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Overview of Supplementary Materials

The supplementary materials contain three major sections. Section 1 contains technical

details about the curve-fitting algorithm. Section 2 contains a description of how we

generated simulated data to test the sensitivity and specificity of the curve-fitting algorithm,

as well as the results of these simulated-data tests. Section 3 presents importance maps that

illustrate which brain regions the classifier was relying on to detect face and scene activity.

For readers interested in replicating or extending our curve-fitting analyses, we have

also prepared a fully documented, downloadable toolbox containing:

1. The Matlab routines that implement our curve-fitting algorithm

2. The data tables that were used as input to the curve-fitting algorithm, in order to

generate Figures 8 and 9 in the main paper. These data tables contain, for each

no-think item from each participant, the 12 classifier evidence values elicited by that

item during the think/no-think phase, and a binary value indicating whether that item

was remembered correctly on the final test (see Section 2.7.3 from the main paper).

The toolbox is called P-CIT (“Probabilistic Curve Induction and Testing”) and it can be

downloaded from http://code.google.com/p/p-cit-toolbox/ or from http://compmem.princeton.edu.

1 Curve-Fitting Algorithm Details

This section contains additional mathematical and technical details about the curve-fitting

algorithm that were not included in the main paper. Importantly, this section is meant to be

a companion piece to our discussion of the algorithm in the main paper, not a stand-alone

algorithm description – readers should go through the high-level algorithm description in

the main paper first, and then read this section afterwards.
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1.1 Probabilistic model

1.1.1 Terminology

Let N be the number of item (word-image) pairs, each of which are presented K (12

repetitions for no-think trials, 6 repetitions for think trials) times during the experiment.

Repetition k of pair n is associated with an fMRI-based classifier evidence variable xsnk

for each participant s. During the final memory test, the word cue from each pair is

presented, and the binary variable ysn indicates whether participant s successfully (ysn = 1)

or unsuccessfully (ysn = 0) remembered the associated image for pair n. We shall denote

the complete dataset of S participants by D = {X, Y }.

1.1.2 Generative model

We assume that the probability of successful retrieval depends on the history of an item’s

activation. In particular, we posit the following logistic regression model:

P (ysn = 1|xsn, θs, β) =
1

1 + e−zsn
, (1)

where zsn is a sufficient statistic of the activation history:

zsn = β0 + β1

K∑
k=1

f(xsnk; θ). (2)

β0 is an intercept parameter and β1 is a slope parameter shared across participants (note:

these zsn values correspond to the “net effect” values described in Section 2.7.3 of the main

paper). The plasticity function f(x; θ) belongs to a family of modelsM parameterized by θ.

We did not collect enough data from each participant to estimate the curve shape

individually for each participant. As such, we used a model that assumes that the curve-

defining parameters θ are shared across participants (refer to Section 1.2.1 for discussion of
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curve parameters).

Let ΘM denote the parameter space such that θ ∈ ΘM. Our prior over parameters θ

within ΘM is uniform. Let |ΘM| denote the volume (Lebesgue measure) of ΘM. The prior

P(θ) is given by:

P (θ) =
1

|ΘM|
(3)

1.1.3 Inference

Each model family ΘM can be divided into two disjoint subsets, H1 and H0 (which we

will refer to as “hypotheses”—i.e., theory-consistent and inconsistent, respectively). Let Hc

denote the true hypothesis where c ∈ {0, 1}. Our goal ultimately is to infer the posterior

over c, which is given by Bayes’ rule:

P (c|D, β) ∝
∫
θ

P (θ|c)
S∏
s=1

N∏
n=1

P (ysn|xsn, θ, β)dθ. (4)

There are two problems here. First, we do not know β, so we need to estimate it from the

data. Second, because the integral in Eq. 4 is analytically intractable, we must resort to ap-

proximation. Both of these problems can be addressed using the expectation-maximization

(EM) algorithm, which we describe next.

The expectation-maximization algorithm The EM algorithm, first introduced by Demp-

ster et al. (1977), is a method for performing maximum-likelihood estimation in latent

variable models. We follow the derivation of Neal and Hinton (1998), who showed that

the EM algorithm can be understood as coordinate ascent on the functional F(β,Q) =∫
θ
Q(θ|D) logP (D, θ|β)dθ with respect to β and the approximate posterior Q(θ|D). This

functional is a lower bound on the log marginal likelihood, logP (D|β). The EM algorithm
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alternates between maximizing F(β,Q) with respect to β and Q. Letting j indicate the

iteration:

E-step : Qj+1 ← argmax
Q

F(βj, Q)

M-step : βj+1 ← argmax
β
F(β,Qj+1)

Alternating these steps repeatedly, F(β,Q) will converge to a local maximum. It can

be shown that setting Qj+1(θ|D) = P (θ|D, βj) maximizes F(βj, Q) with respect to Q (Neal

and Hinton, 1998). In the next sections, we describe how we implemented this algorithm

for our generative model.

