Supporting Information

Chlorizidine, A Cytotoxic 5*H*-Pyrrolo[2,1-*a*]isoindol-5-one-Containing Alkaloid from a Marine *Streptomyces* sp.

Xavier Alvarez-Mico, Paul R. Jensen, William Fenical, Chambers C. Hughes*

Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California—San Diego, La Jolla, CA 92093-0204

	Page
General experimental	S4
Phylogeny of strain CNH-287	S4
Figure S1. Phylogenetic tree for strain CNH-287	S 5
Cultivation of strain CNH-287	S5
Isolation and purification of chlorizidine A (1) and B (7)	S 5
Preparation of compounds 2-6 and 8-14	S 6
Figure S2. HMBC correlations for chlorizidine A (1)	S11
Tabulated NMR data for compounds 2-10 (Tables S1-S4)	S12
Chlorizidine A (1) ¹ H NMR spectrum (500 MHz, CD ₃ CN) COSY spectrum (500 MHz, CD ₃ CN) HSQC spectrum (500 MHz, CD ₃ CN) HMBC spectrum (500 MHz, CD ₃ CN) ¹³ C NMR spectrum (75 MHz, CD ₃ CN) UV/vis spectrum (CH ₃ CN) HRESI-FT-MS (Orbit-Trap-MS)	 S16 S17 S18 S19 S20 S21 S22
Diacetyl chlorizidine A (2) ¹ H NMR spectrum (500 MHz, DMSO- <i>d</i> ₆) ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) UV/vis spectrum (CH ₃ CN) HRESI-FT-MS (Orbit-Trap-MS)	S23 S24 S25 S26

Dimethyl chlorizidine A (3)	
¹ H NMR spectrum (500 MHz, DMSO- d_6)	S27
13 C NMR (125 MHz, DMSO- d_6)	S28
UV/vis spectrum (CH ₃ CN)	S29
HRESI-FT-MS (Orbit-Trap-MS)	S30
Diisobutyryl chlorizidine A (4)	
¹ H NMR spectrum (500 MHz, DMSO- d_6)	S31
13 C NMR (125 MHz, DMSO- d_6)	S32
UV/vis spectrum (CH ₃ CN)	S33
HRESI-FT-MS (Orbit-Trap-MS)	S34
Dipivaloyl chlorizidine A (5)	
¹ H NMR spectrum (500 MHz, DMSO- d_6)	S35
13 C NMR (125 MHz, DMSO- d_6)	S36
UV/vis spectrum (CH ₃ CN)	S37
HRESI-FT-MS (Orbit-Trap-MS)	S38
Dibenzoyl chlorizidine A (6)	
¹ H NMR spectrum (500 MHz, benzene- d_6)	S39
13 C NMR (125 MHz benzene- d_6)	S40
UV/vis spectrum (CH ₃ CN)	S41
HRESI-FT-MS (Orbit-Trap-MS)	S42
Chlorizidine B (7)	
¹ H NMR spectrum (500 MHz, CD ₃ CN)	S43
HRESI-FT-MS (Orbit-Trap-MS)	S44
Diacetyl chlorizidine B (8)	
¹ H NMR spectrum (500 MHz, DMSO- d_6)	S45
13 C NMR (125 MHz, DMSO- d_6)	S46
COSY spectrum (500 MHz, DMSO- d_6)	S47
HSQC spectrum (500 MHz, DMSO- d_6)	S48
HMBC spectrum (500 MHz, DMSO- d_6)	S49
UV/vis spectrum (CH ₃ CN)	S50
HRESI-FT-MS (Orbit-Trap-MS)	S51
Thioester 9	
¹ H NMR spectrum (600 MHz, CD ₃ CN)	S52
COSY spectrum (600 MHz, CD ₃ CN)	S53
HSQC spectrum (600 MHz, CD ₃ CN)	S54
HMBC spectrum (600 MHz, CD ₃ CN)	S55
UV/vis spectrum (CH ₃ CN/water)	S56
HRESI-TOF-MS	S57

S58
S59
S60
S61
S62
S63
S64
S65
S66
S67
S68
S69
S70
S71
S72
S73
S74
S75
S76

General. Pyridine was distilled from calcium hydride prior to use, and dimethylformamide (DMF) was dried prior to use by eluting through a column of activated alumina. All other reagents and solvents were purchased commercially and were used without further purification. Organic extracts were dried with sodium sulfate. Reactions were analyzed by TLC (Merck® silica gel 60 F_{254}) or, when appropriate, an analytical 1090 Series HP system (0.7 mL min⁻¹) with UV detection (254 nm) using a C18(2) Phenomenex® Luna column (5 µm, 100 x 4.6 mm). Semi-preparative RP-HPLC purification was performed on a C8(2) Phenomenex® Luna (5 µm, 250 x 10 mm), C18(2) Phenomenex® Luna (5 µm, 250 x 10 mm) column with UV detection (254 nm). ¹H NMR spectra were recorded at 500 MHz or 600 MHz in DMSO-*d*₆ (residual solvent referenced to 2.50 ppm), CD₃CN (residual solvent referenced to 1.94 ppm), or benzene-*d*₆ (residual solvent referenced to 7.16 ppm) on a Varian Inova 500 MHz or Bruker 600 MHz NMR spectrometer. ¹³C NMR spectra were recorded at 125 MHz in DMSO-*d*₆ (referenced to 39.5 ppm), CD₃CN (referenced to 1.2 ppm) or benzene-*d*₆ (referenced to

Phylogeny of strain CNH-287. The identity of strain CNH-287 was determined by phylogenetic analysis of the 16S rRNA gene sequence. The sequence from this strain was used as a query in a BLASTn search at the NCBI database. The top hits were all members of the *Streptomyces* genus. Twenty-two of the top BLAST hits were from strains that shared 99% or greater identity with the CNH-287 sequence. Of these twenty-two strains, all that had a specified location were cultured from the marine environment, suggesting that strain CNH-287 may be part of a previously undescribed marine *Streptomyces* lineage.

A phylogeny of strain CNH-287 was built using the top five BLAST hits for this strain and a number of diverse *Streptomyces* sequences, including two from described marine *Streptomyces* lineages. Two outgroups were used that fell into the genus *Pseudonocardia*, members of the Pseudonocardiaceae which clade closely with streptomycetes in overall actinobacterial phylogenies.¹ Sequences were aligned using MUSCLE,² and a maximum likelihood phylogeny built using raxmlGUI.³ GTR+G was used as a substitution model with 100 thorough bootstraps.

⁽¹⁾ Stackebrandt, E.; Rainey, F. A.; Ward-Rainey, N. L. Int. J. Syst. Bacteriol. 1997, 47, 479-491.

⁽²⁾ Edgar, R. C. Nucleic Acids Res. 2004, 32, 1792-1797.

⁽³⁾ Silvestro, D.; Michalak, I. Org. Divers. Evol. 2011.

Figure S1. Phylogenetic tree for CNH-287.

