection in the

lower triangle of the matrix and zeroes in the remaining entries. Next, we replaced the ones in A by

independent realizations of a Uniform ([0.1,1]) random variable. A nonzero entry Aij can be interpreted as

an edge from Xj to Xi with “strength” Aij, in the sense that X1, …, Xp can be generated as follows: X1= ε1

and

 for i=2, … , p, where ε1, … , εp are mutual independent N(0,1) random

variables. The variables X1, …, Xp then have a multivariate Gaussian distribution with mean zero and

covariance matrix , where 1 is the p×p identity matrix. Using this method, we

generated 10 datasets and each dataset includes 1000 variables and 50 samples.

We ran PC-stable and PLPC algorithms over 10 datasets using seven different threshold values, that is, α

{0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.08}. We compared the execution time with core numbers varied

from 1, 2, 4 and 8 respectively. Then, we used two measurements to do prediction accuracy comparisons.

3.2. Performance comparison results

First, we showed the average execution time used for the PLPC and PC-stable algorithms at α=0.01 for 10

runs. We ran all the tests on multiple-core AMD Opteron processor 6176 with 2.3 GHz. Supplemental

Figure 1 showed the speedup of PLPC and PC-stable relative to the number of cores. This measurement is

 6

used as a measure of the parallel efficiency and scalability. Both PLPC and PC-stable achieved a

considerable speedup thanks to parallelization. We saw speedups of 1.9×, 3.5× and 5.6× for PLPC and

speedups of 1.7 ×, 2.7× and 3.7× for PC-stable when utilizing 2 cores, 4 cores and 8 cores respectively.

PLPC got more speedups than PC-stable using parallelization. The reason is the average numbers of CI

tests assigned to each core in PLPC are less than PC-stable since we control the highest order are used for

CI tests. Thus, the differences of CI tests’ numbers on all processors are also less than PC-stable, and

some processors take less idle waiting time in PLPC. Our PLPC is even 22%, 40% and 61% faster than

PC-stable when using 2, 4 and 8 cores respectively because the computation time on higher-order CI tests

are saved in PLPC.

Second, two metrics were used to compare prediction accuracies of these two algorithms for learning

PDAG. One is the true positive (TP) number with fixed false positive (FP) numbers [8] (here 200 as the

fixed FP number) as measures of the quality of network reconstruction and second is the Structural

Hamming Distance (SHD) [9]. Both of these two metrics are used as the measurements of reconstruction

quality. Briefly, the SHD counts the number of edge insertions, deletions, and flips required to convert the

estimated PDAG into the correct representation (CPDAG) of the original DAG[10]. Thus, a large SHD

indicates a poor fit, while a small SHD indicates a good fit. The test results using these two measurements

were showed in Supplemental Figure 2. From these comparison results, we observed that two algorithms

achieved similar performance when α is varied from 0.001 to 0.02. Only differences when α values are

increased to 0.05 and 0.08. It is easy to understand that more weak connections are retained for high-order

CI tests due to higher thresholds. We noticed that PC-stable got smaller SHDs than PLPC while PLPC got

higher TP numbers for 0.05 and 0.08. It indicates that these two algorithms have very comparable

performance for this simulation tests while running time has been reduced in PLPC.

 7

Supplemental Table 1. Parallel Low-Order PC algorithm: PLPC

Input: D:

ord:

ε:

a dataset containing p nodes in n cases

the highest order can be performed in CI tests

the threshold for CI tests

Output: G: the partial directed graph over n nodes

 /* Phase 1: learn a graph skeleton */

 Form a complete connected undirected graph G with n nodes;

 Create the two-dimensional p×p arrays Sepset;

1: l:= 0;

2: repeat

3: repeat
4: for all nodes Xi in G

5: Let a(G, Xi)= Adjacencies (G, Xi)

6: end for
7: Select a new ordered pair of node Xi , Xj that are adjacent in G such that |a(G, Xi)\{Xj}| ≥ l;

8: Assign this node pair Xi , Xj into one available processor;

9: for each node pair Xi and Xj in parallel do

10: choose a new S  a (G, Xi)\{Xj} with |S|=l;

11: if depD (Xi, Xj|S)< ε then

12: Delete edge Xi and Xj in G;

13: Save S in Sepset(Xi, Xj) and Sepset(Xj, Xi);

14: end if

15: If edge Xi and Xj is deleted or all S  a(G, Xi)\{Xj} with |S|=l have been chosen then

16: exit for

17: end if

18: end for

19: until all ordered pairs of adjacent variables Xi and Xj such that |a(G, Xi)\{Xj}|≥l and S  a(G, Xi)\{Xj}

with |S|= l have been tested for conditional independence

20: l:= l+1;

21: until there is no adjacent nodes Xi, Xj satisfying | a(G, Xi)\{Xj}| ≥ l or l> ord

