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Supplementary information 

A. Yule statistics 
 

As mentioned in the main text, Yule's model yields the following prediction for the species-

per-genus distribution (SGD): 

    


 2
1

~2, mmCn
m

m B  

where nm is the number of genera of size m, such that the tail of Yule's SGD is described by a 

power law.   To be more precise, the leading 1/m correction may be calculated: 
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For any value of  between 0 and 1, a 5% deviation from a pure power law appears only for 

m = 1 or m = 2, and thus the Yule expression is equivalent, for any practical purpose, to a 

pure power law. Hence, the Yule expression yields a straight line in a log-log plot as 

emphasized in Figure S1.  

B. Yule's fitting procedure 
 

Yule's model is effectively a one parameter model, the parameter being , the probability 

that a new species will originate a new genus. The coefficient, C, is determined by the 

normalization condition Nmn
m

m    where N is the number of species.   

Actually, Yule himself was aware of the problem with the model (that it does not fit the 

shoulder) and presented a variant of his model with two extra parameters in order to 

achieve a good description of the data. His altered model assumes that at a specific time in 

the past, the clade (taxonomic group) was composed of N0 genera (not fixed to 1 as in his 

simple model), each with only one species, i.e. all the genera were monotypes. After this, at 

every time step, each species has a probability s of 'producing' a new species, and a 

probability g of producing a new genus. The ratio v =s/g is the second parameter. Obviously, 

the SGD changes after the first generation because now there are also non-monotypic 

genera, and with each additional generation, the SGD will continue to change. Thus the SGD 
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depends on the number of generations, , which passed from the cladogenesis (at least after 

a small number of generations). As a result, the actual model used by Yule to fit his data has 

three free parameters. In Table IV of his original article, Yule gives the result of the fit for 

these three parameters.  What is now referred to as the Yule model is actually a particular 

case where N0 = 1, and , the time since the origin of the clade, is large enough such that the 

system has converged to a steady state. Obviously his model is still unrealistic since 

taxonomic groups start with only one genus containing a single species. Two other problems 

with his model are that it is a three-parameter model (whereas we use only two 

parameters), and in addition it does not include the very common event of extinction. 

C. Comparing the quality of the fit of the Yule and SEO models 
 

In this section we will present a detailed comparison of the quality of the fit of the Yule and 

SEO models we presented in the main text. 

The R2 statistics (presented in Table S1) show that the SEO model performs better than the 

Yule model. However, the R2 for both of them is relatively high, which is due to the fact that 

data points are relatively smooth. 

We used two more measures to test the difference between the Yule model and the SEO 

model. The first measure is the F-statistics for the improvement in the R2 (as presented in 

the main text), for which the p-value of the difference is very small (p=1.5e-11). This shows 

that the differences are real and not due to the one extra parameter in the SEO model.  

The second measure that we used is the area between the model prediction and the data. 

Such a measure does not give more weight to a region with a higher density of points as 

does the R2 measure. In order to calculate the area, a continuum approximation of the data 

should be done. Here we used the cubic spline smoothing tool as implemented in Matlab 

with a lattice grid of 0.001 (a smaller grid did not change the area). The area between the 

different models and the data, along with the unsigned area between the data and a curve 

representing its average, are given in Table S1 and Figure S1.  One can see that the SEO 

model has a significantly smaller area than the other models.   

Table S1. SEO vs Yule 

Model R2 Area 

Yule 0.93 3.89 

SEO 0.9974 0.024 

 The values of the R
2
 and the area between the data and the model are given in this table. One can see that in 

both measures the SEO model is better, but the area is more distinctive.  
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Figure S1. The SGD of the Animalia kingdom with the best fit of the Yule model, the Yule 2-
parameter function, and the SEO model. The magenta dashed line is the average of the 
SGD data plotted in order to give a calibration to the area between the models and the 
data.   

D. Noisy environment and inconsistency in genus definitions 
 

In the following, we present an example of a noisy SEO process. Here "noisy" means that, on 

top of the stochasticity of the process itself, the parameters (e.g.,  are not fixed but take a 

random value at each generation. This mimics the scenario where the per-species 

diversification and origination rates are not fixed but fluctuate in time. For example one may 

imagine exogenous factors that change the number of available ecological niches. As an 

example, we have used 0 = 0.06 (and = 0.03) as average values, while at each generation  

is a random number between zero and infinity with probabilities: 
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The simulation starts with a single species and stops when the number of species is 50000 

(the order of magnitude of a class).  A typical SGD is shown in Figure S2, together with a fit 

with Eqs. 4 & 5 of the main text (the prediction for SEO without noise). One observes that 

the fit is not bad. The deviations (as depicted in the data/fit inset) are larger than in the case 

of a fit to a "pure" simulated SEO process (e.g., Figure 1 of the main text) and resemble the 

real data. The best fit yields, for this run,  and not far from the average 

values. Running the process 100 times and repeating the numerical experiment, we have 

found that  = 0.049 [0.029 - 0.073] and  =   0.028 [0.020 - 0.035], where the brackets 

indicate two standard deviations above and below the mean. 
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Figure S2. An example of a noisy growth rate. 