Cultivation of strain CNH-287. The strain was cultured in 2.8 L Fernbach flasks (20 x 1 L) in a seawater-based medium (per 1 L seawater: 10 g of starch, 4 g of yeast extract, 2 g of peptone, 1 g of CaCO₃, 40 mg of Fe₂(SO₄)₃•4H₂O, 100 of mg KBr) and shaken at 230 rpm at 27 °C.

Isolation and purification of chlorizidines A (1) and B (7). After one day of a 20 L cultivation, sterilized Amberlite XAD-18 resin (20 g L^{-1}) was added. The culture and resin were shaken for six days. The resin was filtered through cheesecloth, washed with deionized water, and eluted with acetone. The acetone was removed under reduced pressure, and the resulting aqueous layer was extracted with EtOAc (3 x 400 mL). The combined extracts were concentrated to yield 1.7 g of crude extract. The extract was fractionated by column chromatography on silica gel (20 g), eluting with a step gradient of isooctane, EtOAc, and CH₃OH. The 1:1 isooctane/EtOAc fraction contained chlorizidine A (1). This sample was

further fractionated on C18 column (3 g) under vacuum, eluting with a step gradient of CH₃CN and water. Fractions 4:1 and 9:1 CH₃CN/water were purified by reversed-phase HPLC (80% CH₃CN in water, $t_R = 16 \text{ min}$, C18(2) Phenomenex® Luna, 2.5 mL min⁻¹) to afford chlorizidine A (1) (50.0 mg) as a yellow film. In a separate 20 L culture, resin was instead added at the end of the cultivation (day seven). The crude extract (2.0 g) was fractionated by column chromatography on silica gel (20 g), again eluting with a step gradient of isooctane, EtOAc, and CH₃OH. The 3:2 isooctane/EtOAc fraction contained chlorizidine A (1) and chlorizidine B (7). Chlorizidine A (1) was purified as before to yield 10.0 mg. Chlorizidine B (7) was purified by reversed-phase HPLC (70% CH₃CN in water, $t_R = 16.5 \text{ min}$, C18(2) Phenomenex® Luna, 2.5 mL min⁻¹) to give 16.0 mg as a rapidly decomposing white solid.

Chlorizidine A (1): UV/vis (CH₃CN) $\lambda_{max} = 212$ (31800), 261 (47400), 340 (7300), 356 (8500), 409 (2300); $[\alpha]_D -35$ (*c* 0.50, CH₃CN); IR (film) $\tilde{v} = 3119$, 1721, 1626 cm⁻¹; ¹H NMR see Table 1; ¹³C NMR (CD₃CN) δ 163.9, 163.0, 157.5, 136.8, 135.5, 132.7, 116.9, 113.3, 113.0, 109.7, 108.2, 106.0, 105.9, 101.9, 99.3, 53.0, 32.5, 25.4; HRESI-FT-MS (Orbit-Trap-MS): *m/z* (M+H)⁺ calcd for C₁₈H₁₁³⁵Cl₄N₂O₃ 442.9524, found 442.9511.

Chlorizidine B (7): UV/vis (CH₃CN) $\lambda_{max} = 299$; ¹H NMR see Table S1; HRESI-FT-MS (Orbit-Trap-MS): m/z (M+H)⁺ calcd for C₁₇H₁₃³⁵Cl₄N₂O₂ 416.9731, found 416.9724.

Diacetyl chlorizidine (2): To a solution of chlorizidine A (1) (9.0 mg, 0.020 mmol) in dry CH₃CN (2.0 mL) at room temperature was added dry Et₃N (85 µL, 0.61 mmol) followed by acetic anhydride (30 µL, 0.30 mmol). The mixture was stirred at rt for 3 h, then diluted with water (10 mL) and extracted with EtOAc (3 x 5 mL). The combined extracts were dried, filtered, and concentrated. The crude material was filtered on a short plug of silica gel with EtOAc. The organic layer was concentrated, and the product was purified by reversed-phase HPLC (85% CH₃CN in water, t_R = 11 min, C18(2) Phenomenex® Luna, 2.5 mL min⁻¹) to yield 5.7 mg (54%) of **2** as a yellow film: UV/vis (CH₃CN) $\lambda_{max} = 205$ (26000), 267 (38400), 303 (2200), 316 (2200), 330 (1400), 414 (1600); [α]_D –140 (*c* 0.10, CH₃CN); IR (film) $\tilde{v} = 3449$, 1767, 1628 cm⁻¹; ¹H NMR see Table S2; ¹³C NMR (CD₃CN) δ 168.7, 168.0, 167.2, 165.7, 157.9, 155.3, 154.9, 148.1, 147.5, 135.5, 134.9, 131.4, 125.8, 125.2, 117.7, 117.3, 114.6, 113.5, 113.0, 109.3, 109.2, 106.2, 100.1, 100.0, 53.0, 33.8, 33.6, 24.9, 24.8, 20.7, 20.3, 20.0, 19.6; HRESI-FT-MS (Orbit-Trap-MS): *m/z* (M+Na)⁺ calcd for C₂₂H₁₄³⁵Cl₄N₂O₅Na 548.9555, found 548.9556.

Dimethyl chlorizidine (3): To a solution of chlorizidine A (1) (8.0 mg, 0.018 mmol) in dry acetone (3.0 mL) at room temperature was added potassium carbonate (50 mg, 0.36 mmol) followed by dimethyl sulfate (21 μ L, 0.18 mmol). The mixture was stirred at rt overnight, then diluted with water (10 mL) and extracted with EtOAc (3 x 5 mL). The combined extracts were dried, filtered, and concentrated. The

crude material was filtered through a short plug of silica gel with EtOAc. The organic layer was concentrated, and the product was purified by reversed-phase HPLC (95% CH₃CN in water, $t_R = 14$ min, C18(2) Phenomenex® Luna, 2.5 mL min⁻¹) to give 7.5 mg (87%) of **3** as a yellow film: UV/vis (CH₃CN) $\lambda_{\text{max}} = 214$ (32700), 267 (56900), 330 (4900), 343 (5200), 408 (2100); [α]_D -77 (*c* 0.10, CH₃CN); IR (film) $\tilde{v} = 3421$, 2945, 2854, 1750, 1615, 1581 cm⁻¹; ¹H NMR see Table S2; ¹³C NMR (DMSO-*d*₆) δ 165.2, 164.1, 159.8, 158.7, 158.5, 137.5, 136.1, 132.1, 120.0, 116.2, 112.6, 107.4, 105.0, 100.9, 100.1, 99.2, 62.8, 61.8, 57.1, 52.7, 33.0, 25.2; HRESI-FT-MS (Orbit-Trap-MS) *m/z* (M+H)⁺ calcd for C₂₀H₁₅³⁵Cl₄N₂O₃ 470.9837, found 470.9833.