The E-step In the E-step, we use a Monte Carlo technique known as importance sampling

(Gelman et al., 2004) to approximate the intractable posterior:

P (c = 1|D, β) ≈
M∑
m=1

w(m)I[θ(m) ∈ H1], (5)

where θ(1:M) are drawn from a proposal distribution G(θ), I[θ ∈ Hc] = 1 if θ ∈ Hc, and 0

otherwise. The importance weights w(1:M) are given by:

w(m) =
w̃(m)∑M
j=1 w̃

(j)
(6)

w̃(m) =
P (Y|X, θ(m), β)P (θ(m))

G(θ(m))
(7)
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The probability density functions are given by:

P (Y|X, θ, β) =
S∏
s=1

N∏
n=1

P (ysn|xsn, θ, β) (8)

G(θ) =
M∑
j=1

w̄(j)Nt(θ; θ̄(j), τ 2, a, b) (9)

where w̄(1:M) and θ̄(1:M) represent the importance weights and curve parameter samples

(respectively) from the previous E-step, and Nt(θ; θ̄(j), τ 2, a, b) computes the likelihood of

θ under a truncated normal distribution with mean θ̄(j), variance τ 2 and bounds a, b. In

other words, the proposal distribution G(θ) is constructed to be the approximate posterior

from the previous iteration of the EM algorithm, smoothed by a truncated Gaussian kernel

with variance τ 2. P (Y|X, θ, β) is the likelihood of behavioral outcomes Y given plasticity

curve parameters θ, classifier evidence values X, and logistic function parameters β, where

classifier evidence is used to predict behavioral outcomes according to the generative model

described in Section 1.1.2 above.

For the first iteration of the EM procedure, proposals are drawn from the prior, P (θ),

in which case P (θ(m)) and G(θ(m)) cancel out in the equation for w̃(m) above, and the

importance weight w(m) is simply the likelihood normalized over samples. For subsequent

iterations, to draw a sample from the proposal distribution G(θ), we first choose sample j

from the previous set of samples with probability w̄(j), and then add noise with variance τ 2

to each parameter in θ̄(j) from a truncated normal distribution bounded by a, b, where a

and b are the minimum and maximum allowable values for that parameter (for horizontal

parameters, the min and max are 0 and 1; for vertical parameters, the min and max are

-1 and 1). This realizes an adaptive importance-sampling scheme, wherein the proposal

distribution is focused on regions of high probability density.

In the adaptive importance-sampling approach, we sample the space around a good

7



curve hoping to find better curves. The τ parameter specifies the width of the space that is

explored around each good curve. We tried running analyses with τ values ranging from

0.01 to 0.1. We found that, when τ was less than .05, the algorithm did not do an adequate

job of exploring the parameter space, leading to unstable results (in particular, low values

of τ led to sample degeneracy, where a small number of samples dominated the others; see

Section 1.5). τ values of .05 and higher yielded results that were stable across runs of the

algorithm and also identical across τ values (so long as τ ≥ .05). We set τ to .05 for the

curve-fitting analyses reported in the main paper.

The M-step As a result of the E-step, the functional F(β,Q) is approximated by:

F(β,Q) ≈
M∑
m=1

w(m) logP (D, θ(m)|β)

=
M∑
m=1

w(m)

S∑
s=1

N∑
n=1

logP (ysn|xsn, θ(m)
s , β) (10)

Differentiating this expression with respect to β, we use a gradient ascent algorithm

(Matlab’s fminunc) to find the β that maximizes it. 1 β0 is initialized to zero and β1 is

initialized to 1.

Because the EM algorithm is designed only to find a local optimum of the objective

function, we ran each analysis twice to get an estimate for the posterior probability (for

the curve-fitting analyses described in the main paper, convergence across the two runs

was excellent). For each run of the curve-fitting analysis, we let the EM process run for 20

iterations. We found empirically that the objective function tended to converge after 10-15

iterations – we selected 20 iterations based on our subjective sense that this was the point

of diminishing returns (further iterations beyond 20 took extra time to run, but typically

1Technically, fminunc is a gradient descent algorithm, so – instead of maximizing the objective function –
we minimize -1 × the objective function.
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did not yield improvements in the objective function).

