
Supplementary Information S1 for “A unified framework for
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Matthew Stephens

S.1 Efficient Algorithm for computing BFs for all SNPs

The following algorithm takes advantage of rank-one matrix updates, and the fact that Bayes
factors for each partition depend only on summary statistics, to avoid computing things multiple
times for each SNP. (Note that further improvements in efficiency could be made; for example
by reusing computations across partitions that share YU in common, but this seems unnecessary
at this point.)

Algorithm S.1.1. Consider computing the single SNP Bayes Factors (7) for multivariate out-
comes Y (n× d) and p SNPs with genotypes X(n× p). Assume that the columns of both Y and
X have been centered on zero by subtracting the column means. Take the summary statistic
matrices

Vyx = (1/n)Y ′X (d× p) (S.1.1)

Vyy = (1/n)Y ′Y (d× d) (S.1.2)

and let Vxx be a p-vector containing the variances of the columns of X, Vxx[j] = (1/n)||X·j ||2
where ||x||2 :=

∑
i x

2
i .

For any matrix V we will use the notation V [U,D] to denote the submatrix of V consisting
of the rows with indices in the set U and columns with indices in the set D.

For a given partition γ = (U,D, I) we can compute the Bayes factor BFγ for all p SNPs as
follows:

1. Compute the Cholesky decomposition LUU of the submatrix Vyy[U,U ]. (So L′UULUU =
Vyy[U,U ].)

2. Solve LUUb = Vyy[U,D] and LUUc = Vyx[U, ] for matrices b(dU × dD) and c(dU × p). (If
dU = 0 then set b = c = 0 in what follows.)

3. Set Cj = Vxx[j]− ||c·j ||2.

4. Set u = Vyx[D, ]− b′c a dD × p matrix.

5. Compute the Cholesky decomposition L0 for V0 = Vyy[D,D]− b′b.

6. Solve L0a = u for a a dD × p matrix.
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7. Set λj = σ−2a /njCj and kj = 1/(1 + λj).

8. For the jth SNP return BFj = 0.5dD log(1−kj)− 0.5(nj +m−dI) log(1− (kj/Cj)||a·j ||2).

The following R code implements this algorithm. (Note that for convenience the loop over
partitions includes partitions with |D| = 0; these partitions are assigned 0 prior probability, and
their Bayes Factors are set to be 1.)

computeprior = function(z,pi){

dvec = tabulate(z+1,nbin=3)

d = length(z)

return(ifelse(dvec[2]>0,(1-pi)*(1/d) * (1/(dvec[2]+dvec[3])) *

1/choose(d, dvec[1]) * 1/choose(d-dvec[1],dvec[2]), 0))

}

#picks out the partition gamma with all 1s (ie all in D)

allones = function(gamma){return(prod(gamma==1))}

#note the "drop=FALSE" commands below stop R collapsing matrices into vectors inappropriately

#VYX \approx (1/n) Y’X is d by p

#VYY \approx (1/n) Y’Y is d by d

#VXX is a p-vector of the estimated variances of the SNP

logBF.fromVSummaries = function(VYX,VYY,VXX,U,D,n,m,d,sigmaa){

dd = sum(D)

du= sum(U)

p = dim(VYX)[2]

if(du>0){

LUU = chol(VYY[U,U,drop=FALSE]) # a du by du matrix

VUD = VYY[U,D,drop=FALSE] #a du by dd matrix of the correlations of Yu with Yd

c = cbind(forwardsolve(t(LUU),VYX[U,,drop=FALSE]))#c solves LUU’c = phiU, c is a du by p matrix

b = cbind(forwardsolve(t(LUU), VUD)) # b is du by dd, and solves LUU’ b = VUD,

#so b’b = VUD’ LUU^-1 LUU’^-1 VUD = VUD’ (LUU’LUU)^-1 VUD = VUD’VYYU^-1 VUD

} else{c=matrix(0,nrow=1,ncol=p); b=matrix(0,nrow=1,ncol=dd);}

C = VXX - colSums(c*c)

u = VYX[D,,drop=FALSE] - crossprod(b,c)

V0 = VYY[D,D,drop=FALSE] - crossprod(b)

L0 = chol(V0)

a = forwardsolve(t(L0),u)

lambda = sigmaa^(-2) / (n*C)

k = as.numeric(1/(1+lambda))

return((dd/2) * log(1-k) - 0.5*(n+m-(d-sum(D)-sum(U)))*log(1-(k/C) *colSums(a*a)))