Diisobutyryl chlorizidine (4): To a solution of chlorizidine A (1) (4.5 mg, 0.010 mmol) in dry CH₃CN (1.5 mL) at room temperature was added dry Et₃N (27 µL, 0.20 mmol) followed by isobutyryl chloride (10 µL, 0.10 mmol). The mixture was stirred at rt for 3 h, then diluted with water (10 mL) and extracted with EtOAc (3 x 5 mL). The combined extracts were dried, filtered, and concentrated. The crude material was filtered on a short plug of silica gel with EtOAc. The organic layer was concentrated, and the product was purified by reversed-phase HPLC (95% CH₃CN in water, t_R = 12 min, C18(2) Phenomenex® Luna, 2.5 mL min⁻¹) to give 4.2 mg (72%) of **4** as a yellow film: UV/vis (CH₃CN) λ_{max} = 205 (34000), 267 (53500), 303 (3700), 316 (3700), 330 (3300), 414 (2300); [α]_D –100 (*c* 0.10, CH₃CN); IR (film) \tilde{v} = 2979, 2938, 1627 cm⁻¹; ¹H NMR Table S2; ¹³C NMR (DMSO-*d*₆) δ 174.3, 174.2, 173.7, 173.2, 171.5, 157.9, 157.8, 155.7, 155.1, 155.0, 148.6, 148.3, 147.6, 135.4, 135.1, 135.0, 134.9,131.5, 131.4, 131.3, 125.4, 125.2, 125.0, 119.0, 118.4, 117.7, 117.2, 114.4, 113.6, 113.5, 113.4, 113.2, 112.9, 109.5, 109.3, 109.2, 109.0, 106.5, 106.4, 100.3, 100.2, 100.1, 54.4, 53.5, 53.3, 33.8, 33.7, 33.4, 33.3, 33.2, 32.9, 32.7, 24.9, 24.8, 24.4, 19.0, 18.6, 18.5, 18.3, 17.8, 17.7, 17.5; HRESI-FT-MS (Orbit-Trap-MS) *m/z* (M+Na)⁺ calcd for C₂₆H₂₂³⁵Cl₄N₂O₅Na 605.0181, found 605.0174.

Dipivaloyl chlorizidine (5): To a solution of chlorizidine A (1) (4.5 mg, 0.010 mmol) in dry CH₃CN (1.5 mL) at room temperature was added dry Et₃N (27 µL, 0.20 mmol) followed by pivaloyl chloride (12 µL, 0.10 mmol). The mixture was stirred at rt for 3 h, then diluted with water (10 mL) and extracted with EtOAc (3 x 5 mL). The combined extracts were dried, filtered, and concentrated. The crude material was filtered on a short plug of silica gel with EtOAc. The organic layer was concentrated, and the product was purified by reversed-phase HPLC (97% CH₃CN in water, t_R = 13 min, C18(2) Phenomenex® Luna, 2.5 mL min⁻¹) to give 4.7 mg (77%) of **5** as a yellow film: UV/vis (CH₃CN) $\lambda_{max} = 205$ (36000), 267 (56700), 303 (4300), 316 (4300), 330 (2400), 414 (2400); [α]_D –57 (*c* 0.10, CH₃CN); IR (film) $\tilde{v} = 3401$, 2976, 1761, 1627 cm⁻¹; ¹H NMR Table S2; ¹³C NMR (DMSO-*d*₆) δ 175.7, 175.4, 173.6, 158.0, 157.9, 156.4, 155.7, 155.4, 149.3, 149.0, 147.9, 135.4, 135.3, 135.2, 134.8, 131.4, 131.3, 124.2, 124.1, 118.7,

118.1, 117.8, 117.3, 117.2, 114.1 113.7, 113.6, 113.5, 113.2, 113.0, 109.7, 109.6, 109.3, 109.2, 109.1, 107.1, 106.7, 106.6, 100.6, 100.5, 55.0, 54.3, 53.8, 26.8, 26.7, 26.5, 26.4, 26.3, 24.6; HRESI-FT-MS (Orbit-Trap-MS) m/z (M+Na)⁺ calcd for C₂₈H₂₆³⁵Cl₄N₂O₅Na 633.0494, found 633.0487.

Dibenzoyl chlorizidine (6): To a solution of chlorizidine A (1) (8.0 mg, 0.018 mmol) in dry CH₃CN (3 mL) at room temperature was added dry Et₃N (50 µL, 0.36 mmol) followed by benzoyl chloride (21 µL, 0.18 mmol). The mixture was stirred at rt for 3 h, then diluted with water (10 mL) and extracted with EtOAc (3 x 5 mL). The combined extracts were dried, filtered, and concentrated. The crude material was filtered on a short plug of silica gel with EtOAc. The organic layer was concentrated, and the product was purified by reversed-phase HPLC (90% CH₃CN in water, $t_R = 14$ min, C18(2) Phenomenex® Luna, 2.5 mL min⁻¹) to give 5.0 mg (42%) of **6** as a yellow film: UV/vis (CH₃CN) $\lambda_{max} = 233$ (50000), 267 (63700), 303 (4200), 316 (3900), 330 (2300), 414 (2300); $[\alpha]_D - 74$ (*c* 0.050, CH₃CN); IR (film) $\tilde{v} = 3485$, 3058, 2963, 1754, 1629 cm⁻¹; ¹H NMR Table S2; ¹³C NMR (benzene-*d*₆) δ 164.4, 164.1, 163.9, 163.4, 162.1, 157.9, 157.7, 157.5, 155.9, 155.1, 155.0, 149.9, 149.5, 148.8, 136.0, 135.9, 135.0, 134.7, 134.6, 134.4, 134.3, 134.2, 133.5, 131.3, 131.2, 131.1, 131.0, 130.9, 130.7, 130.6, 130.5, 130.4, 129.3, 129.2, 129.0, 128.8, 128.7, 128.6, 128.5, 128.4, 128.2, 128.1, 128.0, 127.1, 126.6, 125.9, 120.6, 119.9, 118.9, 118.2, 118.1, 114.8, 114.1, 112.1, 112.0, 111.8, 111.7, 108.3, 108.2, 108.1, 107.7, 107.5, 101.2, 54.6, 54.1, 53.8, 34.4, 34.0, 33.8, 25.1, 24.7; HRESI-FT-MS (Orbit-Trap-MS) *m/z* (M+H)⁺ calcd for C₃₂H₁₉³⁵Cl₄N₂O₅ 651.0048, found 651.0033.