1.1.4 Evaluation criteria

Weighted final curve and credible interval The approximate posterior can be used to

estimate the plasticity curve:

f̂(x; θ) = E[f(x; θ)|D, β] =

∫
θ

P (θ|D, β)f(x; θ)dθ

≈
M∑
m=1

w(m)f(x; θ(m)). (11)

Credible intervals (see Gelman et al., 2004) are also readily obtained from this approxima-

tion by finding (for each x value) the range of y values that contain the middle γ percent of

the weighted probability mass (i.e., such that 1− γ/2 of the probability mass falls below

this range, and 1− γ/2 of the probability mass falls above this range). This interval can be

interpreted to mean that the posterior probability that f(x; θ) will pass through the interval

for some value of x is equal to γ.

1.2 Plasticity curve

1.2.1 Six parameter curve

Figure 1 (copied over from the main paper for convenience) illustrates our curve param-

eterization. There are four vertical parameters y1, y2, y3, y4 that determine the height of

the points in the curve; there are also two horizontal parameters x1 and x2, where x1 < x2 .

The vertical parameters can take on values between [-1, 1] and the horizontal parameters

can take on values between [0, 1]. Our curves are defined by the following four points:

(0, y1), (x1, y2), (x2, y3), and (1, y4). Moving from left to right, we connect these points using

three line segments to form a piecewise linear function.
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Figure 1: Illustration of piecewise-linear parameterized curve with six adjustable parameters

1.2.2 Criteria for theory consistency

Here we define the criteria that we used for specifying curves as theory-consistent (i.e.,

consistent with the nonmonotonic plasticity hypothesis) or theory inconsistent. A curve was

considered to be theory consistent if – moving from left to right– one of the inner points

dipped below the leftmost point (and below zero), and then the curve subsequently rose

above zero. Since we have four vertical parameters, we could achieve this requirement in

several ways – these ways (“branches”) are defined below. Any curve that does not fall into

one of these branches is, by default, theory inconsistent.

The different branches of theory-consistent curves can be defined in terms of the location

of the dip in the curve (the point that anchors the weakening part of the curve) and the rise

in the curve (the point that anchors the strengthening part of the curve). More formally,

• The dip in a theory-consistent curve is a point that is located horizontally between the

left edge of the curve and the rise. Within this horizontal range, the dip is the lowest

point on the curve; it also has to fall below zero on the y-axis.

• The rise in a theory-consistent curve is a point that is located to the right of the dip.
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Within this horizontal range, the rise is the highest point on the curve; it also has to

fall above zero on the y-axis.

Branch I: y2 defines the dip and y3 defines the rise.

1. -1 ≤ y2 < 0, y2 is the dip so it must fall below zero

2. 0 < y3 ≤ 1, y3 is the rise so it must fall above zero

3. -1 ≤ y4 ≤ y3, y4 can hold any value that is below the rise (y3)

4. y2 < y1 ≤ 1, y1 can hold any value that is above the dip (y2)

Branch II: y2 defines the dip and y4 defines the rise

1. -1 ≤ y2 < 0, y2 is the dip so it must fall below zero

2. 0 < y4 ≤ 1, y4 is the rise so it must fall above zero

3. y2 ≤ y3 ≤ y4, y3 can hold any value between the dip (y2) and the rise (y4)

4. y2 < y1 ≤ 1, y1 can hold any value that is above the dip (y2)

Branch III: y3 defines the dip and y4 defines the rise

1. -1 ≤ y3 < 0, y3 is the dip so it must fall below zero

2. 0 < y4 ≤ 1, y4 is the rise so it must fall above zero

3. y3 < y1 ≤ 1, y1 can hold any value that is above the dip (y3)

4. y3 ≤ y2 ≤ 1, y2 can hold any value that is above the dip (y3)

Notice the branches above only impose constraints on vertical parameters. If horizontal

parameters are set to 1 or 0 then one or more of the line segments will be missing.
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Figure 2: Two identically shaped plasticity curves displaced vertically from each other.

Irrespective of which branch above the curve falls into, the two conditions listed below will

ensure that all three line segments exist.2

1. x1 6= 0 AND x1 6= 1

2. x2 6= 0 AND x2 6= 1

When evaluating curves for theory consistency we check if a curve satisfies (Branch I

OR Branch II OR Branch III) AND {x1, x2} 6= {0, 1}

1.3 Anchoring the vertical position of the curve using baseline items

In the main paper, we described how we included baseline items (with net effect = 0) in

the data table, and we mentioned that doing this helps to constrain the vertical placement

of the curve; here, we explain why this is the case.