Another aspect of robustness to noise needed to be examined is the robustness to 

randomness and inconsistency in genus definitions. We tested a few scenarios of 

inconsistency in the genera definitions, and found that they lead only to a small bias in the 

inferred parameters from the average parameters, and thus do not influence our ability to 

infer the growth rate and the origination rate. 

The scenarios that we tested are as follows: 

1. Every new genus has its own origination rate taken from a Gaussian distribution with 

mean , and a standard deviation of 10 and 20 percent, while the diversification rate 

is fixed. 

2. Every new genus has its own diversification rate taken from a Gaussian distribution 

with mean , and a standard deviation of 10 and 20 percent, while the origination 

rate is fixed. 

3. Both the origination rate and diversification rate are taken from a Gaussian 

distribution. 

4. Same as above, but with a memory of the parent’s diversification and origination 

rates. 

In all these cases the fitted values bracket the real values.  

In all the above examples, we assumed that there is only noise in the diversification and 

origination rates, but there is no bias in the behavior of large vs. small genera. We also 

analyzed the latter scenario, and still found that there was no meaningful change in the 

distribution of species per genus as a result of such a bias, as long as the bias is not very 

large.  
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We assumed that the origination rate of a genus is given by (m)=0*(1+slog(m)). We 

compared cases with different values of s, where 0 was determined such that  (100) will 

be fixed between the different values of s. In Figure S3 we present the average SGD 

(averaged over 50 realizations) for different values of s. One can see that even when there 

is a difference of about 200% between the large and small genera, the SGD itself is barely 

affected. This is because on average the population behaves the same.  

 

Figure S3.  The number of genera of size nm vs. m, with bias in the origination rate with 

slopes s = 0, 0.1, 0.2, 0.5. The rest of the parameters are N=1e6, =0.06, n0=0.02. One can 
see that the differences between the different cases are very minor.  

 

E. The simulation procedure  
 

Although the SGD that emerges from the SEO model is known analytically, we have 

implemented simulations of the SEO process for several reasons. First, we have tried to 

estimate the accuracy of our inference technique, for which we needed not only the average 

SGD but also the standard deviation of the result. Second, we have checked how much 

deviation from the model assumptions (e.g., non-exponential growth) can be detected from 

the emerging SGD. Finally, we have used simulations to obtain results that are not part of 

the SGD solution (Eq. 4 and 5 of the main text) e.g. the expected number of monotypes.  

Once the rate of growth (homogenous or varying in time) is specified, we have initiated the 

simulation with one species that belongs to a single genus. If the birth rate is, say, , then at 

any time-step t, any genus with s species becomes a genus with s+m species, where the 

integer s+m is obtained from a negative binomial distribution with average s. After the 

birth step, we have an extinction step where the number of species that went extinct is 

chosen randomly in the same manner, with an extinction rate.  At the end, any new 

species in the genus generates a new genus with fixed probability .  The process is iterated 

for each genus and through time (if needed,  and  are time dependent) until the 

population reaches some pre-determined size.     
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We obtained the size of the largest genus using simulations.  This is because the steady state 

solution [like the one presented in Eq. (4)] does not possess an upper bound. This has to do 

with the continuum approximation used to obtain this steady state, as discussed in the main 

text, and with the fact that a true steady-state distribution appears only after infinite time. 

At finite times, the SGD is very close to the steady-state limit but has an upper cutoff which 

increases with time. To obtain this cutoff, one needs a simulation of the SEO process with 

the parameters  and  extracted from the bulk of the distribution. 

 Bootstrapping procedure   

In order to obtain confidence intervals for the inferred parameters, we used a parametric 

bootstrapping approach. The procedure is as follows: first we performed a fit between the 

analytical expectation for the genus size distribution to the data, and obtained estimates of 

the parameters ( and ). Then, we produced from Monte-Carlo simulations many datasets 

with the inferred parameters, and N, the current number of species. For each of the 

simulated datasets, we estimated its parameters by the fitting procedure. We used two 

standard deviations of the inferred parameters from the simulations as estimates for the 

confidence intervals, or if we had enough simulations, we obtained the 95% confidence 

interval.  