Diacetyl chlorizidine B (8): To a solution of chlorizidine B (7) (16 mg, 0.039 mmol) in dry CH₃CN (5.0 mL) at room temperature was added dry Et₃N (85 μ L, 0.78 mmol) followed by acetic anhydride (36 μ L, 0.39 mmol). The mixture was stirred at rt for 3 h, then diluted with water (10 mL) and extracted with EtOAc (3 x 5 mL). The combined extracts were dried, filtered, and concentrated. The crude material was filtered on a short plug of silica gel with EtOAc. The organic layer was concentrated, and the product was first purified by reversed-phase HPLC (80% CH₃CN in water, t_R = 12 min, C18(2) Phenomenex® Luna, 2.5 mL min⁻¹) and then purified by normal phase HPLC (85% isooctane in isopropanol, t_R = 15 min, Kromasil® 60-5-Diol, 2.5 mL min⁻¹) to furnish 6.0 mg (31%) of **8**: UV/vis (CH₃CN) $\lambda_{max} = 300$ (23500); [α]_D –75 (*c* 0.10, CH₃CN); IR (film) \tilde{v} 3131, 2989, 1767, 1625 cm⁻¹; ¹H NMR Table S1; ¹³C NMR (DMSO-*d*₆) δ 169.3, 167.7, 149.5, 149.4, 135.3, 131.8, 128.2, 122.7, 116.9, 114.9, 113.0, 109.1, 109.0, 107.3, 106.4, 99.9, 53.9, 33.8, 24.7, 20.6, 20.0; HRESI-FT-MS (Orbit-Trap-MS): *m/z* (M+H)⁺ calcd for C₂₁H₁₇³⁵Cl₄N₂O₄ 500.9942, found 500.9935.

Thioester 9: To a solution of chlorizidine A (1) (15.4 mg, 0.0347 mmol) and potassium carbonate (40 mg, 0.29 mmol) in dry DMF (2.0 mL) at room temperature was added *N*-acetylcysteamine (20 μ L, 0.19 mmol) via syringe. The mixture was stirred at 60 °C for 1 h, then diluted with water (5 mL) and a saturated aq. NH₄Cl solution (5 mL) and extracted with EtOAc (3 x 5 mL). The combined extracts were washed with brine (4 mL), dried, filtered, and concentrated. The product was purified by reversed-phase HPLC (55% CH₃CN in water, 0.2% TFA, t_R = 27 min, C8(2) Phenomenex® Luna, 3 mL min⁻¹) to give 10.2 mg (52%) of **9**: UV/vis (CH₃CN/water) $\lambda_{max} = 223$, 266, 360, 417; [α]_D –19 (*c* 0.38, CH₃CN); IR (film) $\tilde{v} = 3352$, 1728, 1626 cm⁻¹; ¹H and 2D NMR Table S3; HRMS (ESI-TOF) *m/z* (M+H)⁺ calcd for C₂₂H₂₀³⁵Cl₄N₃O₄S 561.9929, found 561.9925.

Amide 10: To a solution of chlorizidine A (1) (5.3 mg, 0.012 mmol) in dry CH₃CN (2.0 mL) at room temperature was added benzylamine (30 μ L, 0.27 mmol) via syringe. The mixture was stirred at rt for 3 h and then concentrated. The product was purified by reversed-phase HPLC (70% CH₃CN in water, 0.2% TFA, t_R = 20 min, C8(2) Phenomenex® Luna, 3 mL min⁻¹), collecting the eluent in a vial containing an aq. 0.2 M NaHCO₃ solution. After concentration, the white solid was triturated with CH₃CN. The solution concentrated onto C18 silica (100 mg) and fractionated on a C18 SPE cartridge (100 mg), eluting with water and then with CH₃CN. The organic fraction was concentrated to give 2.2 mg (33%) of 10: UV/vis (CH₃CN/water) $\lambda_{max} = 239$, 307; [α]_D +2 (*c* 0.34, CH₃CN); IR (film) $\tilde{v} = 3237$, 1613 cm⁻¹; ¹H and 2D NMR Table S4; HRMS (ESI-TOF) *m/z* (M+H)⁺ calcd for C₂₅H₂₀³⁵Cl₄N₃O₃ 550.0259, found 550.0264.

Ester 11: To chlorizidine A (1) (1.3 mg, 0.0029 mmol) and K₂CO₃ (10 mg) was added dry MeOH (1.0 mL) at room temperature. The solution was stirred at rt overnight, then diluted with a saturated aq. NH₄Cl solution (4 mL) and extracted with EtOAc (2 x 2 mL). The combined extracts were washed with brine (1 mL), dried, filtered, and concentrated. The product was purified by reversed-phase HPLC (65% CH₃CN, 0.2% TFA, t_R = 30 min, C8(2) Phenomenex® Luna, 3 mL min⁻¹) to give 0.4 mg (29%) of 11: HRMS (ESI-TOF) *m/z* (M–H)⁻ calcd for C₁₉H₁₃³⁵Cl₄N₂O₄ 472.9629, found 472.9646. The complete characterization of **11** was not possible due to its instability.

Diacetylated thioester 12: To a solution of thioester **9** (3.0 mg, 0.0053 mmol) in dry pyridine (1.0 mL) at room temperature was added acetic anhydride (0.10 mL). The mixture was stirred at rt for 4 h, CH₃OH (1 mL) was added, and the solution was concentrated. The product was purified by reversed-phase HPLC (70% CH₃CN, 0.2% TFA, $t_R = 16$ min, C8(2) Phenomenex® Luna, 3 mL min⁻¹) to give 1.8 mg (52%) of **12**: UV/vis (CH₃CN/water) $\lambda_{max} = 219, 267, 321, 417; [\alpha]_D - 4 ($ *c* $0.17, CH₃CN); IR (film) <math>\tilde{v} = 1761, 1684, 1626 \text{ cm}^{-1}; {}^{1}\text{H}$ NMR (600 MHz, CD₃CN) δ 10.02 (br s), 9.95 (br s), 7.12 (s), 7.09 (s), 6.46 (s), 5.86 (s),

5.83 (s) 4.04 (m), 3.35 (m), 3.08 (m), 2.58 (m), 2.42 (m), 2.36 (s), 2.32 (s), 2.29 (s), 2.22 (s), 1.87 (s), 1.85 (s); HRMS (ESI-TOF) m/z (M+H)⁺ calcd for C₂₆H₂₄³⁵Cl₄N₃O₆S 646.0140, found 646.0130.

Triacetylated amide 13: To a solution of chlorizidine A (1) (5.0 mg, 0.011 mmol) in dry CH₃CN (2.0 mL) at room temperature was added benzylamine (30 µL, 0.27 mmol). The mixture was stirred at rt for 5 h and then concentrated. To a solution of the crude product in dry pyridine (1 mL) was added acetic anhydride (0.20 mL). The mixture was stirred at rt overnight, CH₃OH (1 mL) was added, and the solution was concentrated. The product was purified by reversed-phase HPLC (70% CH₃CN, 0.2% TFA, t_R = 24 min, C8(2) Phenomenex® Luna, 3 mL min⁻¹) to give 3.4 mg (45%) of **13**: UV/vis (CH₃CN/water) λ_{max} = 235, 282; [*a*]_D -17 (*c* 0.29, CH₃CN); IR (film) \tilde{v} = 1773, 1684 cm⁻¹; ¹H NMR (600 MHz, CD₃CN) δ 7.34-7.22 (m), 7.14-7.03 (m), 7.08 (s), 6.32 (s), 6.30 (s), 5.88 (s), 5.85 (s), 5.64 (dd, *J* = 8.8, 5.5 Hz), 5.49 (dd, *J* = 8.8, 6.4 Hz), 4.39 (d, *J* = 5.8 Hz), 4.36 (d, *J* = 6.4 Hz), 4.33 (d, *J* = 5.8 Hz), 4.30 (d, *J* = 5.8 Hz), 4.26 (d, *J* = 6.2 Hz), 3.03 (m), 2.92 (m), 2.44 (m), 2.33 (s), 2.27 (s) 2.15 (s), 1.71 (s); HRMS (ESI-TOF) *m/z* (M+H)⁺ calcd for C₃₁H₂₆³⁵Cl₄N₃O₆ 676.0576, found 676.0595.

