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Supporting Figures

Figure S1. (A) Series of surface confocal images of the organ of Corti at various positions along cochleas
microdissected at E15.5 and E17.5, and immunolabelled to reveal the centrioles (green), the apical cell-cell
junctions (green also), and the hair cells (red) (cf. Methods). Basal body positions (crosses) and watershed
contours of IHCs and of supporting cells contacting IHCs are overlaid. Scalebar : 5 µm. Supporting cells
were classi�ed into : inner pillar cells (IP, green), inner phalangeal cells (IPh, magenta), or inner border cells
(IB, cyan), according as their contours lay above all adjacent IHCs, intersected one of them, or lay below all
of them (see upper-right inset). (B,C) Histograms of the radial coordinate yBB− yCM of basal body position
relative to CM (colored dashed line) in individual IHCs (B) and in individual IPh cells (C). Data for one
cochlea at each stage. Black dashed lines show the histograms' medians. (D) Geometric characteristics of
IHCs and adjacent supporting cells as a function of x. From left to right : apical surface area, perimeter,
isoperimetric ratio (4π × area/perimeter2), and y/x-aspect ratio. Upper graphs, IHCs (red) and IPh cells
(magenta) ; lower graphs, inner pillar cells (green) and inner border cells (cyan).
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Figure S2. Tracking hair cell centriole movements by videomicroscopy. (A) Experimental setup. Top : The
matrigel-coated custom podium on which cochlear explants were let to adhere. Middle : The podium is turned
upside down, placed onto two rubber pieces �xed at the bottom of a culture dish, and left to relax in medium
for > 5 hours at 37°C. Bottom : An adjustable plexiglass cover allows the podium boundaries to be pressed
against the rubber pieces to set the explant's surface in position on the microscope's stage. (B-C) Surface
views of cochleas immunostained to reveal actin �laments, kinocilium axonema, and hair cell cytoplasm,
and imaged by confocal microscopy (see Methods). (B) Cochlea isolated at E14.5 and immunostained for
F-actin on the same day. (C,D) Cochleas isolated at E14.5 and immunostained after 5 days of culture. (C)
F-actin (red), kinocilium axonema (green) and hair cell cytoplasm (blue). (D) F-actin only. Image in (D)
was deconvolved using the Huygens software. The cytoplasmic channel of the cuticular plate (asterisk) and
the kinocilium (arrow) are seen by their absence of F-actin staining. (E) Videomicroscopy image of the
surface of a Centrin-1/GFP-Math1/mCherry mouse cochlear explant at E14.5. Crosses indicate cells whose
centrioles were selected for analysis. IHC, mCherry-stained inner hair cells (delineated by yelow contours) ;
SC1, supporting cells adjacent to an IHC ; SC2, other supporting cells. Scale bars : 5 µm.
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IHC stage 1 stage 2 stage 3