}
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#G is an n by p matrix of SNP genotypes

#Y is an n by d matrix of phenotypes

#single-SNP BFs are computed for each SNP (column of G)

logBF.rankone.matrix = function(G,Y,sigmaa,pi0=0.5,m=0){

if(is.null(dim(G))){G=cbind(G)} # turn a vector of genotypes into a matrix

subset = complete.cases(Y) & complete.cases(G)

Y=Y[subset,,drop=FALSE]

G=G[subset,,drop=FALSE]

n = dim(Y)[1]

d = dim(Y)[2]

p = dim(G)[2] #number of SNPs

if(m==0){m = d-1}

Y =scale(Y,center=T,scale=F) #center Y and G to avoid needing intercept in regression

G = scale(G,center=T,scale=F)

VYX = (1/n)*crossprod(Y,G) # this is (1/n) t(Y) %*% G, a d by p matrix

VYY = (1/n)*crossprod(Y) # (1/n) t(Y) %*% Y, a d by d matrix

VXX = (1/n)*colSums(G*G) # a p vector of (1/n) ||g|| values

prior = rep(0,3^d)

gamma=matrix(0,nrow=3^d,ncol=d)

lbf = matrix(0,nrow=3^d, ncol=p)

for(i in 0:(3^d-1)){

for(j in 1:d){

gamma[i+1,j]= (i %% 3^j) %/% 3^{j-1}

}

prior[i+1] = computeprior(gamma[i+1,],pi0)

U = (gamma[i+1,]==0)

D = (gamma[i+1,]==1)

if(prior[i+1]>0){

BF = 0

for(ss in 1:length(sigmaa)){

BF = BF+exp(logBF.fromVsummaries(VYX,VYY,VXX,U,D,n,m,d,sigmaa[ss]))

#note we just don’t bother computing for models with prior = 0

}

lbf[i+1,]=log(BF/length(sigmaa))

} else {lbf[i+1,] = 0}

}

prior[1] = pi0

BF=exp(lbf)

posterior = prior[-1]*BF[-1,,drop=FALSE]

normalize=function(x){return(x/sum(x))}

posterior = apply(posterior,2,normalize)

p0=t(gamma[-1,]==0) %*% posterior

p1=t(gamma[-1,]==1) %*% posterior
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p2=t(gamma[-1,]==2) %*% posterior

#divide by log(10) to convert everything to log base 10

lbfav = log(colSums(prior[-1]*exp(lbf[-1,,drop=FALSE]))/sum(prior[-1]))/log(10)

lbfuni.comps = apply(lbf[rowSums(gamma)==(2*d-1),,drop=FALSE],2,rev)/log(10)

lbfuni = log10(apply(10^lbfuni.comps,2,mean))

lbfall = lbf[which.max(apply(gamma,1,allones)),,drop=FALSE]/log(10)

lbf = lbf/log(10)

return(list(prior=prior,gamma=gamma,lbf=lbf,lbfav = lbfav,lbfuni=lbfuni,

lbfall=lbfall,lbfuni.comps=lbfuni.comps,p0=p0,p1=p1,p2=p2))

}

The algorithm is based on the following Lemma:

Lemma S.1.1. Consider the Bayes Factor comparing the models

Y ∼ BMVR(X = [X0, X1];K,Ψ,m) (S.1.3)

Y ∼ BMVR(X0;K0,Ψ,m) (S.1.4)

where Y is an n× d matrix; X0 and X1 are n× p0 and n× p1 matrices; K0 is a p0× p0 matrix;
and

K =

(
K0 0
0 K1

)
(S.1.5)

where K1 is p1 × p1.
Assume that K1 = λX ′1⊥0X1⊥0 for some scalar λ where X1⊥0 is the part of X1 that is

orthogonal to X0: X1⊥0 := (In − P0)X1, where P0 := X0(X
′
0X0)

−1X ′0 is the projection matrix
that projects onto the column space of X0. Then in the limit K0 → 0 and Ψ→ 0, assuming that
relevant matrices are invertible, this Bayes Factor is given by

BF→ = [1− k]p1d/2
∣∣Ip1 − k(X ′1⊥0X1⊥0)

−1u′RSS−10 u
∣∣−(n+m)/2

(S.1.6)

where k = (1 + λ)−1, u = Y ′X1⊥0 is a d× p1 matrix, and RSS0 = Y ′(I − P0)Y is the standard
residual sums of squares matrix from regressing Y on X0.