Triacetylated ester 14: To a solution of diacetyl chlorizidine A (**2**) (7.9 mg, 0.015 mmol) in dry CH₃OH (2.0 mL) at room temperature was added an aqueous solution of NaOH (0.10 mL, 0.05 M). The mixture was stirred at rt overnight, then diluted with a saturated aq. NH₄Cl solution (4 mL) and extracted with EtOAc (3 x 2 mL). The combined extracts were washed with brine (2 x 1 mL), dried, filtered, and concentrated. To a solution of the crude product in dry pyridine (1 mL) was added acetic anhydride (0.20 mL). The mixture was stirred at rt overnight, CH₃OH (1 mL) was added, and the solution was concentrated. The product was purified by reversed-phase HPLC (70% CH₃CN, 0.2% TFA, t_R = 25 min, C8(2) Phenomenex® Luna, 3 mL min⁻¹) to give 3.4 mg (38%) of **14**: UV/vis (CH₃CN/water) $\lambda_{max} = 238$, 287; [α]_D –21 (*c* 0.28, CH₃CN); IR (film) $\tilde{v} = 1773$, 1684 cm⁻¹; ¹H NMR (600 MHz, CD₃CN) δ 7.18 (s), 7.09 (s), 6.29 (s), 5.89 (s), 5.68 (dd, *J* = 9.4, 5.5 Hz), 5.57 (dd, *J* = 8.8, 5.8 Hz), 3.71 (s), 3.59 (s), 3.06 (m), 2.94 (m), 2.46 (m), 2.34 (s), 2.32 (s), 2.31 (s), 2.29 (s); HRMS (ESI-TOF) *m/z* (M+H)⁺ calcd for C₂₅H₂₁³⁵Cl₄N₂O₇ 601.0103, found 601.0091.

Figure S2. HMBC correlations for chlorizidine A (1)

Table S1. Selected NMR spectral data for ${\bf 7}$ and ${\bf 8}$

$\begin{array}{c} CI & 4 & 3 & 7 \\ 5 & 2 & 6 \\ CI & 1 & 1 \\ H & 11 & 10 \\ \end{array}$	$\begin{array}{c} & OH & CI \\ & 9H & 17 & CI \\ & 9H & 16 \\ & 12 & 14a \\ OH & 13 & 14 \end{array} C \\ \end{array}$	CI I N H OAc OAc
-	7	8
position	$\delta_{\rm H}$ (7), mult. (<i>J</i> , Hz) ^[a]	$\delta_{\rm H}$, (8), mult. (<i>J</i> , Hz) ^[a]
	CD ₃ CN	DMSO- d_6
1	10.06, br s	12.42,br s
3	6.45, d (3.0)	6.79, d (3.0)
7	$6.51, \text{ br s}^{[b]}$	$7.35, s^{[b]}$
11	6.51, br s ^[b]	$7.40, s^{[b]}$
12	5.84, dd (9.5, 6.5)	5.59, dd (6.5, 5.5)
13	2.80, ddd (17.5, 14.0, 5.0)	2.84, ddd (18.5, 10.0, 4.5)
	2.55, ddd (17.5, 10.0, 6.0)	2.25, dd (12.0, 6.0)
14	3.06, ddd (14.5, 10.0, 5.0)	2.99, ddd (19.0, 14.5, 6.0)
	2.88, ddd (14.5, 10.0, 6.0)	2.88, ddd (17.5, 9.5, 5.5)
15	5.79, s	5.95, s
Ac		2.39, s
		1.94, s

[a] 500 MHz. ^[b] H-7 and H-11 are not distinguishable due to the pseudo-symmetry of **7** and **8**.

Table S2. Selected NMR spectral data for 2-6

	$\delta_{\rm H}\left(2\right)$	$\delta_{\mathrm{H}}\left(3\right)$	$\delta_{\rm H}\left(4\right)$	δ _H (5)	$\delta_{\rm H}(6)$
position	mult. $(J, Hz)^{[a]}$	mult. $(J, Hz)^{[a]}$	mult. $(J, Hz)^{[a]}$	mult. $(J, Hz)^{[a]}$	mult. $(J, Hz)^{[a]}$
	DMSO- d_6	DMSO- d_6	DMSO- d_6	DMSO- d_6	benzene- d ₆
1	6.80, s	7.17, s	6.80, s	6.80, s	5.48, s
	6.79, s	7.10, s	6.78, s	6.79, s	5.43, s
					5.40, s
9	7.42, s	6.67, s	7.45, s	7.44, s	6.43, s
	7.36, s		7.42, s	7.43, s	6.38, s
			7.33, s	7.30, s	6.35, s
10	5.70, br s	5.82, s	5.63, t (8.5)	5.48, br s	5.17, dd (9.0, 5.0)
	5.75, dd (6.0, 5.0)		5.61, t (8.5)	5.46, t (8.5)	5.10, dd (9.5, 4.5)
			5.58, t (6.0)	5.40, t (8.5)	
11	2.88, m	2.86, m	2.81, m	2.75-2.57, m	2.36, m
	2.36, br s	2.36, m	2.40, m	2.30, br s	2.30, m
	2.25, ddd (18.0,		2.29, ddd (17.5,	2.01, ddd (19.0,	2.11, m
	14.0, 5.5)		14.0, 5.5)	10.0, 10.0)	
			2.03, m		
12	3.10, t (10.0)	3.00, m	2.97-2.76, m	2.94-2.77, m	2.55, ddd (15.0,
	3.01, dd (15.0,	2.88, m			5.0, 5.0)
	12.0)				2.27, m
	2.91, m				2.11, m
					2.02, dd (20.0,
					10.0)
13	5.96, s	5.90, s	5.98, s	6.00, s	5.58, s
	5.94, s	5.86, s	5.95, s	5.96, s	5.40, s
			5.92, s	5.95, s	5.26, s
R	2.43, s	4.04, s	3.03, 2.53, 2.44	1.39, s	8.34, br s
	2.41, s	4.00, s	2.40, sep (9.0)	1.36, s	8.25, 8.20, 8.08,
	2.00, s	3.68, s	1.33, 1.32, 1.29,	1.35, s	8.06, 7.91, d (7.5)
	1.95, s	3.48, s	1.28, 1.24, 1.13,	1.11, s	7.21-7.04, m
			1.12, 1.05, 1.05,	1.10, s	
			0.98, 0.95, d (9.0)	1.08, s	

^[a] 500 MHz.