2If x1 and x2 have the exact same sampled value, the curve-evaluation code is set up to treat x2 as sitting
.0001 to the right of x1, thereby ensuring that each x value will map onto a unique y value.
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Consider the two curves in Figure 2. Because the curves have the exact same shape, the

net effect scores for the upper curve will be equal to the the net effect scores for the lower

curve plus a constant value (corresponding to the vertical displacement) – as such, the two

curves will do an equally good job of explaining variance within the no-think condition. The

only place where the curves differ is in their predictions about differences across conditions.

Because the top curve is located entirely above the y = 0 line, it predicts an average net

effect score for no-think items that is greater than 0; this implies (incorrectly) that no-think

items should be remembered better than baseline items on average. The bottom curve

predicts an average net effect score for no-think items that is lower – let us assume that it is

less than zero; this implies (correctly) that the average level of recall for no-think items

should be numerically lower than the average level of recall for baseline items.

In summary: When baseline items are included with net effect = 0, this “breaks the tie”

between the upper and lower curves: Specifically, the lower curve will be assigned a higher

importance weight because it gets the numerical ordering of the no-think and baseline

conditions correct. Without baseline items, the algorithm has no way of preferring the

lower curve over the upper curve based on the data alone; in this situation, the algorithm’s

choice of curves will be driven by other factors (e.g., our choice of the starting value for β0).

1.4 Negative β1 and flipping curve parameters

Our theory-consistency criteria were devised under the assumption that positive y-values on

the plasticity curve indicate memory strengthening and negative y-values indicate memory

weakening. This assumption is upheld when β1 (the slope of the relationship between

“net effect” values and behavioral memory outcomes in the logistic regression) is positive;

however, when β1 is negative, the opposite is true: Positive y-values on the plasticity curve

indicate memory weakening and negative y-values indicate memory strengthening. To

avoid this confusing situation, we took advantage of the fact that simultaneously flipping
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the sampled curves (i.e., reflecting them around the x-axis) and flipping the sign of β1 leaves

the curve importance weights unchanged (intuitively, this is like taking a double negative;

the two changes cancel out). Whenever the curve-fitting procedure settled on a negative β1

value at the end of the adaptive importance-sampling procedure, we enacted this “double

flip”, leaving us with a positive β1 value. We then applied our theory-consistency criteria to

the (flipped) set of curves.

1.5 Symptoms of the curve-fitting procedure failing

In some circumstances, the curve-fitting procedure can fail to generate a meaningful

estimate of the shape of the underlying plasticity curve. It is important to be able to

recognize the symptoms of algorithm failure, so P(theory consistent) values from these

defective runs can be disregarded. This section contains a listing of “failure symptoms” that

are grounds for disregarding the output of the curve-fitting algorithm.
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Figure 3: Illustration of a curve-fitting analysis run where β1 goes to zero (left panel); the
resulting weighted final curve is flat line with wide credible intervals (right panel).

• Low values of β1: Very low values of β1 indicate that the algorithm is having trouble

finding a reliable relationship between neural measurements and behavior. Sometimes

β1 falls all the way down to zero during the curve-fitting process, indicating a complete
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failure to relate neural measurements and behavior. When this occurs we observe

a flat mean plasticity curve with very wide credible intervals (see Figure 3). In

other situations, β1 can fall to a value very close to zero but not all the way to zero.

In this situation, even though none of the sampled curves are doing a good job of

explaining behavior in the absolute sense, some of these curves might be doing a

relatively better job of explaining the data. If the curves that are doing relatively

better happen to be predominantly theory consistent or theory inconsistent, this can

cause P(theory consistent) values to deviate from .5. In this case, even though the

P(theory consistent) values are deviating from .5, they should be disregarded because

the absolute goodness-of-fit values are so low. In general, for a particular dataset, the

higher the β1 value is, the more confident we can be that we are picking up on real

signal about the relationship between brain activity and behavior. For our think/no-

think analyses (including the simulated-data analyses discussed in Section 2 below),

we used a heuristic of automatically disregarding P(theory consistent) estimates when

β1 < .01 at the end of the curve-fitting process. Note that β1 values are affected by the

scale of the data; as such, a fixed β1 cutoff that is suitable for one dataset might not be

suitable for other datasets. In more recent versions of our software, we have replaced

this fixed β1 cutoff with a statistical test of the null hypothesis that β1 = 0. With this

statistical test in place, we can use a heuristic of disregarding P(theory consistent)

whenever β1 does not significantly differ from zero.