 /* Phase 2: Orientation */

22: for each triple of nodes Xi, Xj, Xk such that the pairs Xi, Xj and Xj, Xk are each adjacent in G but the pair

Xi, Xk are not adjacent in G

23: if min(| Adjacencies(G, Xi)\{ Xj }|,| Adjacencies(G, Xj)\{ Xi} |)≤ ord and min(| Adjacencies(G,

Xk)\{Xj}|,| Adjacencies(G, Xj)\{Xk}|)≤ ord and XjSepset(Xi, Xk) then

24: orient Xi ― Xj ― Xk into Xi Xj Xk;

25: end if

26: next

27: repeat

28: R1 Orient Xj ― Xk into Xj  Xk whenever there is arrow Xi  Xj such that Xi and Xk are nonadjacent

and min(| Adjacencies(G, Xj)\{ Xk }|, Adjacencies(G, Xk)\{ Xj }|)≤ ord;

29: R2 Orient Xi ― Xj into Xi  Xj whenever there is a chain Xi  Xk  Xj and min(| Adjacencies(G,

Xi)\{Xj}|,| Adjacencies(G, Xj)\ { Xi} |)≤ ord;

30: R3 Orient Xi ― Xj into Xi  Xj whenever there are two chains Xi ― Xk Xj and Xi ― Xl Xj such

that Xk and Xl are not adjacent and min(| Adjacencies(G, Xi)\{Xk}|,| Adjacencies(G, Xk)\ { Xi} |)≤

ord and min(| Adjacencies(G, Xi)\{Xl}|, | Adjacencies(G, Xl)\ { Xi} |)≤ ord and

min(|Adjacencies(G, Xi)\{Xj}| ,| Adjacencies(G, Xj)\ { Xi} |)≤ ord ;

31: R4 Orient Xi ― Xj into Xi  Xj and orient Xl ― Xj into Xl  Xj whenever there are two chains Xi ―Xk

 Xl and Xi ― Xj ― Xl ― Xi such that Xk and Xj are nonadjacent and min(| Adjacencies(G,

Xi)\{Xj}|,| Adjacencies(G, Xj)\ { Xi} |)≤ ord and min(| Adjacencies(G, Xl)\{Xj}|,| Adjacencies(G,

Xj)\{Xl}|)≤ ord and min(| Adjacencies(G, Xi)\{Xk}|,| Adjacencies(G, Xk)\ { Xi} |)≤ ord and min(|

Adjacencies(G, Xi)\{Xl}|,| Adjacencies(G, Xl)\ { Xi} |)≤ ord;

32: until no more edges in G can be oriented

 8

Supplemental Figure 1. Speedups of average running time over 10 datasets using the PLPC and PC-

stable algorithms with increasing number of CPU cores. We used α=0.01 in both algorithms.

 9

Supplemental Figure 2. The performance comparisons with different α thresholds for simulation tests.

(a) Average SHD values for 10 runs. (b) Average true positives (TP) under 200 false positives (FP) for 10

runs.

 10

References

1. Wang M, Augusto Benedito V, Xuechun Zhao P, Udvardi M (2010) Inferring large-scale gene

regulatory networks using a low-order constraint-based algorithm. Mol Biosyst 6: 988-998.

2. Neapolitan R (2004) Learning bayesian networks: Prentice Hall Upper Saddle River, NJ.

3. Verma T, Pearl J. Equivalence and synthesis of causal models. In: Henrion M, Shachter R, Kanal L,

Lemmer J, editors; 1990; Boston, MA, USA. Morgan Kaufmann, San Francisco, CA, USA. pp.

255-270.

4. Meek C. Causal inference and causal explanation with background Knowledge. In: Besnard P, Hanks

S, editors; 1995; Montreal, QU, Canada. Morgan Kaufmann. pp. 403-418.

5. Spirtes P, Glymour C, Scheines R (2000) Causation, Prediction, and Search: MIT Press.

6. Kalisch M, Bühlmann P (2007) Estimating High-Dimensional Directed Acyclic Graphs with the PC-

Algorithm. The Journal of Machine Learning Research 8: 613-636.

7. Colombo DM, Marloes H. (2012) A modification of the PC algorithm yielding order-independent

skeletons. Preprint at <http://arxivorg/abs/12113295>.

8. Werhli AV, Grzegorczyk M, Husmeier D (2006) Comparative evaluation of reverse engineering gene

regulatory networks with relevance networks, graphical gaussian models and bayesian networks.

Bioinformatics 22: 2523-2531.

9. Tsamardinos I, Brown LE, Aliferis CF (2006) The max-min hill-climbing Bayesian network structure

learning algorithm. Machine Learning 65: 31-78.

10. Chickering D (2002) Learning equivalence classes of Bayesian-network structures. The Journal of

Machine Learning Research 2: 445-498.

http://arxivorg/abs/12113295%3e