1-center trajectories n = 28 n = 117 n = 52

rms step size, 〈|δx(t)|2〉1/2 53.5± 4.2 77.4± 3.2 78.2± 4.8

MSD(t = 2s) 3.43± 0.56

×10−3

7.12± 0.59

×10−3

7.23± 0.88

×10−3

MSD �t - con�nement area, A 3.41± 0.84

×10−3

7.07± 1.17

×10−3

7.77± 1.29

×10−3

MSD �t - relaxation time,τ0 0.57± 0.35 0.73± 0.31 0.77± 0.40

MSD �t - random drift coef.,D0 0.27± 0.15

×10−4

0.72± 0.25

×10−4

0.35± 0.09

×10−4

MSD �t - directed drift coef.,u0 4.34± 0.29 4.69± 0.43 2.52± 0.21

cochlear extension velocity, uCE 4.43± 0.67 4.44± 0.60 3.50± 0.47

con�nement force 0.10± 0.01 0.11± 0.01 0.11± 0.01

2-center trajectories n = 5 n = 34 n = 14

MSD1(t = 2s) 9.9± 4.7

×10−3

11.6± 2.0

×10−3

10.6± 2.0

×10−3

MSD2(t = 2s) 15.9± 8.3

×10−3

27.8± 4.5

×10−3

22.3± 5.5

×10−3

∆(t = 10s) 20.0± 10.0

×10−3

30.9± 4.7

×10−3

23.3± 5.0

×10−3

δ1 = 2
√
MSD1(t = 2s) 0.18±0.04 0.19±0.02 0.19±0.02

δ2 = 2
√
MSD2(t = 2s) 0.21±0.05 0.30±0.03 0.27±0.04

intercentriole distance, r(t) 445± 24 451± 15 430± 29

std of r(t), σr 61.2± 9.0 78.4± 5.2 84.4± 8.3

rms distance steps, (δr(t)2)1/2 68.7± 13.7 86.4± 6.0 87.6± 10.1

intercentriole angle std,σθ 11.1± 2.6 17.3± 1.8 17.0± 3.1

rms angle steps, (δθ(t)2)1/2 12.6± 3.1 16.8± 1.7 16.8± 3.4

Table S1. Averaged characteristics of IHC centriole trajectories. Values

(mean ± standard error) are given for the three age groups (stages 1, 2,

and 3) de�ned in the text. MSD �t parameters correspond to the best

�t of Eq. 3 in the text to the averaged MSD curve obtained at the given

stage ; standard errors on these parameters were estimated by the bootstrap

method. Units : distances in nm ; areas and MSD in µm2 ; velocities in nm/s ;

forces in pN ; angles in degrees.
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SC1 SC2

stage 1 stage 2 stage 3 stage 1 stage 2 stage 3

1-center trajectories n = 30 n = 87 n = 87 n = 69 n = 204 n = 211

rms step size, 〈|δx(t)|2〉1/2 47.1± 3.0 69.9± 3.5 69.2± 4.0 43.0± 2.2 52.5± 1.7 56.6± 1.6

MSD(t = 2s) 2.54± 0.32

×10−3

5.91±0.56

×10−3

6.12±0.71

×10−3

2.23±0.23

×10−3

3.35±0.23

×10−3

3.71± 0.22

×10−3

MSD �t - con�nement area, A 2.71±2.88

×10−3

6.09±0.87

×10−3

6.84±0.94

×10−3

2.02±0.46

×10−3

3.09±0.71

×10−3

3.20± 0.30

×10−3

MSD �t - relaxation time, τ0 1.21±0.68 0.78±0.31 0.92±0.42 0.59±0.46 0.55±0.34 0.38± 0.23

MSD �t - random drift coef., D0 0.35±0.30

×10−4

0.44±0.12

×10−4

0.41±0.09

×10−4

0.44±0.09

×10−4

0.55±0.11

×10−4

0.66± 0.07

×10−4

MSD �t - directed drift coef., u0 4.37±0.33 5.02±0.54 2.14±0.22 4.37±0.27 5.46±0.38 2.30± 0.15

con�nement force 0.11±0.01 0.13±0.01 0.12±0.01 0.10±0.01 0.12±0.01 0.10± 0.01

2-center trajectories n = 8 n = 30 n = 48 n = 19 n = 86 n = 86

MSD1(t = 2s) 4.9± 1.0

×10−3

14.8± 3.4

×10−3

11.6± 1.8

×10−3

3.3± 0.5

×10−3

6.5± 0.8

×10−3

9.5± 0.9

×10−3

MSD2(t = 2s) 12.6± 2.2

×10−3

30.3± 4.4

×10−3

22.5± 3.0

×10−3

7.0± 1.0

×10−3

19.5± 1.9

×10−3

18.4± 1.7

×10−3

∆(t = 10s) 11.4± 1.6

×10−3

30.2± 5.8

×10−3

23.7± 3.0

×10−3

8.3± 1.2

×10−3

19.2± 1.8

×10−3

19.3± 1.7

×10−3

δ1 = 2
√
MSD1(t = 2s) 0.13±0.01 0.21±0.02 0.20±0.02 0.11±0.01 0.14±0.01 0.18±0.01