Note S.1.1. 1. In the case X1 = g that we consider here, the dimension p1 is 1, and so
the determinant is trivial to compute. Further, in this case X ′1⊥0X1⊥0 is a scalar, so the
condition on K1 always holds for some λ: that is, the expression for BF→ holds for any
K1, with λ = K1/X

′
1⊥0X1⊥0.

2. This lemma allows the Bayes Factor to be computed efficiently for a large number of SNPs
(X1), and a given Y and X0. Note, in particular, that the matrices RSS−10 and P0 do not
depend on X1, and so any relatively expensive calculations for these matrices (e.g. Cholesky
decompositions) need be performed only once for all SNPs. Furthermore, quantities whose
computation increases with n, such as Y ′Y , need only be computed once for all partitions
γ.
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3. (Connection with Approximate Bayes Factors.) Consider the case X1 = g and X0 = 1.
Then X1⊥0 = g̃, the vector of mean-centered genotypes (centered to have mean 0). Note
that BF→ is invariant to rescaling of Y , so without loss of generality assume that each
component of Y has variance 1. Then Z := (X ′1⊥0X1⊥0)

−0.5u is a vector of Z-scores,

and V̂yy := (1/n)RSS0 is the correlation matrix of the phenotypes Y , which is also the
correlation matrix of the Z-scores under H0. Then

BF→ = (1− k)d/2(1− (k/n)T 2)−(n+m)/2 (S.1.7)

where T 2 := Z ′V̂ −1yy Z is a multivariate test statistic for H0, which has a chi-square distri-
bution with d degrees of freedom under H0.

Further, using limn→∞(1− x/n)−(n+m)/2 = exp(x/2), for large n we have

BF→ ≈ (1− k)d/2 exp[(k/2)T 2]. (S.1.8)

This is the analogue of the approximate Bayes Factors in Wakefield (2009) and Johnson
(2008).

A proof of Lemma S.1.1 follows some definitions and Lemma S.1.2.

Definition S.1.1. Recalling that

RSS(Y |X,K) := Y ′Y − Y ′X(X ′X +K)−1X ′Y,

we define
∆SS(Y |X,K) := Y ′X(X ′X +K)−1X ′Y.

Note that for K = 0, a matrix with all 0 entries, RSS(Y |X,0) is the usual residual sums of
squares matrix from regressing Y on X, and ∆SS(Y |X,0) is the change in the sums of squares
matrix due to regression on X. For non-zero K, we will refer to RSS(Y |X,K) and ∆SS(Y |X,K)
as Bayesian analogues of these quantities (although the analogy is imperfect).

Definition S.1.2. Given matrices X0 and X1, each with n rows, we define X1⊥0 to be the part
of X1 that is orthogonal to X0; that is,

X1⊥0 := (In − P0)X1,

where P0 := X0(X
′
0X0)

−1X ′0 is the projection matrix that projects onto the column space of X0.

Lemma S.1.2. a) The change in sums of squares due to X = [X0, X1] can be decomposed as

∆SS(Y |[X0, X1],0) = ∆SS(Y |X0,0) + ∆SS(Y |X1⊥0,0).

b) The Bayesian analog of ∆SS is related the ∆SS of an OLS regression by:

∆SS(Y |X,K) = ∆SS(Ỹ |X̃,0)

where Ỹ =

(
Y
0

)
and X̃ =

(
X
L

)
, with L being any matrix such that L′L = K. [Note: in

effect, this means that Bayesian regression can be performed by adding “pseudo-observations”
of 0 to Y , and extending the design matrix X by L.]
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c) If K = λX ′X then the Bayesian analog of ∆SS is a shrunken version of ∆SS from OLS:

∆SS(Y |X,K) = (1 + λ)−1∆SS(Y |X,0).

d) If K =

(
0 0
0 K1

)
then

∆SS(Y |X,K) = ∆SS(Y |X0,0) + ∆SS(Y |X1⊥0,K1).

e) Following on from d), if K1 = λX ′1⊥0X1⊥0 then

∆SS(Y |X,K) = ∆SS(Y |X0,0) + k∆SS(Y |X1⊥0,0).

where k = (1 + λ)−1.

f) Following on from e),

RSS(Y |X,K) = RSS(Y |X0,0)− k∆SS(Y |X1⊥0,0).