• Sample degeneracy: In this setting, sample degeneracy refers to a situation where

a small number of sampled curves account for a large proportion of the posterior

probability mass. Refer to Figure 4 for an example of degeneracy. When degeneracy

occurs, this indicates that the algorithm is failing to appropriately sample the full space

of curves; this problem can sometimes be fixed by increasing the τ parameter that

governs how new curves are generated (i.e., how different the new curves are from
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Figure 4: Traces of degeneracy: one sample has an importance weight of 0.9711 and is the
driving force behind the final weighted curve. Due to the domination of one sample the
credible intervals are very narrow.

previously sampled curves). In our think/no-think analyses, we used a heuristic of

disregarding P(theory consistent) estimates when the largest sample weight exceeded

.02.

• F-values: As noted in Section 1.1.3, in the M-step of the EM procedure we optimize

the objective function F(β,Q) with respect to β using Matlab’s fminunc function. If

the curve-fitting procedure is working properly (i.e., it is generating a good estimate

of the posterior distribution over curves), then the values of the objective function

computed by fminunc (henceforth referred to as F-values) should exhibit an overall

decrease as a function of expectation maximization (EM) iterations. When the curve

fitting procedure fails to generate a good estimate of the posterior, the F-values can

sometimes exhibit the opposite behavior. In our analyses, we labeled F-values as

increasing if the EM iteration yielding the minimum F-value came before the EM

iteration yielding the maximum F-value (e.g., if the minimum F-value was observed on

iteration 2 and the maximum was observed on iteration 20); conversely, we labeled
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F-values as decreasing if the EM iteration yielding the maximum F-value came before

the EM iteration yielding the minimum F-value. Note that small increases in F-values

(measured by taking the difference between the maximum and minimum F-values) do

not necessarily indicate problems, but large increases indicate that the curve-fitting

procedure is failing to converge on the best solution. The question of what counts as

a “large” or “small” increase is a gray area. For our think/no-think analyses, we used

a heuristic of disregarding P(theory consistent) estimates when F-values increased

by 1 or more (note that F-values are reported on a log scale, so an F-value increase

of 1 corresponds to an order-of-magnitude increase; see Figure 5 for examples of

small and large F-value increases). However, this heuristic may not be appropriate for

other datasets; because of the way that F-values are computed, larger datasets tend

to generate larger F-values. Rather than looking at the absolute change in F-values,

it may be more useful to look at the relative change in F-values (i.e., the difference

between maximum and minimum F-values, divided by the minimum F-value). For

example, one could use a heuristic of applying further scrutiny to model fits when the

relative change in F-values exceeds .01. 3

• Consistency across runs of the algorithm: When the algorithm is working properly,

running the algorithm multiple times on the same dataset will yield highly consistent

estimates of the posterior mean curve, the credible interval around the curve, and

P(theory consistent). If you run the algorithm multiple times on the same dataset and

you get notably different results across runs, this is a sign that the algorithm is not

working properly (most likely because of sample degeneracy).

3If F-values are increasing but the data look good according to other data-quality metrics (i.e., β1 values
are high and there are no signs of sample degeneracy), the best way to address this situation is to increase the
number of samples – this will have the effect of making the approximation of the posterior more accurate.
In the limiting case (where the number of samples is infinite, so the approximation perfectly matches the
posterior), the EM algorithm is guaranteed to yield decreasing F-values (Neal and Hinton, 1998).
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Figure 5: Left side: Illustration of small perturbations in F-values over EM iterations – these
perturbations reflect natural variability across successive generations of samples and do not
necessarily indicate that the algorithm is failing. Right side: Illustration of an increase in
F-values spanning 4 orders of magnitude.

Importantly, none of the curve-fitting analyses described in the main paper exhibited

the failure symptoms listed above – for all of the analyses described in the main paper, β1

was around .5, F-values decreased over EM iterations, the maximum sample weight was

less than .01, and P(theory consistent) values were highly consistent across runs of the

algorithm.

2 Simulated data

To assess the sensitivity of our curve-fitting algorithm (i.e., how likely it is to detect theory

consistency when it is actually present) and the specificity of the algorithm (i.e., how likely

it is to report theory consistency when the underlying curve is theory inconsistent), we ran

simulated-data analyses. Our simulated-data analysis procedure involved the following

steps: First, we generated a ground-truth plasticity curve. Next, we generated simulated

memory activation values and behavioral outcomes that were consistent with this curve.