δ2 = 2
√
MSD2(t = 2s) 0.21±0.02 0.32±0.02 0.27±0.02 0.16±0.01 0.25±0.01 0.25±0.01

intercentriole distance, r(t) 418± 27 409± 21 429± 14 365± 28 404± 12 424± 10

std of r(t), σr 59.4± 4.6 83.5± 6.1 70.1± 4.0 56.5± 5.6 74.2± 3.7 76.2± 2.8

rms distance steps, (δr(t)2)1/2 66.3± 5.6 86.7± 6.7 78.8± 4.9 49.9± 4.1 72.3± 3.5 68.6± 3.2

intercentriole angle std,σθ 9.8± 1.0 16.8± 1.6 15.3± 1.0 14.6± 2.4 15.6± 1.0 17.2± 0.8

rms angle steps, (δθ(t)2)1/2 11.1± 1.3 18.1± 2.2 15.7± 1.2 12.5± 2.4 14.6± 1.1 13.0± 0.8

Table S2. Averaged characteristics of centriole trajectories in supporting cells. Values (mean ±

standard error) are given for the three age groups (stages 1, 2, and 3) as in Table SI.
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Supporting Information

S1. Centriole motion tracking algorithm

Pre-�ltering step. Each image I(x, t) of a given time-lapse series was �rst subject to a wavelet
denoising algorithm as described (1). Background subtraction was then applied by taking the
di�erence between the denoised image and a blurred version of it obtained by convolution
with a �large� gaussian kernel. The full-width-at-half-maximum (FWHM) of this gaussian
�lter was set to ≈ 2.7µm (corresponding to a standard deviation of 16 pixels). This size
was large compared to the typical di�raction-limited size of GFP-centriole spots (FWHM
of 0.7 ± 0.1µm, mean ± standard deviation), while being smaller than the typical cell-size
(3-10µm) setting the length scale of background variations in the images.

Selection of centriole pairs. The pre-�ltered GFP-images typically contained a set of well-
separated pairs of di�raction-limited spots in a dark background, whose relative positions
varied usually little over a duration of 10-15 min. These pairs corresponded to the images
of the mother (basal body) and daughter centrioles of cochlear cells seen in the focal plane.
Centriole pairs of interest were manually selected in the �rst image frame, and were classi�ed
in three groups according to cell-type (HC, hair cells ; SC1, supporting cells adjacent to hair
cells ; SC2 other supporting cells, cf. Fig. 3A). The coordinates c1, . . . , ck of the reference
centers of each group served as seeds to initialize the subsequent tracking step.

Tracking step. For each selected center ci, a local search for the corresponding nearby cen-
triole pair was performed by applying a bimodal gaussian spot detection algorithm within
a small square frame initially centered on ci. The tracking square (22 pixels accross) was
adjusted at each time step so that it remained at all time centered on a unique centriole
pair. The content of the tracking square could at all times be approximated by a superpo-
sition of two gaussian spots representing the di�raction-limited image of the tracked pair.
The parameters of these spots (center coordinates, standard deviation radius, and center
intensity) were estimated by a full least-squares �t of the parameters of either a bimodal
gaussian mixture (�two-center tracking�), or a single gaussian (�one-center tracking�), against
the pixel values in the tracking square. In the case of the two-center tracking, individual
centriole trajectories were reconstructed using the best least-squares matching between the
pairs of �tted gaussian spots at successive time steps.

S2. Analysis of centriole trajectories

We analyzed two types of hair cell centriole trajectory characteristics : One-center trajectory

quantities characterize the trajectory of the center x(t) of the gaussian best-�tted to the
mother/daughter centriole pair. We let xn = x(nδt) be that position after n time steps, and
δxn = xn+1 − xn be the step vector between time steps n and n+ 1.

The one-center mean-squared displacement (MSD) of the centriole pair after a time t,
de�ned by MSD(t) = 〈|x(t) − x(0)|2〉, was estimated for a trajectory of N recorded steps
from its empirical value for an n-step interval :

MSDn =
1

N − n

N−n∑
l=1

|xl+n − xl|2 ≈MSD(nδt). (1)

From it we get the e�ective di�usion coe�cient Deff(t) = MSD(t)/4t of the centriole pair.
For unconstrained Brownian motion the MSD grows linearly with time, MSD(t) ∝ 4Dt,
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where D is the particle's free di�usion coe�cient. For directed motion the MSD grows
quadratically, MSD(t) ∝ u2

0t
2, u0 being the drift velocity. For a con�ned Brownian motion

the MSD saturates to a �nite value proportional to the e�ective area of the region in which
the particle is con�ned (see section SI1 below).