Proof. a) Let C(X) denote the column space of X, and P denote the projection matrix into
C(X): P = X(X ′X)−1X ′. Note that, because X1⊥0 is the part of X1 that is orthogonal
to X0, C([X0, X1]) = C([X0, X1⊥0]). Further, since C(X0) and C(X1⊥0) are orthogonal,
projection onto C(X0, X1⊥0) can be decomposed into orthogonal parts, the projection into
C(X0) and the projection into C(X1⊥0). That is P = P0 + P1⊥0. Thus Y ′PY = Y ′P0Y +
Y ′P1⊥0Y , and the result follows.

b) This follows directly from the definition of ∆SS on noting that X̃ ′X̃ = X ′X +K.

c) This follows directly from substituting K = λX ′X for K in the definition of ∆SS.

d) Let X = [X0, X1] and L1 be any matrix such that L′1L1 = K1. Also let Ỹ =

(
Y
0

)
. Then

∆SS(Y |X,K) = ∆SS(Ỹ |
(
X0 X1

0 L1

)
,0) [by b)]

= ∆SS(Ỹ |
(
X0

0

)
,0) + ∆SS(Ỹ |

(
X1⊥0
L1

)
,0) [by a)]

= ∆SS(Y |X0,0) + ∆SS(Y |X1⊥0,K1) [by b)]

e) This follows by applying c) to the term ∆SS(Y |X1⊥0,K1) in d).

f) This follows directly from e) from the definitions of RSS and ∆SS.

Proof of Lemma S.1.1.
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Proof. From (16) the Bayes factor is given by[
|K|
|K0|

|X ′0X0 +K0|
|X ′X +K|

]d/2[ |RSS(Y |X0,K0) + Ψ|
|RSS(Y |X,K) + Ψ|

](n+m)/2

. (S.1.9)

Note that |K|/|K0| = |K1|. Also, in the limit K0 → 0 we have

X ′X +K =

(
X ′0X0 X ′0X1

X ′1X0 X ′1X1 +K1

)
. (S.1.10)

If X ′0X0 is invertible then the determinant of this matrix is, by standard properties of the
determinant, given by

|X ′X +K| = |X ′0X0||X ′1X1 +K1 −X ′1X0(X
′
0X0)

−1X ′0X1| (S.1.11)

= |X ′0X0|(1 + λ)p1 |X ′1(In − P0)X1| (S.1.12)

= |X ′0X0|[(1 + λ)/λ]p1 |K1| (S.1.13)

where the second line is obtained by substituting λX ′1(I −P0)X1 for K1. Thus the first term in
(S.1.9) is given by [λ/(1 + λ)]p1d/2 ≡ [1− k]p1d/2

Turning now to the second term, in the limitK0 → 0 and Ψ→ 0 the ratio of the determinants
becomes |RSS(Y |X0,0)|/|RSS(Y |X,K)|. By Lemma S.1.2f) the denominator is

RSS(Y |X,K) = RSS(Y |X0,0)− kY ′X1⊥0(X
′
1⊥0X1⊥0)

−1X ′1⊥0Y (S.1.14)

= RSS(Y |X0,0)− kAB (S.1.15)

where A := Y ′X1⊥0 is d × p1 and B := (X ′1⊥0X1⊥0)
−1X ′1⊥0Y

′ is p1 × d. Then, by standard
properties of the determinant (e.g. Wikipedia),

|RSS(Y |X,K)| = |RSS(Y |X0,0)||Ip1 − kBRSS(Y |X0,0)−1A| (S.1.16)

and the result follows.

S.2 Proof of Proposition 1

To prove this proposition we use the following Lemma in conjunction with Lemma S.1.1 above.

Lemma S.2.1. Let Λ(Y ∼ X1|X0) denote the usual likelihood ratio test statistic for testing
whether Y is associated with X1 given X0 in a multivariate normal regression model. That is,
Λ(Y ∼ X1|X0) is the likelihood ratio test of B1 = 0 in

Y = X0B0 +X1B1 + E, (S.2.1)

where Y,E are n × d, X0 is n × p0 and X1 is n × p1, B0 is p0 × d and B1 is p1 × d, and the
rows of E are independent and identically distributed d-variate normal with unknown covariance
matrix V . Then

Λ(Y ∼ X1|X0) =
∣∣Ip1 − (X ′1⊥0X1⊥0)

−1u′RSS−10 u
∣∣n/2 (S.2.2)

where X1⊥0, u and RSS0 are as in Lemma S.1.1.
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Proof. By definition, the likelihood ratio test statistic is the ratio of determinants

Λ(Y ∼ X1|X0) =

[
|RSS(Y |[X0, X1],0)|
|RSS(Y |X0,0)|

]n/2
. (S.2.3)

Setting λ = 0 (so k = 1 and K = 0) in (S.1.16) in the proof above we have

|RSS(Y |[X0, X1],0)| = |RSS(Y |X0,0)||Ip1 −BRSS−10 A)|, (S.2.4)

and the result follows.