After generating these simulated data points, we added noise to the simulated activation

18



values. Finally, we fed the simulated data into the curve-fitting algorithm and generated

a recovered curve. The sensitivity and specificity of the algorithm can be evaluated by

comparing the recovered curve to the ground-truth curve.
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Figure 6: Ground-truth curves used in simulated-data analyses. From left to right: theory
consistent, monotonically increasing, and monotonically decreasing ground-truth curves.

2.1 Ground-truth curves

The first step in the simulated-data analyses is to generate ground-truth curves. These curves

are generated by specifying the six curve parameters. For more details on curve parameters

refer to section 1.2.1. Our simulated-data analyses focused on three ground-truth curves: a

theory-consistent curve, with a dip followed by a rise; a monotonically increasing (theory-

inconsistent) curve; and a monotonically decreasing (theory-inconsistent) curve (see Figure

6).

2.2 Procedure for generating simulated data

To create a simulated dataset, we took the following steps: First, for each simulated partic-

ipant, we sampled a “central value” for each simulated item from a uniform distribution

between .15 and .85; then, for each simulated item, we generated individual-trial activation
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values for that item by adding a uniformly sampled value between -.15 and .15 to the item’s

central value. Next, within each simulated participant, we rescaled the individual-trial

activation values so the maximum value was 1 and the minimum value was zero. After

generating these simulated activation values, the next step was to determine which of the

simulated items would be successfully (vs. unsuccessfully) remembered. To do this, we

used the ground-truth curve to compute a “net-effect” value for each item (by evaluating

the ground-truth curve at x values corresponding to each of the individual-trial activation

values for that item, and summing together the corresponding y values) – this net-effect

value specifies the overall effect of the (simulated) no-think phase on memory for that

item, according to the ground-truth curve. Next, within each simulated participant, we

ranked the items according to their net-effect values, and did a median split. Items in the

upper half of the net-effect distribution were assigned a behavioral memory outcome of

1 (indicating correct responding on the final memory test), and items in the lower half of

the net-effect distribution were assigned a behavioral memory outcome of 0 (indicating

incorrect responding on the final memory test). After assigning memory outcome values

to each item, we went back and added noise to the activation values (from a truncated

normal distribution with SD σ, bounded between zero and 1) – this added noise is meant

to simulate measurement noise in the fMRI signal; the more noise there is, the harder it

should be to recover the shape of the ground-truth curve.

We generated our simulated datasets to match the structure of our actual dataset; each

simulated dataset was composed of 26 simulated participants, with 8 items per participant

and 12 trials per no-think item. The simulated-data generation procedure is summarized in

Algorithm 1. We ran the algorithm with varying levels of noise, ranging from σ = .001 to σ

= 2.0. Refer to Figure 7 for an example of simulated data with noise for a single participant.

The red and green dots refer to the remembered (green) and forgotten (red) items, eight

(rows) in total. Each row has twelve dots corresponding to the twelve repetitions of that
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Algorithm 1 Generate simulated data
1: participants← 26
2: repetitions← 12
3: items← 8
4: for s = 1 to participants do
5: item centers← Unif([0.15, 0.85], items)
6: for i = 1 to items do
7: activations← Unif([item centers(i)-0.15, item centers(i)+0.15], repetitions)
8: end for
9: scaled activations← scale data(0, 1, activations)

10: net effects← compute net effects(ground-truth curve, scaled activations)
11: for i = 1 to items do
12: if net effects(i) > median(net effects) then
13: memory← 1
14: else
15: memory← 0
16: end if
17: end for
18: noisy activations← scaled activations + Nt(σ, 0, 1)
19: end for
20: return noisy activations, memory

item. The upper and lower sets of dots correspond to the same ground-truth curve but with

0.001 and 0.5 noise respectively. The simulated classifier data and memory performance

data are both N-dimensional vectors where N = participants × items × repetitions.

2.3 Simulated-data results

For our simulated-data analyses, we generated five sets of simulated data points for each

level of noise (.001 to .2; plus a “uniform” condition where activation values were replaced

with uniform random noise) for each of the three ground-truth curves (theory consistent;

monotonically increasing theory inconsistent, and monotonically decreasing theory inconsis-

tent). For each set of simulated data points, we computed P(theory consistent). The results

of these analyses are plotted in Figure 8. We evaluated each result according to whether

the recovered P(theory consistent) value “matched” the ground-truth curve: i.e., for theory-
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Figure 7: Upper panel: ground-truth curve; middle panel: simulated data with .001 noise
added; lower panel: the same simulated data, with .05 noise added.

consistent ground-truth curves, was the recovered P(theory consistent) > .5? Likewise,

for theory-inconsistent ground-truth curves, was the recovered P(theory consistent) < .5?