To estimate the forces responsible for the con�nement of a particular trajectory or an
ensemble of trajectories, we estimated a corresponding e�ective con�nement potential energy
(2). In brief, the force maintaining the centriole pair close to its equilibrium position is
assumed to be the gradient of an e�ective radial potential Vconf(r) (r being the distance from
the centrosome's position to the center of the potential taken as origin). If the centrioles are in
thermal equilibrium over the duration of the experiments, the probability density of �nding
the centrosome at a distance r of the center is predicted to be Boltzmann's distribution

ρconf(r) = Cr exp(−Vconf(r)/kBT ) (2)

where kB denotes Boltzmann's constant (kB = 1.38 × 10−23J.K−1), T is the temperature
in Kelvin (set to 310 K for all experiments), and C is a normalization constant. Given an
ensemble of pooled trajectories, the radial density function ρconf(r) was estimated by �tting
Eq. 2 to the histogram of the radial distances r(t) = |x(t)−〈x(t)〉| formed over time and over
all trajectories of the ensemble, where 〈x(t)〉 denotes the mean-position of a given trajectory
x(t) after correction for the cochlear tissue drift has been applied. We adopted a power-law
form for the con�nement potential, Vconf(r) = V0r

a, where V0 and a are referred to as the
potential amplitude and exponent, respectively. The normalization constant in Eq. 2 is then

given by C = aV
2/a

0 /Γ(2/a) where Γ is the Gamma function.
Two-center trajectory quantities characterize the relative position of the mother and daugh-
ter centrioles of a given IHC. We denote by x1(t) and x2(t) the positions of the pair of centri-
oles detected at time t by a bimodal gaussian �t, andMSD1(t) andMSD2(t) their respective
mean-squared displacements, estimated using Eq. 1. Assuming the centriole of higher mobil-
ity to be the daughter centriole (23), we chose labels 1 and 2 so that MSD1(t) < MSD2(t)
at short times, and call centrioles 1 and 2 the putative mother and daughter centrioles,
respectively. We let z(t) = x2(t)−x1(t) be the relative position vector of the two centrioles ;
r(t) = |z(t)| the distance separating them ; and, θ(t) the polarisation angle of the centriole
pair, i.e. the angle made by the vector z(t) with the radial (or neural-abneural) cochlear axis
at the position of measurement. We denote by zn, rn, θn, the respective values of z(t), r(t),
and θ(t) at time t = nδt. The mean-squared displacement ∆(t) = 〈|z(t) − z(0)|2〉 of the
relative position vector z(t) after t seconds was estimated by

∆n =
1

N − n

N−n∑
l=1

|zl+n − zl|2 ≈ ∆(nδt), (3)

and the corresponding e�ective di�usion coe�cient by Deff,z(t) = ∆(t)/4t. The mean, stan-
dard deviation, and root-mean-square step of the intercentriole distance were estimated by

r̄ =
1

N

N∑
l=1

rl; σ2
r =

1

N

N∑
l=1

(rl − r̄)2; δr2 =
1

N

N∑
l=1

δr2
l ; δrl = rl+1 − rl; (4)

the mean and standard deviation of the angle θ(t), by

θ̄ =
1

N

N∑
l=1

θl; σ2
θ =

1

N

N∑
l=1

(θl − θ̄)2; δθ2 =
1

N

N∑
l=1

δθ2
l ; δθl = θl+1 − θl. (5)
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S3. One-center tracking versus CM tracking of a pair of gaussian spots

We compare here the position of the gaussian spot best �tted to a given pair of gaussian
spots (referred to as its �one-center� position), to the center of mass (CM) of the pair. We
shall show that in the conditions of our experiments, these two positions remained close to
each other. The one-center position thus provides a useful substitute to the true CM, which
is in practice easier to estimate.