We can now prove Proposition 1 which we restate here for convenience.

Proposition 1. The Bayes Factor BF→γ is related to the likelihood ratio statistic Λγ := Λ(YD ∼
g|YU ) by

BF→γ = (1− k)|D|/2(kΛ2/n
γ + 1− k)(n+m−d+|U |+|D|)/2 (S.2.5)

with k = 1/(1 + (σ2ag̃
′g̃)−1), where g̃ denotes the vector of residuals from OLS regression of g

on YU (including an intercept).

Proof. Recall that BF→γ is the Bayes Factor for comparing two BMVRs, (22) with (23). There-
fore we can apply Lemma S.1.1 with Y = YD, X0 = [1, YU ], X1 = g,K1 = σ−2a ,m = m − d +
|U |+ |D| to obtain

BF→γ = (1− k)|D|/2
∣∣1− k(X ′1⊥0X1⊥0)

−1u′RSS−10 u
∣∣−(n+m−d+|U |+|D|)/2 . (S.2.6)

It then remains to show that (X ′1⊥0X1⊥0)
−1u′RSS−10 u = 1−Λ

2/n
γ . However, this follows directly

from Lemma S.2.1.

S.3 Simulation Code

The following code was used to generate the six different simulation scenarios described in the
text.

if(type==1){ #Multivariate 1

Y[1,] =Z[1,]+a*X

Y[2,] =(Z[2,]+Z[1,])/sqrt(2)

Y[3,]=Z[3,]+a*X

Y[4,]=(Z[4,]+Z[2,]+Z[3,])/sqrt(3)

Y[5,]=(Y[3,]+Z[5,])/sqrt(2)

}

if(type == 2){ #Independence

Y[1,] =Z[1,]+a*X

Y[2,] =Z[2,]

Y[3,]=Z[3,]

Y[4,]=Z[4,]
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Y[5,]= Z[5,]

}

if(type==3){ #Rest indirectly associated

Y[1,] =Z[1,]+a*X

Y[2,] =(Z[2,]+Y[1,])/sqrt(2)

Y[3,]=(Z[3,]+0.5*Y[1,])/sqrt(1+0.5^2)

Y[4,]=(Z[4,]+0.2*Y[1,])/sqrt(1+0.2^2)

Y[5,]= (Z[5,]+0.1*Y[1,])/sqrt(1+0.1^2)

}

if(type==4){ # Latent factor

f = a*X + 0.5*rnorm(n)

Y[1,] = 0.5*Z[1,] + 0.3*f

Y[2,]= 0.5*Z[2,] + 0.2*f

Y[3,] = 0.5*Z[3,] - 0.3*f

Y[4,] = 0.5*Z[4,] + 0.5*f

Y[5,] = 0.5*Z[5,]+ 0.2*f

}

if(type==5){ # Multivariate 2

Y[1,] = Z[1,]

Y[2,]= Z[2,]

Y[3,] = Z[3,]

Y[4,] = (Z[4,] + Y[1,] +Y[2,])/sqrt(3)+ a*X

Y[5,] = (Z[5,] + Y[3,])/sqrt(2) + a*X

}

if(type==6){ # Rest unassociated

Y[1,] = Z[1,]

Y[2,]= Z[2,]

Y[3,] = Z[3,]

Y[4,] = Z[4,]

Y[5,] = (Z[5,] + Y[1,] + Y[2,] + Y[3,] + Y[4,])/sqrt(5) + a*X

}

S.4 Partition property of BMVR

The following partition property is used to obtain the expressions (22) and (23). It is not new,
but is included for completeness.