Green points indicate simulated-data results that matched the ground-truth curve and red

points indicate simulated-data results that mismatched the ground-truth curve. Points

outlined in black indicate simulated-data runs that failed one of the data-quality checks

outlined in Section 1.5.

In the lowest-noise condition, all of the simulated-data results matched the ground-truth

curves (i.e., the balance of evidence was tilted toward theory consistency for theory-

consistent ground-truth curves and it was tilted toward theory inconsistency for theory-

inconsistent ground-truth curves). The algorithm was able to decisively label monotonically

decreasing curves as being theory inconsistent, but it showed more uncertainty about the

status of monotonically increasing curves. Overall, P(theory consistent) values tended to
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simulated datasets were generated for each ground-truth curve and each level of added
noise (“uniform” = activation values were replaced with uniform random noise). See text
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converge toward .5 (indicating increasing uncertainty) as more noise was added.

Of particular concern is the issue of false positives – does the curve-fitting algorithm

ever assign a high P(theory consistent) value to points derived from a theory-inconsistent

ground-truth curve? The middle and lower panels of Figure 8 indicate that simulated data

derived from theory-inconsistent ground-truth curves were sometimes assigned P(theory

consistent) values greater than .5; this was especially true for simulated data derived

from monotonically increasing ground-truth curves. The primary reason why these “false

positives” occur is that theory-consistent curves and (theory-inconsistent) monotonically

increasing curves can be very similar to one another; adding a tiny dip to the left-side of a

monotonically increasing curve will make it theory consistent. Because these two families of

curves are so similar, it is possible that – after adding noise – a simulated dataset generated

using a theory-inconsistent ground-truth curve might be best explained using a theory-

consistent plasticity curve. To assess whether this was occurring in our simulated data,

we took every simulated-data run that yielded a “false positive” (i.e., theory consistency

greater than .5, with a theory-inconsistent ground-truth curve) and we compared how

well the simulated data were explained by the (theory-consistent) recovered mean curve

versus the (theory-inconsistent) ground-truth curve. In every case but one, the recovered

theory-consistent curve did a better job of explaining the data than the theory-inconsistent

ground-truth curve. The other reason why these “false positives” occur is that – as described

in Section 1.5 – the curve-fitting algorithm sometimes fails to converge on a meaningful

solution when data are noisy (this was the case for the one run where the ground-truth

curve fit the data better than the recovered curve).

Regardless of why these “false positives” occur, the fact that they do occur is potentially

worrisome. In particular, the fact that P(theory consistent) values rose as high as .79 when

we generated simulated data from a monotonically increasing ground-truth curve suggests

that our real findings – e.g., our finding of P(theory consistent) = .76 for scene no-think
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trials – could also have arisen from a monotonically increasing ground-truth curve.

Fortunately, there are several other measures that we can use to distinguish our actual-

data results from the simulated-data “false positives” shown here. The first line of defense

is to look at the data-quality diagnostics described in Section 1.5. As noted in Section 1.5,

our actual scene, no-think results pass all of the diagnostics; by contrast, most of the

simulated-data “false positives” fail these diagnostics (as indicated by black outlines around

the points in Figure 8).

The second line of defense is to look at the results of the nonparametric statistical

tests described in Section 2.7.6 of the main paper (in particular, the bootstrap resampling

test). We took the most compelling “false positive” simulated-data run – i.e., the run with

the highest P(theory consistent) value that also passed the data-quality diagnostics from

Section 1.5 – and ran the bootstrap test on this simulated dataset. Although P(theory

consistent) for this dataset was quite high (.69), the bootstrap test revealed that only 69%

of the resampled datasets yielded P(theory consistent) values greater than .5. This can be

compared with the actual scene, no-think data, where 95% of the resampled datasets yielded

P(theory consistent) values greater than .5 (see Figure 11 in the main paper). We also ran

the bootstrap test on two simulated-data runs from the monotonically increasing, noise =

1.0 condition than yielded very high P(theory consistent) values (.73 and .79, respectively;

note that these runs failed the data-quality checks due to increasing F-values). Despite

the high theory-consistency values, only 84% and 85% (respectively) of the resampled

datasets yielded P(theory consistent) values greater than .5. The bootstrap test is a useful

means of rooting out false positives because it measures the reliabilty of the results across

participants. Intuitively, it is possible to get a few unusual participants who boost up the

overall P(theory consistent) value due to chance, but it is much harder to get a U-shaped

pattern that is reliable across the full set of participants due to chance.