Table S3. Selected NMR spectral data for 9 (CD₃CN)

$\begin{array}{c} CI & 4 & 3 & 7 & 8 & OH & CI \\ 5 & 2 & 6 & 9H & 24 & CI \\ CI & 1 & 11 & 19 & 22 \\ 18 & 12 & OH & 20 & 21 \\ 17 & 16 & 13 & OH & 20 & 21 \\ 0 & H & 9 & 9 \end{array}$			
position	$\delta_{C}^{[a]}$	$\delta_{\rm H}$, mult. $(J, {\rm Hz})^{[b]}$	HMBC
1		9.66, br s	3
3	107.7	6.24, s	
7	102.7	6.46, s	8,9,11,19
8	164.4		
9	114.9		
10	158.1		
11	106.0		
12			
14	31.5	2.55, m	15
15	39.9	3.32, m	14,17
16		6.84, br s	
17	171.8		
18	22.6	1.87, s	17
19	38.6	4.43, m	8,10,20,21
20	33.6	2.28, m 2.17, m	9,19,21,21a
21	26.5	2.51, m	19,20,21a,22
21a	131.6		
22	106.4	5.81, d (3.0)	21,21a

^[a] Carbon assignments were based solely on HSQC and HMBC data collected at 600 MHz. Carbons 2, 4, 5, 6, 12, 23, and 24 could not be assigned. ^[b] 600 MHz.

Table S4. Selected NMR spectral data for 10 (CD₃CN)

$\begin{array}{c} CI & 4 & 3 & 7 & 8 & OH & CI \\ & 5 & 2 & 6 & 9H & 24 & CI \\ CI & 1 & 11 & 19 & 21a \\ & & & 12 & NH & 20 & 21 \\ & & & & 13 & 13 \\ & & & & 16 & 10 \end{array}$			
position	$\delta_C^{[a]}$	$\delta_{\rm H}$, mult. $(J, {\rm Hz})^{[b]}$	НМВС
1		10.03, br s	
3	110.0	6.21, s	
7	110.2	6.32, br s	
9	114.3		
11	106.2		
12	170.3		
13		6.46, br s	
14	44.1	4.34, br s	12,15,16
15	138.3		
16	128.3	7.15, m	14
17	129.1	7.32, m	14,15
18	127.8	7.26, m	15,16
19	53.9	5.89, br s	
20	32.8	2.81, m	9 19 21 21a
		2.53, br s	J,1J,21,21a
21	26.0	3.07, br s	19 20 21 9 22
		2.87, m	17,20,210,22
21a	137.5		
22	99.5	5.77, s	19,21,21a

^[a] Carbon assignments were based solely on HSQC and HMBC data collected at 600 MHz. Carbons 2, 4, 5, 6, 8, 10, 23, and 24 could not be assigned. ^[b] 600 MHz.

CNH287442 #110-119 RT: 1.47-1.55 AV: 10 NL: 1.85E5 T: FTMS + p ESI Full ms [200.00-1000.00]

5.904 5.860 5.816 -4.043 -3.008 -2.887 -2.861 -2.500 -7.176 -6.672 -3.681 -3.479 ,OMe ₁ ,CI H CI CI ÒМе ő 3 Ч 1.6 Ч 3.3 부 1.9 <u>2.2</u> Ч 1.5 Ч 2.4 다 0.7 பு 1.6 1.3 2.0 7 6 4 3 9 5 ź ó 8 1

¹H NMR (500 MHz, DMSO- d_6) of dimethyl chlorizidine A (3)

¹³C NMR (125 MHz, DMSO- d_6) of dimethyl chlorizidine A (3)

Zsobuty-a #130-135 RT: 2.36-2.47 AV: 6 NL: 8.49E3 T: FTMS + p ESI Full ms [100.00-2000.00]

Pivaloyl-a #168-175 RT: 2.91-3.04 AV: 8 NL: 9.66E4 T: FTMS + p ESI Full ms [100.00-2000.00]

650-b #33-35 RT: 0.53-0.56 AV: 3 NL: 3.68E4 T: FTMS + p ESI Full ms [100.00-2000.00]

500 #98 RT: 1.57 AV: 1 NL: 3.62E5 T: FTMS + p ESI Full ms [100.00-2000.00]

S55

HMBC (600 MHz, CD₃CN) of thioester 9

C:\Xcalibur\data\Chambers\thiolsemip1

Sample Name: flch8376

Acq. File: 022311007.wiff Acq. Date: Wednesday, February 23

HMBC (600 MHz, CD₃CN) of amide **10**

C:\Xcalibur\...\may3benzylaminebig1

Sample Name: flch8375

Acq. File: 022311006.wiff Acq. Date: Wednesday, February 23

C:\Xcalibur\...\may4thioesterAc2O1P

200000=

100000=

0Ξ

200

250

417.00

400

wavelength (nm)

500

450

550

321.00

300

.1....l....l....l.

350

6Ó0

Sample Name: flch1277

Acq. File: 050511202.wiff Acq. Date: Thursday, May 05, 2011

C:\Xcalibur\data\Chambers\may3amideAc2O1

Sample Name: flch1280

Acq. File: 050511300.wiff Acq. Date: Thursday, May 05, 2011

C:\Xcalibur\data\Chambers\may3esterAc2O1

may3esterAc2O1 #5523 RT: 18.41 AV: 1 NL: 7.56E5 microAU

Sample Name: flch1279

Acq. File: 050511204.wiff Acq. Date: Thursday, May 05, 2011

Figure S3. LC/(–)-LRESI-MS chromatogram of chlorizidine (1) in pH 10 buffer

Figure S5. X-Ray structure of diacetyl chlorizidine A (2)

Developmental Ther	apeutics Program	NSC: D-754768 / 1	Conc: 1.00E-5 Molar	Test Date: Nov 01, 2010	
One Dose Mea	an Graph	Experiment ID: 1011	Report Date: Dec 03, 2010		
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	ent	
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer	7.99 -16.56 5.35 -4.04 -13.44 -20.32				
A549/ATCC EKVX HOP-62 NCI-H226 NCI-H23 NCI-H322M NCI-H322M NCI-H460 NCI-H522	0.85 -6.01 11.07 14.34 -1.21 3.31 -12.69 -25.26				
COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620 CNS Cancer	-3.09 11.34 -21.31 8.48 -20.94 1.32 6.23				
SF-268 SF-295 SF-539 SNB-19 SNB-75 U251 Melanoma	11.96 -39.98 1.62 21.40 18.42 3.11				
LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257 UACC-257	4.34 -10.65 5.92 -21.27 -48.99 24.08 -58.99 -20.81 -5.90				
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3 Benal Cancer	16.27 -8.63 15.60 6.76 -0.07 -3.80				
786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31 Protector Connect	-25.20 -8.48 1.37 -31.46 -4.85 5.14 -8.60 -10.92				
PC-3 DU-145 Breast Cancer MCF7 MDA MB 231/ATCC	-14.91 17.92 -19.99		-		
HS 578T BT-549 T-47D MDA-MB-468	-13.11 6.52 12.23 -10.81		-		
Mean Delta Range	-5.61 53.38 83.07				
	150	100 50	0 -50	-100 -150	