Thus, let us consider a pair gaussian spots in the plane, of respective positions c1, c2,
standard deviations σ1, σ2, and intensities a1, a2 such that a1 + a2 = 1. The image formed
by these two spots is the bimodal gaussian mixture

gm(x) = a1gσ1(x− c1) + a2gσ2(x− c2) =
a1

2πσ2
1

e
− (x−c1)

2

2σ21 +
a2

2πσ2
2

e
− (x−c2)

2

2σ22

whose CM position is given by cCM = a1c1 + a2c2. We want to �t a single gaussian spot

to gm, i.e. to �nd a gaussian distribution g(x) = agσ(x − c) = a
2πσ2 e

− (x−c)2

2σ2 such that the
mean-squared distance

E(c, σ, a) =‖ gm − g ‖2=

ˆ
R2

|gm(x)− g(x)|2dx

is minimal. The function E(c, σ, a) can be computed using standard gaussian integral for-
mulae :

E(c, σ, a) =‖ gm ‖2 +
a2

4πσ2
− 2a(a1λ1 + a2λ2)

where λi = 1
2π(σ2+σ2

i )
e
− (c−ci)

2

2(σ2+σ2
i
) , i = 1, 2. The minimum of E(c, σ, a) is found by solving

the equations ∂E
∂a = 0, ∂E

∂c = 0, ∂E∂σ = 0. The equation ∂E
∂a = 0 gives the constraint a

4πσ2 =
a1λ1 +a2λ2. The equation for c (which is in reality two equations, one for each component of
c) is easily seen to give (c− c1)a1λ1 + (c− c2)a2λ2 = 0, which is solved by c = a1λ1c1+a2λ2c2

a1λ1+a2λ2
.

Thus, like cCM , the center of the optimal spot lies on the segment joining c1 and c2. The
equation ∂E

∂σ = 0 gives a constraint on σ which we will not bother to write down explicitely.
The precise location of this center can be obtained by solving the above system of equations
numerically. The result is illustrated in Fig. S3 below, in which the di�erence c − cCM
between the one-center position and the CM position along the segment [c1, c2] is plotted
as a function of a2 = 1− a1 ∈ [0, 1], for di�erent values of σ1 ≈ σ2, assuming unit distance
between the centers (|c1−c2| = 1). In the typical conditions of our experiments, the distance
|c− cCM | had a mean of ∼ 5% of the intercentriole distance and did not exceed 25 % (with
a standard deviation < 10%) of that distance.
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Figure S3. Plots of the di�erence (denoted by c − cCM ) between the ab-

scissas of c and cCM along the segment [c1, c2] as a function of a2 = 1− a1,
for di�erent values of the spots' widths σ1 ≈ σ2, and assuming |c1− c2| = 1.

Note that c− cCM is < 0 or >0 according as a2 < 0.5 or a2 > 0.5 ; in other

words, the one-center position tends to lie closer to the brighter spot than

does the CM.

S4. Positional correlations and MSD of a Brownian particle in a central
harmonic potential

a) Brownian particle in a harmonic potential without drift

Consider the motion of a particle constrained to two dimensions and subject to random
forces originating from thermal �uctuations in the surrounding medium, to which add a
non-random, frictionless restoring force Fel(x) = −∇V (x) re�ecting the anchoring of the
particle to some elastic structure. Here x = (u, v) denotes the particle's position in the
plane where it moves, which we also write x = u+ iv, adopting complex notations.

The equation of motion of such a particle is given by the overdamped Langevin equation,
which takes the form

η
dx

dt
+∇V (x) = f(t) (6)