 

F.  The data from the Furnariidae family reconstructed tree 
 

We used the reconstructed phylogenetic tree of the Furnariidae family, Figure 1 of Ref 1, in 

order to obtain for each genus its size (i.e., number of species belonging to it), its crown age, 

and its tree size (the sum of the length of all the clades in the sub-tree containing only the 

species of each genus and the crown node as the root). The data are presented in Table S2.   

In general, there were only a few cases of inconsistent definitions of the different genera 

(meaning two genera or more mixed with each other in a way that looks like the same genus 

appeared twice) and they have only a minor effect on the genus crown age and volume. 

Therefore we ignored the inconsistency and included all the genera. Only with the Xenops 

genus was the inconsistency large, with a significant effect on the quantities obtained for the 

genus. However, for completeness we included also the Xenops genus. The fourth column in 

Table S2 indicates whether this genus was used to estimate the origination rate, or not.  

Estimation of the origination rate from the phylogenetic tree of the 

Furnariidae family 

By using the phylogenetic tree of the Furnariidae family of the class Aves, we can estimate 

the origination rate per million years.  

This was done as follows:  With every speciation event, there is a chance that an origination 

event will take place. Thus, when we see amonophyletic genus of a size larger than one, we 

know that there was no origination event since the most recent common ancestor of this 

genus, as long as there is no other genus that split after the time of the most recent 
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common ancestor (i.e., from the subtree of this specific genus). The probability that during 

the time from the most recent common ancestor there will be no origination event is 

described by a geometric distribution. Assuming that all the genera are independent 

samples from this distribution, we can reconstruct a measured distribution for the 

probability that an origination event will not occur as a function of the volume of the genus. 

By fitting this to a geometric distribution, we can get an estimate of the origination rate. In 

Figure S4 we present the measured distribution that an origination event will not take place, 

along with its best fit.   The estimated  is  0.096 [0.038- 0.3]  per speciation event (assuming 

a generation time in million years of 2.1 for the mean, 1.4 for the lower bound and 2.8 for 

the upper bound ). This is similar to the values of the Passerine birds and the Aves class. 

 

Figure S4. The figure presents the probability of having a genus with a specific tree size 
which is the same as the probability that an origination event will not take place. The blue 
circles are the data from the Furnariidae family. The red line is the best fit of a geometric 

distribution, with an estimated origination rate = 0.096 [0.05-0.14] assuming a 
generation time of 2.1 million years. The data here are binned with bins of size 7 (in 
generational units), however very close results were obtained with other bin sizes. 

 

G. Fits of the SEO model to lower taxa 
 

In the main text, we presented the fit of the SEO model to large classes. Here we present a 

few examples where the model is applied to lower taxa. As we explained in the main text, 

for lower taxa the model assumptions may be questionable, and in some cases lead to 

unrealistic parameters, but for others, the fit is reasonable. For reliable examples, we 

present the fit to the large orders of the Aves class, the Passerine order (Figure S5) and the 

Ciconiiformes order (Figure S6). For these two examples, the fit matches very well the   

known numbers.  
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Figure S6. The best fit of the SEO distribution to the observed SGD of the order 

Ciconiiformes. Here the best fit parameters are =0.14 and = 0.13. 

As an example where the model assumptions are probably wrong, we present the 

Asparagales order (Figure S7) of angiosperms, which contains N0 = 32425 species 2. The 

fitting parameters are = 0.012 and = 0.009, and no meaningful deviation can be seen. 

However, the estimated time to the appearance of the order is larger than the one known 

from molecular data. Under pure exponential growth, the time is T = log(N0)/= 797 

generations, and with the corrections presented in Ref. 3 is T = ln([N+]/)/ 374 

Figure S5. The best fit of the SEO distribution to the observed SGD of the order 

Passeriformes. Here the best fit parameters are =0.12 and = 0.14.  
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generations. The estimations using molecular data 4 are 120 MY for the origin of the order, 

and 90 MY for the core group, which are about four to three times smaller than our 

estimations.  This deviation could be explained if this order had already entered its 

saturation phase. In such a case, as explained in the main text, the SGD is independent of the 

origination time.  Another example of inconsistency between the model and the data can be 

seen in the SGD of the Nymphalidae family (Figure S8), as discussed in the main text.   