Proposition S.4.1 (Partition Property of BMVR). Suppose Y ∼ BMVR(X;K,Ψ,m) with Ψ
diagonal. Now consider partitioning Y and Ψ into groups of d1, d2 variables

Y = (Y1, Y2) Ψ =

(
Ψ11 0
0 Ψ22

)
. (S.4.1)
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Then

Y1 ∼ BMVR(X;K,Ψ11,m− d2) (S.4.2)

Y2|Y1 ∼ BMVR([X,Y1]; K̃,Ψ22,m) (S.4.3)

where

K̃ =

(
K 0
0 Ψ11

)
. (S.4.4)

This partition property says that a Bayesian multivariate regression of Y on X, with priors
given by (14) and (15), and with Ψ diagonal, is equivalent to a Bayesian multivariate regression
of Y1 on X, followed by a Bayesian multivariate regression of Y2 on X and Y1. Note that while
in non-Bayesian settings it is well known that if Y is multivariate normal then Y2|Y1 has the
form of a linear regression of Y2 on Y1, in a Bayesian setting the equivalence of these two models
depends on very special properties of the priors used, and in particular of the inverse Wishart
distribution (e.g. Geiger and Heckerman (2002), Theorem 5).

Applying Proposition S.4.1 recursively we can consider partitions Y = (Y1, Y2, Y3) into three
groups of d1, d2 and d3 variables. This yields

Y1 ∼ BMVR(X;K,Ψ11,m− d2 − d3) (S.4.5)

Y2|Y1 ∼ BMVR([X,Y1]; K̃,Ψ22,m− d3) (S.4.6)

Y3|Y1, Y2 ∼ BMVR([X,Y1, Y2];
˜̃K,Ψ33,m) (S.4.7)

where

˜̃K =

 K 0 0
0 Ψ11 0
0 0 Ψ22

 . (S.4.8)

Applying this withX = 1 andK = K0 gives expressions for the distributions p(Y1|g), p(Y2|Y1, g)
and p(Y3|Y1, Y2, g) under H0; applying it with X = [1, g] and K = K1 gives expressions for the
same distributions under Hall.

To prove Proposition S.4.1 we make use of the following result.

Result S.4.1 (Properties of the Inverse Wishart distribution). The following properties of the
inverse Wishart distribution are well known; see for example Geiger and Heckerman (2002).

Assume V ∼W−1(Ψ,m), and partition the matrices V and Ψ conformably with

V =

(
V11 V12
V21 V22

)
Ψ =

(
Ψ11 Ψ12

Ψ21 Ψ22

)
(S.4.9)

where Vij and Ψij are di × dj matrices. Then

i) V11 is independent of V −111 V12 and V22.1 where V22.1 = V22 − V21V −111 V12.

ii) V11 ∼W−1(Ψ11,m− d2).

iii) V22.1 ∼W−1(Ψ22.1,m).
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iv) V −111 V12|V22.1 ∼ MNd1×d2(Ψ−111 Ψ12,Ψ
−1
11 , V22.1)

Proof of Proposition S.4.1. The multivariate regression model (13) can be written in terms of
the matrix normal distribution:

Y |B, V ∼ MNn×d(XB, In, V ). (S.4.10)

Now partition Y = (Y1, Y2), B = (B1, B2) and

V =

(
V11 V12
V21 V22

)
, (S.4.11)

where Yi is n× di, Bi is p× di, and Vij is di× dj (i, j = 1, 2). Then, from elementary properties
of the multivariate normal distribution, we have

Y1|B, V ∼ MNn×d1(XB1, In, V11) (S.4.12)

Y2|Y1, B, V ∼ MNn×d2(XB2 + (Y1 −XB1)V
−1
11 V12, In, V22.1) (S.4.13)

∼ MNn×d2([X,Y1]

(
B̃2

R

)
, In, V22.1) (S.4.14)

where B̃2(p× d2) = (B2 −B1V
−1
11 V12) and R(d1 × d2) = V −111 V12. Note that this is the standard

result that says that if Y is multivariate normal, then Y2 given Y1 has the form of a linear
regression on Y1.

Now let
B|V ∼ MNp×d(0,K

−1, V ). (S.4.15)

Then again, by elementary properties of the multivariate normal,

B1|V ∼ MNp×d1(0,K−1, V11) (S.4.16)

B2|B1, V ∼ MNp×d2(B1V
−1
11 V12,K

−1, V22.1). (S.4.17)

Note that combining (S.4.12) with (S.4.16) and Property ii), gives (S.4.2). Further, the condi-
tional distribution for B2, (S.4.19), implies

B̃2|B1, V ∼ MNp×d2(0,K−1, V22.1). (S.4.18)

so in particular B̃2 is independent of B1 and R, and combining this with property (iv) above for
V we have: (

B̃2

R

)
|V22.1 ∼ MNp+d1×d2(0, K̃−1, V22.1), (S.4.19)

where

K̃ =

(
K 0
0 Ψ11

)
. (S.4.20)

Combining (S.4.14) with (S.4.19) and Property iii) gives (S.4.3).
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