In summary: Our simulated-data results show that high P(theory consistent) values can
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sometimes occur given a theory-inconsistent ground-truth curve, but these “false positives”

can be rooted out by looking at data-quality diagnostics and also by running bootstrap tests.

For this reason, it is essential to run these additional diagnostics and statistical tests in order

to properly interpret P(theory consistent) values.

3 Importance Maps

3.1 Methods

To gain insight into which brain regions were driving classifier performance, we constructed

importance maps for the scene and face categories using the procedure described in McDuff

et al. (2009). 4 This procedure identifies which voxels were most important in driving

the classifiers output when each category (scene, face) was present during the functional

localizer. For each category, we computed the average activation of each voxel during

the scans that were associated with that category (after correcting for haemodynamic lag)

during the functional localizer; note that voxel time courses were z-scored within runs,

according to the procedure described in Section 2.4.2 of the main paper. Classifier β weights

were obtained from our primary ridge-regression analysis (described in Section 2.5 of the

main paper) – this analysis yields one set of β weights per category.

Voxels with a positive β weight and a positive z-scored average activation value for a

category were assigned a positive importance weight for that category, with a value equal

to the product of the weight and the activation value. Voxels with a negative β weight

and a negative z-scored average activation value for a category were assigned a negative

importance weight for that category, with a value equal to the product of the weight and

the activation value. Voxels where the sign of the β weight differed from the sign of the
4Note that these importance maps have nothing to do with the importance-sampling procedure that

we used for curve-fitting – the fact that the word “importance” has been used in the past to describe both
procedures (even though they have nothing in common) is an unfortunate coincidence.
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average activation value were assigned an importance value of zero. Note that, with these

equations, both positive and negative importance values indicate a net positive contribution

of that voxel to activating the category classifier (when that category is present). The

absolute value of the importance score indicates the size of that voxel’s contribution. The

sign of the importance value indicates whether the voxel contributes via a characteristic

deactivation that is picked up by the classifier (via a negative weight) or a characteristic

activation that is picked up by the classifier (via a positive weight). We computed these

importance values within each participant; we then warped the importance values into

Talairach space and averaged together the participant-specific importance maps to get a

group importance map. For further details regarding the logic on this procedure, please

refer to McDuff et al. (2009). Note that importance maps do not provide a comprehensive

treatment of where category-relevant information is located in the brain; as discussed by

Norman et al. (2006), there are many reasons why informative voxels might be assigned

zero weights. The importance maps are presented in Figure 9 for informational purposes

only; no inferential statistics were computed based on these maps.

3.2 Results

Figure 9 shows the category-specific importance maps. Regions that contributed positively

to detection of faces (as identified using AFNI’s TT-atlas tool) included fusiform gyrus,

declive, inferior occipital gyrus, middle occipital gyrus, Brodmann area 18, lingual gyrus,

left culmen, and left Brodmann area 19. Regions that contributed negatively to detection

of faces (i.e., through a characteristic deactivation relative to the mean when faces were

present) included: left parahippocampal gyrus, and left Brodmann area 37. Regions that

contributed positively to detection of scenes included fusiform gyrus, parahippocampal

gyrus, culmen, declive, Brodmann areas 19, 20, 36 and 37, and lingual gyrus.
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Faces Scenes

Figure 9: Importance maps showing which voxels were most important in driving the
classifier’s response to faces (left side) and scenes (right side) during the functional localizer.
The montages were created in AFNI by loading the importance maps over the anatomical
data from one participant. Both the overlay and the underlay are in a 1x1x1 mm resolution
in Talairach space. Voxels with importance values greater than .0005 or less than -.0005
are shown in color. Voxels colored red have positive importance values (i.e., they contribute
to category detection via a characteristic increase in activation); voxels colored blue have
negative importance values (i.e., they contribute to category detection via a characteristic
decrease in activation). Note that map colors directly depict importance values and do not
indicate statistical significance. The slices in each 3 x 3 montage (going from top-left to
bottom-right, row-wise) correspond to Z = [-19, -17, -15, -13, -11, -9, -7, -5, -3]mm.
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