 

Figure S7. The best fit of the SEO distribution to the observed SGD of the Asparagales 

order. Here the best fit parameters are = 0.14 and= 0.13. 

 

Figure S8. The best fit of the SEO distribution to the observed SGD of the Nymphalidae 

family. Here the best fit parameters are = 0.0037 and = 0.0043. Note that the SEO 
statistic tends to underestimate the number of singletons (monotypes) and doubletons as 
seen, for example, in Figures 1 and 2 of the main text. The reason, as discussed above, is 
the inadequacy of the continuum approximation that leads to Eq. (3) close to m = 1. Here 
the SEO fit overestimates the number of singletons by a factor of 2 (see inset); this is 
another indication of  the failure of the model.      
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I. The binning technique 

 

In all the SGDs presented in this paper, we presented the empirical data as a histogram 

showing the number of genera of size m, n(m), vs. m.  As the distribution is very wide, we 

must adopt a binning technique. Here we have used the following procedure: we have 

defined an integer D (practically we have used D = 15 for classes and D = 50 for kingdoms) 

that sets the minimal number of genera in each bin.  Starting from, say, an arbitrary m0, we 

collect genera of size m0 and higher until we accumulate D genera at, say, mi.   The 

corresponding point in the SGD figure is at 
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Where mi is the number of species in the ith genus.  

The binning algorithm works as follows: first, order all the genera according to their rank m, 

where genera with the same rank are ordered arbitrarily. Starting from the smallest m, 

collect the D consecutive genera, and calculate nm and m according to the above formula.  

Iterate this procedure starting from the first genus that has not yet been counted.  If there 

are two (or more) values of nm for the same m, simply add them.  

We stress that the results are independent of the binning procedure, and similar graphs 

were obtained when we used standard logarithmic binning. The advantage of our technique 

is that the number of points represented in each bin is fixed, and thus the uncertainty of 

each circle in the histogram is similar (different circles have similar confidence intervals). 

This technique also has the advantage of having more data points and thus enabling a better 

fit quality when the number of genera is not very large.  

J.  The source of the SGD data 

 

As we mentioned in the introduction, we used the largest dataset available to reconstruct 

the SGD distributions against which we compare our model as well as Yule's classic model. 

The species2000 website (http://www.sp2000.org/) contains a list of more than 1 million 

taxonomic groups (species, genera, families, …, up to kingdoms) along with their hierarchies. 

Comprehensive datasets are available in a mySQL format without charge at 

http://www.catalogueoflife.org/services/.  One of the tables is an updated database dated 

January 3, 2011, which contains all the taxonomic groups along with its immediate parent. 

Using this table, one can count all the descendants of every taxonomic group and thus 

derive, for example, all the genera in the Class Aves and the number of species that are 

members of each genus.  
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 K. Derivation of equation 3 of the main text 

 

To explain the derivation of the equation governing the evolutionary process simply, we will 

assume discrete 'generations' where all existing species go extinct at a specific time, and give 

birth to the next generation of species.  However, the resulting equation is not limited to this 

assumption, but is correct even for overlapping generations 5-7. Throughout the paper, we 

assume an exponential distribution of species durations.   

Assuming discrete generations, the average number of genera of size m (nm) as a function of 

time can be described as follows, Assume that in the previous generation there were genera 

of varying sizes. Each one of them gives birth to a random number p of offspring species. 

Among these p species, a random number, m, of them remain in the same genus with 

probability 1- per species, and p-m ‘mutate’ with probability  (per species) and produce a 

new genus. Thus, the number of genera of size one (monotypes) reflects the creation of the 

new genera, in addition to shrinkage in the size of existing genera. This can be described by 

the following difference equations: 
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where P(lp) is the probability that a genus of size l gives birth to p new species. The mean 

of P is  The continuum limit of the above difference equations (and also of the Moran 

version of the process, which is the process assumed throughout the paper) is 5-7: 
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which is equation 3 of the main text. 

 

 



12 

 

L. Rejection test of the SEO model. 
 

We give here the list of the taxonomic groups on which we tested the SEO model. We used 

orders and above, and only groups that contained at least 500 species and 100 genera. Table 

S2 presents the groups, the best fit, the number of species and genera, the group hierarchy 

and whether or not the model was rejected. 0 represents rejection and 1 represent non- 

rejection. 