Log₁₀ of Sample Concentration (Molar)

National Cancer Institute Developmental Therapeutics Program In-Vitro Testing Results															
NSC : D - 754768 / 1				Exp	Experiment ID : 1012NS49						Test Type : 08		Units : Molar		
Report Date : February 01, 2011				Tes	Test Date : December 06, 2010						QNS :		MC :		
COMI : CNH2	87.528_	SS_XM	(10011	7)	Stai	Stain Reagent : SRB Dual-Pass Related						SSPL : 075T			
					1	Lo	og10 Con	centration				1			
Panel/Cell Line	Time Zero	Ctrl	-8.3	Mear -7.3	Optical -6.3	Densiti -5.3	es -4.3	-8.3	P -7.3	ercent G -6.3	rowth -5.3	-4.3	GI50	TGI	LC50
Leukemia HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	0.986 0.187 0.707 0.773 0.593	2.925 1.718 2.625 2.231 2.320	2.818 1.603 2.613 2.265 2.252	2.883 1.620 2.528 2.225 2.200	2.971 1.648 2.534 2.125 2.296	1.031 0.437 0.972 0.571 0.693	0.965 0.291 0.607 0.590 0.474	94 93 99 102 96	98 94 95 100 93	102 95 95 93 99	2 16 14 -26 6	-2 7 -14 -24 -20	1.67E-6 1.88E-6 1.80E-6 1.14E-6 1.67E-6	1.65E-5 > 5.00E-5 1.56E-5 3.01E-6 8.36E-6	 > 5.00E-5 > 5.00E-5 > 5.00E-5 > 5.00E-5 > 5.00E-5
Non-Small Cell Lung A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H23 NCI-H322M NCI-H322M NCI-H322	Cancer 0.415 0.717 0.386 1.057 0.508 0.483 0.767 0.228 0.614	2.088 1.904 0.898 1.512 1.261 1.631 1.697 2.072 1.548	2.068 1.862 0.852 1.485 1.160 1.590 1.679 2.071 1.385	1.982 1.856 0.819 1.431 1.138 1.557 1.641 2.041 1.373	1.931 1.838 0.863 1.433 1.152 1.521 1.718 2.118 1.434	0.538 0.769 0.485 0.768 0.573 0.498 0.870 0.253 0.620	0.210 0.583 0.200 0.376 0.109 0.117 0.463 0.091 0.247	99 96 91 94 87 96 98 100 82	94 96 85 82 84 94 94 98 81	91 94 93 83 85 90 102 103 88	7 4 19 -27 9 1 11 1 1	-50 -19 -48 -64 -79 -76 -40 -60 -60	1.54E-6 1.56E-6 9.92E-7 1.45E-6 1.42E-6 1.87E-6 1.65E-6 1.36E-6	6.73E-6 9.64E-6 2.82E-6 6.28E-6 5.20E-6 8.26E-6 5.26E-6 5.12E-6	 > 5.00E-5 > 5.00E-5 > 5.00E-5 2.04E-5 2.35E-5 2.31E-5 > 5.00E-5 3.43E-5 3.44E-5
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 KM12 SW-620	0.257 0.948 0.267 0.265 0.302 0.186	0.965 2.808 1.841 1.639 1.529 1.193	1.003 2.845 1.879 1.629 1.549 1.197	0.963 2.722 1.796 1.556 1.541 1.128	0.967 2.763 1.810 1.623 1.544 1.194	0.517 1.152 0.222 0.446 0.402 0.327	0.113 0.049 0.054 0.046 0.040 0.036	105 102 102 99 102 100	100 95 97 94 101 93	100 98 98 99 101 100	37 11 -17 13 8 14	-56 -95 -80 -83 -87 -81	3.09E-6 1.77E-6 1.31E-6 1.86E-6 1.77E-6 1.91E-6	1.24E-5 6.34E-6 3.57E-6 6.86E-6 6.09E-6 7.02E-6	4.29E-5 1.88E-5 1.68E-5 2.28E-5 2.05E-5 2.36E-5
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.379 0.884 0.634 0.342 0.585 0.264	1.389 2.778 1.706 1.292 1.133 1.416	1.366 2.728 1.669 1.317 1.099 1.341	1.327 2.727 1.658 1.226 1.076 1.373	1.352 2.631 1.718 1.215 1.118 1.325	0.609 0.673 0.737 0.480 0.657 0.366	0.210 0.288 0.107 0.149 0.346 0.160	98 97 97 103 94 93	94 97 96 93 90 96	96 92 101 92 97 92	23 -24 10 15 13 9	-45 -67 -83 -56 -41 -39	2.13E-6 1.16E-6 1.81E-6 1.74E-6 1.83E-6 1.60E-6	1.09E-5 3.11E-6 6.35E-6 8.01E-6 8.76E-6 7.62E-6	<pre>> 5.00E-5 1.99E-5 2.20E-5 4.06E-5 > 5.00E-5 > 5.00E-5</pre>
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.172 0.593 0.304 0.401 0.896 0.383 0.464 0.669 0.591	1.225 1.019 1.075 1.850 1.739 0.891 2.591 1.647 2.068	1.236 1.005 1.105 1.819 1.694 0.914 2.402 1.619 2.058	1.223 0.992 1.050 1.776 1.700 0.896 2.424 1.585 1.935	1.168 1.021 1.113 1.793 1.790 0.948 2.420 1.523 1.921	0.235 0.478 0.426 0.474 0.573 0.519 0.117 0.621 0.728	0.027 0.244 0.085 0.153 0.193 0.102 0.010 0.456 0.074	101 97 104 98 95 104 91 97 99	100 94 97 95 95 101 92 94 91	95 100 105 96 106 111 92 87 90	6 -19 16 5 -36 27 -75 -7 9	-84 -59 -72 -62 -78 -73 -98 -32 -88	1.59E-6 1.32E-6 2.06E-6 1.60E-6 1.24E-6 2.65E-6 8.93E-7 1.24E-6 1.57E-6	5.82E-6 3.44E-6 7.55E-6 5.95E-6 9.25E-6 9.25E-6 1.78E-6 4.20E-6 6.23E-6	2.08E-5 2.98E-5 3.33E-5 1.06E-5 2.91E-5 3.55E-6 > 5.00E-5 2.05E-5
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3	0.575 0.341 0.589 0.463 0.122 0.406 0.639	1.727 1.026 1.033 1.188 0.590 1.497 1.561	1.778 1.038 1.029 1.171 0.583 1.504 1.548	1.746 1.021 1.009 1.149 0.554 1.455 1.515	1.782 1.016 1.102 1.178 0.528 1.486 1.503	0.935 0.357 0.600 0.593 0.190 0.446 0.643	0.412 0.056 0.288 0.271 0.126 0.298 0.348	104 102 99 98 99 101 99	102 99 95 95 92 96 95	105 99 116 99 87 99 94	31 2 2 18 15 4	-28 -84 -51 -42 1 -27 -46	2.78E-6 1.60E-6 1.90E-6 2.00E-6 1.62E-6 1.63E-6 1.47E-6	1.67E-5 5.31E-6 5.56E-6 1.00E-5 > 5.00E-5 6.59E-6 5.11E-6	 > 5.00E-5 2.03E-5 4.75E-5 > 5.00E-5 > 5.00E-5 > 5.00E-5 > 5.00E-5
Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	0.661 0.498 0.497 0.716 0.655 0.398 0.548 0.615	2.073 0.987 1.852 2.470 1.164 1.599 1.229 1.501	1.990 0.944 1.907 2.329 1.164 1.567 1.166 1.406	1.989 0.916 1.817 2.333 1.132 1.569 1.154 1.392	2.111 0.981 1.881 2.293 1.161 1.467 1.314 1.361	0.656 0.527 0.560 0.763 0.632 0.491 0.654 0.657	0.337 0.148 0.337 0.541 0.082 0.112 0.266 0.177	94 91 104 92 100 97 91 89	94 85 97 92 94 97 89 88	103 99 102 90 100 89 112 84	-1 6 5 3 -4 8 15 5	-49 -70 -32 -25 -88 -72 -52 -71	1.62E-6 1.67E-6 1.71E-6 1.43E-6 1.51E-6 1.51E-6 2.20E-6 1.35E-6	4.92E-6 5.96E-6 6.67E-6 6.26E-6 4.62E-6 6.25E-6 8.51E-6 5.76E-6	> 5.00E-5 2.71E-5 > 5.00E-5 > 5.00E-5 1.79E-5 2.65E-5 4.74E-5 2.62E-5
Prostate Cancer PC-3 DU-145	0.451 0.241	1.716 0.936	1.698 0.934	1.722 0.957	1.637 0.960	0.515 0.386	0.305 0.230	99 100	100 103	94 103	5 21	-32 -5	1.56E-6 2.22E-6	6.80E-6 3.26E-5	> 5.00E-5 > 5.00E-5
Breast Cancer MCF7 MDA-MB-231/ATC0 HS 578T BT-549 T-47D MDA-MB-468	0.284 C 0.430 0.812 0.726 0.647 0.575	1.200 1.041 1.671 1.283 1.347 1.135	1.127 1.045 1.639 1.299 1.336 1.088	1.066 1.055 1.602 1.249 1.321 1.069	1.136 1.011 1.642 1.323 1.327 1.100	0.338 0.250 0.834 0.709 0.679 0.491	0.087 0.152 0.574 0.149 0.501 0.069	92 101 96 103 98 92	85 102 92 94 96 88	93 95 97 107 97 94	6 -42 3 -2 5 -15	-69 -65 -29 -80 -23 -88	1.56E-6 1.07E-6 1.56E-6 1.66E-6 1.62E-6 1.27E-6	5.99E-6 2.47E-6 5.99E-6 4.76E-6 7.36E-6 3.66E-6	2.76E-5 1.13E-5 > 5.00E-5 2.07E-5 > 5.00E-5 1.51E-5