Here η is the friction coe�cient of the particle and f(t) = (fx(t), fy(t)) = fx(t) + ify(t)
is a �uctuating force vector resulting from the numerous collisions of the particle with the
surrounding molecules of the medium (of the order of 1012 per second)(3). For a particle the
size of a centrosome (∼0.2µm) immersed in aqueous solution, the above equation provides
a valid description of the particle motion over timescales longer than a few ms. For shorter
timescales inertia e�ects ignored by the above equation need to be taken into account. At
experimentally relevant timescales (which may reach the millisecond but are always much
slower than molecular timescales), the force f(t) behaves like a Gaussian white noise, i.e.
a stochastic process having a centered gaussian distribution at any given time, and whose
values at di�erent times are uncorrelated. Such a process is characterized by its �rst and
second moments,
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〈f(t)〉 = 0, 〈f(t)f(t′)∗〉 = Cδ(t− t′) (7)

where δ(t−t′) is Dirac's delta and C is a positive constant that sets the intensity with which
the particle is bombarded by the surrounding molecules at thermal equilibrium. As C is ul-
timately determined by the equipartition theorem, it depends on the medium's temperature
T as well as on particle characteristics that determine the di�usion coe�cient D and the
friction coe�cient η (see below).

We will restrict our attention to the case of a central-symmetric harmonic potential
V (x) = V0|x|2, for which simple analytic expressions for the correlation functions and the
MSD can be derived. The restoring force then obeys Hooke's law Fel(x) = −kx (with a
spring constant k = 2V0), and the Langevin equation becomes

η
dx

dt
+ kx = f(t), (8)

for which the solution with initial condition x(0) = x0 reads

x(t) = x0e
−t/τ0 +

1

η

ˆ t

0
e−(t−t′)/τ0f(t′)dt′ (9)

where τ0 = η
k is the relaxation time of the particle. From this solution one obtains, taking

averages : 〈x(t)〉 = 〈x0〉e−t/τ0 . Thus, for any sensible distribution of the initial position x0,
the average position of the particle rapidly regresses to 0 with time. After a time not much
larger than τ0, the particle reaches a stationary regime in which it continues to oscillate
randomly around its equilibrium position but does not move on average.

We now compute the positional correlation function of the particle, de�ned by Cx(τ, t) =
〈x(t)x(t + τ)∗〉 − 〈x(t)〉〈x(t + τ)〉∗. Using the above solution and a short computation, we
�nd :

〈x(t1)x(t2)∗〉

= 〈(x0e
−t1/τ0 + 1

η

´ t1
0 e−(t1−s1)/τ0f(s1)ds1)(x0e

−t2/τ0 + 1
η

´ t2
0 e−(t2−s2)/τ0f(s2)ds2)∗〉

= 〈|x0|2〉e−(t1+t2)/τ0 + C
η2

´ t1
0 ds1

´ t2
0 ds2e

−(t1+t2−s1−s2)/τ0δ(s1 − s2)

=
(
〈|x0|2〉 − Cτ0

2η2

)
e−(t1+t2)/τ0 + Cτ0

2η2
e−|t1−t2|/τ0 ,

so that

Cx(τ, t) =
Cτ0

2η2
e−|τ |/τ0 +

(
〈|x0|2〉 − |〈x0〉|2 −

Cτ0

2η2

)
e−(2t+τ)/τ0 . (10)

To determine the constant C, note that if the particle starts at the origin, x0 = 0, then
in the limit k → 0 (unconstrained particle) one should recover the correlation function of the
standard 2-dimensional Brownian motion, given by 〈x(t1)x(t2)∗〉 = 4Dmin(t1, t2), where D
is the particle's di�usion coe�cient. But in that limit we have (since τ0 → +∞)

〈x(t1)x(t2)∗〉 =
Cτ0

2η2
(1− |t1 − t2|

τ0
− 1 +

t1 + t2
τ0

+O(
1

τ2
0

))→ C

η2
min(t1, t2). (11)

Thus, we have C = 4Dη2, and from Einstein's relation D = kBT/η we also get C = 4ηkBT .
In the stationary regime t� τ0, Cx(τ, t) becomes independent of t. Up to exponentially

small terms, we get 〈x(t)〉 = 0 and
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Cx(τ) = 〈x(t)x(t+ τ)∗〉 =
Cτ0

2η2
e−|τ |/τ0 = 2Dτ0e

−|τ |/τ0 . (12)

A formula for the MSD travelled by the particle as a function of time in the stationary
regime is easily obtained from the last equation. Indeed, in this regime,

MSD(τ) = 〈|x(t+ τ)− x(t)|2〉 = 〈|x(t+ τ)|2〉+ 〈|x(t)|2〉 − 2Re〈x(t+ τ)x(t)∗〉

= 4Dτ0(1− e−|τ |/τ0). (13)