 

 

Table S2.  SEO best fit and rejection for various taxonomic groups 

Name Hierarchy  

Number 
of 

species 

Number 
of 

genera 

Rejected 
(0) or 

not (1) 

Animalia Kingdom 0.06 0.03 867669 84529 0 

Plantae Kingdom 0.04 0.02 181858 10763 1 

Bacteria Kingdom 0.23 0.11 9096 1667 1 

Chromista Kingdom 0.32 0.13 6182 1185 1 

Protozoa Kingdom 0.35 0.14 6017 1118 1 

Viruses Kingdom 0.08 0.08 1906 300 1 

Fungi Kingdom 0.19 0.09 32580 5977 0 

Annelida Phylum 0.13 0.15 3862 1016 1 

Arthropoda Phylum 0.05 0.02 758879 65848 0 

Magnoliophyta Phylum 0.03 0.01 146441 6825 1 

Proteobacteria Phylum 0.25 0.21 2353 645 0 

Chordata Phylum 0.09 0.07 61422 9874 1 

Cnidaria Phylum 0.08 0.06 9907 1542 1 

Echinodermata Phylum 0.30 0.32 1010 372 0 

Ectoprocta Phylum 0.13 0.18 1045 306 0 

Mollusca Phylum 0.09 0.09 11679 2194 1 

Nemata Phylum 0.13 0.16 3160 774 0 

Porifera Phylum 0.03 0.03 8052 725 1 

Cyanobacteria Phylum 0.06 0.04 2787 327 1 

Haptophyta Phylum 0.10 0.18 537 175 1 

Ochrophyta Phylum 0.30 0.11 4904 864 1 

Bacillariophyta Phylum 0.08 0.02 6249 402 1 

Bryophyta Phylum 0.04 0.02 13365 1057 0 

Chlorophyta Phylum 0.28 0.09 5582 808 1 

Rhodophyta Phylum 0.13 0.07 6488 893 1 

Dinophyta Phylum 0.51 0.2 1693 350 1 

Zygomycota Phylum 0.49 0.16 944 165 1 

Ascomycota Phylum 0.29 0.13 22056 4416 1 

Basidiomycota Phylum 0.09 0.06 9168 1306 1 
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Firmicutes Phylum 0.95 0.23 1520 268 1 