National Cancer Institute Deve	elopmental Therapeutics Program	NSC : D - 754768/1	Units :Molar	SSPL :075T	EXP. ID :1012NS49	
	Mean Graphs	Report Date :February 01	, 2011	Test Date :December 06, 2010		
Panel/Cell Line	Log ₁₀ GI50 GI50	Log ₁₀ TGI	TGI	Log ₁₀ LC50 LC5	0	
Leukemia HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non Small Coll Lung Concor	-5.78 -5.73 -5.75 -5.94 -5.78	-4.78 - -4.30 - -4.81 - -5.52 - 5.08 -		> -4.30 > -4.30 > -4.30 > -4.30 > -4.30		
A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H23 NCI-H322M NCI-H322M NCI-H460 NCI-H460 NCI-H460 Color Concer	-5.81 -5.81 -5.72 -6.00 -5.84 -5.85 -5.73 -5.78 -5.78 -5.87	-5.17 -5.11 -5.02 -5.55 -5.20 -5.28 -5.08 -5.28 -5.28 -5.29		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
COLO 205 HCC-2998 HCT-116 HCT-15 KM12 SW-620 CNS Cancer	-5.51 -5.75 -5.88 -5.73 -5.75 -5.75 -5.72	-4.91 -5.20 -5.45 -5.16 -5.22 -5.15		-4.37 -4.72 -4.78 -4.64 -4.69 -4.63		
SF-268 SF-295 SF-539 SNB-19 SNB-75 U251 Melanoma	-5.67 -5.94 -5.74 -5.76 -5.76 -5.74 -5.80	-4.96 -5.51 -5.20 -5.10 -5.06 -5.12		> -4.30 -4.70 -4.66 -4.39 > -4.30 > -4.30		
LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62 Ovarian Capcer	-5.80 -5.88 -5.69 -5.80 -5.91 -5.58 -6.05 -5.91 -5.91 -5.81	-5.23 -5.46 -5.12 -5.23 -5.56 -5.03 -5.75 -5.38 -5.21		-4.08 -4.53 -4.55 -4.48 -4.97 -4.54 -5.45 > -4.30 -4.69	-	
IGRIOV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3 Renal Cancer	-5.56 -5.80 -5.72 -5.70 -5.79 -5.79 -5.83	-4.78 -5.27 -5.25 -5.00 > -4.30 -5.18 -5.29		> -4.30 -4.69 -4.32 > -4.30 > -4.30 > -4.30 > -4.30 > -4.30		
A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31 Prostate Cancer	-3.79 -5.78 -5.77 -5.84 -5.82 -5.82 -5.66 -5.87	-3.31 -5.22 -5.18 -5.20 -5.34 -5.20 -5.07 -5.24		- 4.57 - 4.57 > -4.30 - 4.75 - 4.58 - 4.58 - 4.58 - 4.58	•	
PC-3 DU-145 Breast Capcer	-5.81 -5.65 •	-5.17 -4.49	-	> -4.30 > -4.30		
MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	-5.81 -5.97 -5.81 -5.78 -5.79 -5.90	-5.22 -5.61 -5.22 -5.32 -5.13 -5.44	-	-4.56 -4.95 > -4.30 -4.68 > -4.30 -4.82		
MID	-5.79	-5.17		4.49		
Range		-1 +3 +2 +1		+3 +2 +1 0	-1 -2 -3	