Thus, after a brief period of linear growth, the MSD curve saturates to a constant
value A = 4Dτ0 proportional to the area of the region in which the particle is con�ned.
This saturation occurs on a timescale of the order of the relaxation time τ0. The last two
statements remain qualitatively true for con�nement potentials that are not harmonic. In
fact, Eq. 13 with 4Dτ0 replaced by an arbitrary parameter A provides a good empirical
model for the MSD curve in such cases (4).

b) Brownian particle in a harmonic potential subject to drift

Consider now the case of a Brownian particle constrained by a central harmonic potential
well that is not static but subject to a slow (possibly random) drift. One can imagine that
the particle is anchored to some elastic structure itself moving with time. It is then subject
to a restoring force of the form Fel(x, t) = −k(x− x0(t)), where the centre position x0(t) is
a function of t. Writing x(t) = x̃(t) + x0(t), we see that x̃(t) satis�es the modi�ed Langevin
equation :

η
dx̃

dt
+ kx̃ = f(t)− ηdx0

dt
. (14)

We will assume that the drift is much slower than the thermally-driven motion of the
particle, so that at any given time |dx0dt | � |

dx
dt |. Then, neglecting the term η dx0dt , the equation

for x̃(t) reduces to the original Langevin equation for a particle in a harmonic potential
centered at the origin, whose correlation functions are known. This approximation amounts
to neglecting the friction experienced by the particle due to the motion of the potential in
the bath. Mathematically, it corresponds to neglecting correlations between x̃(t) and x0(t).
The positional correlation function of the particle then decomposes into a �particle part�
and a �drift part�, namely

Cx(τ, t) = 〈(x̃(t) + x0(t))(x̃(t+ τ) + x0(t+ τ)∗〉 − 〈x̃(t) + x0(t)〉〈x̃(t+ τ) + x0(t+ τ)〉∗
= 〈(x̃(t)x̃(t+ τ)∗〉 − 〈x̃(t)〉〈x̃(t+ τ)〉∗ + 〈x0(t)x0(t+ τ)∗〉 − 〈x0(t)〉〈x0(t+ τ)〉∗

= Cx̃(τ, t) + Cx0(τ, t). (15)

Similarly, for the particle's MSD, we have

MSD(τ) ≈ 〈|x̃(t+ τ)− x̃(t)|2〉+ 〈|x0(t+ τ)− x0(t)|2〉 = MSDx̃(t) +MSDx0(t),

up to terms that relax exponentially fast with a characteristic time τ0. Let us consider two
cases of experimental interest.
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i) Non-random drift of constant slow velocity x0(t) = u0t (u
2
0 � 4D/τ0). In that case we have

Cx0(τ, t) = 0 : a constant drift has no e�ect on the correlation function Cx(τ, t). However,
it a�ects the MSD, as we have

MSD(τ) = 〈|x̃(t+ τ)− x̃(t)|2〉+ u2
0τ

2 = 4Dτ0(1− e−|τ |/τ0) + u2
0τ

2 (16)

ii) Slow Brownian drift with di�usion coe�cient D0 (D0 � D) starting at the origin. In
that case we have 〈x0(t)〉 = 0, and Cx0(τ, t) = 〈x0(t)x0(t+ τ)∗〉 = 4D0t (τ > 0), so that for
t� τ0 we get

Cx(τ, t) = 2Dτ0e
−|τ |/τ0 + 4D0t. (17)

Hence the positional correlation function is no longer stationary but displays slow linear
growth for t� τ0. Similarly, for the MSD we get (again for t� τ0)

MSD(τ) = 〈|x̃(t+ τ)− x̃(t)|2〉+ 〈|x0(t+ τ)− x0(t)|2〉 = 4Dτ0(1− e−|τ |/τ0) + 4D0τ (18)

As a consequence of the above formulae, the correction to the zero-drift situation for
the MSD is quadratic in the �rst case, and linear in the second. This results in easily
distinguishable shapes of the MSD curve at short times, for which MSD measurements are
most precise.
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