Actinobacteria Phylum 0.20 0.07 1707 190 1 

Clitellata Class 0.16 0.2 721 231 1 

Polychaeta Class 0.14 0.15 2986 754 1 

Arachnida Class 0.06 0.04 55147 5526 0 

Magnoliopsida Class 0.05 0.02 87281 4459 1 

Gammaproteobacteria Class 0.43 0.18 1068 230 1 

Entognatha Class 0.03 0.03 1990 189 1 

Insecta Class 0.04 0.02 661372 52838 0 

Diplopoda Class 0.29 0.13 9907 2176 1 

Chilopoda Class 0.15 0.06 3139 399 1 

Aves Class 0.09 0.10 9913 2123 1 

Malacostraca Class 0.10 0.08 18419 3211 0 

Maxillopoda Class 0.06 0.08 4963 957 1 

Ostracoda Class 0.08 0.10 1624 327 1 

Ascidiacea Class 0.04 0.02 2248 169 1 

Amphibia Class 0.04 0.03 5753 449 1 

Mammalia Class 0.10 0.10 4832 1151 1 

Reptilia Class 0.05 0.05 8624 1056 1 

Anthozoa Class 0.08 0.06 5931 885 1 

Hydrozoa Class 0.09 0.06 3701 568 1 

Elasmobranchii Class 0.08 0.09 996 181 1 

Actinopterygii Class 0.11 0.08 28721 4678 1 

Gymnolaemata Class 0.13 0.17 1027 298 0 

Bivalvia Class 0.11 0.12 2168 470 1 

Gastropoda Class 0.09 0.08 8365 1501 1 

Adenophorea Class 0.13 0.14 2637 585 0 

Secernentea Class 0.08 0.22 523 189 0 

Demospongiae Class 0.02 0.02 6845 527 1 

Alphaproteobacteria Class 0.23 0.24 645 202 1 

Prymnesiophyceae Class 0.13 0.19 524 171 1 

Coscinodiscophyceae Class 0.12 0.05 1646 161 1 

Phaeophyceae Class 0.31 0.12 1988 320 1 

Bacillariophyceae Class 0.11 0.02 6046 340 1 

Bryopsida Class 0.03 0.02 12962 1054 0 

Chlorophyceae Class 0.78 0.32 1746 446 1 

Liliopsida Class 0.02 0.01 59160 2366 1 

Florideophyceae Class 0.13 0.07 6221 856 1 

Dinophyceae Class 0.49 0.19 1675 340 1 

Granuloreticulosea Class 0.21 0.15 1352 309 1 

Ascomycetes Class 0.30 0.13 21817 4324 1 

Basidiomycetes Class 0.08 0.05 8115 1040 0 

Urediniomycetes Class 0.17 0.16 713 182 1 

Actinobacteria Class 0.20 0.07 1707 190 1 

Aciculata Order 0.13 0.13 1595 368 1 

Canalipalpata Order 0.12 0.15 978 269 1 

Araneae Order 0.06 0.04 39316 3681 1 
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Pseudoscorpiones Order 0.06 0.06 3387 448 1 

Coleoptera Order 0.08 0.03 138814 12997 1 

Blattodea Order 0.03 0.04 4430 486 1 

Diptera Order 0.03 0.01 148582 9078 0 

Hemiptera Order 0.14 0.08 22765 3671 1 

Phasmida Order 0.07 0.07 2821 436 1 

Hymenoptera Order 0.03 0.02 43540 3155 0 

Orthoptera Order 0.10 0.09 23048 4320 1 

Lepidoptera Order 0.03 0.02 254937 16513 1 

Odonata Order 0.02 0.04 5321 626 1 

Siphonaptera Order 0.03 0.04 2040 241 1 

Thysanoptera Order 0.28 0.16 851 179 1 

Trichoptera Order 0.03 0.02 11513 620 1 

Amphipoda Order 0.10 0.10 3119 655 1 

Decapoda Order 0.31 0.17 4079 837 1 

Calanoida Order 0.01 0.06 992 155 1 

Harpacticoida Order 0.04 0.06 2208 348 1 

Podocopida Order 0.06 0.09 1142 231 1 

Anura Order 0.03 0.02 5055 356 1 

Passeriformes Order 0.08 0.09 5827 1183 1 

Squamata Order 0.05 0.05 8292 953 1 

Actiniaria Order 0.52 0.34 738 223 1 

Alcyonacea Order 0.02 0.03 2933 286 1 

Anthoathecata Order 0.15 0.1 1246 230 1 

Scleractinia Order 0.05 0.06 1480 232 1 

Leptothecata Order 0.04 0.03 2048 195 1 

Cheilostomata Order 0.12 0.17 825 233 1 

Veneroida Order 0.19 0.18 877 213 1 

Neogastropoda Order 0.12 0.08 1787 276 1 

Neotaenioglossa Order 0.07 0.07 1939 323 1 

Stylommatophora Order 0.07 0.07 1880 351 1 

Desmodorida Order 0.03 0.09 708 158 1 

Cypriniformes Order 0.08 0.06 3624 443 1 

Hypnales Order 0.09 0.03 3264 282 1 

Chlorococcales Order 0.48 0.28 603 169 1 

Poales Order 0.03 0.01 13226 556 1 

Asparagales Order 0.01 0.01 32425 1159 1 

Alismatales Order 0.03 0.01 3527 165 1 

Malpighiales Order 0.08 0.01 8998 330 1 

Rubiales Order 0.02 0.01 13229 610 1 

Asterales Order 0.07 0.06 3040 451 1 

Caryophyllales Order 0.10 0.07 1269 185 1 

Fabales Order 0.02 0.01 19937 732 1 

Lamiales Order 0.06 0.06 1133 152 1 

Rosales Order 0.03 0.01 21932 257 1 

Scrophulariales Order 0.30 0.09 1380 193 1 

Ceramiales Order 0.25 0.11 2497 394 1 
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Gigartinales Order 0.20 0.12 997 191 1 

Foraminiferida Order 0.21 0.15 1352 309 1 

Siluriformes Order 0.09 0.07 3217 463 1 

Scorpaeniformes Order 0.44 0.17 1518 292 1 

Perciformes Order 0.07 0.08 10147 1698 1 

Helotiales Order 0.12 0.13 1718 381 1 

Hypocreales Order 0.13 0.08 1078 170 1 

Agaricales Order 0.06 0.04 3203 352 1 

Xylariales Order 0.33 0.12 933 155 1 

Pleosporales Order 0.06 0.05 1744 214 1 

Pezizales Order 0.05 0.10 652 153 1 

Lecanorales Order 0.15 0.06 2523 310 1 

Polyporales Order 0.06 0.06 2179 318 1 

Geophilomorpha Order 0.28 0.12 1263 234 1 

Chordeumatida Order 0.10 0.12 1118 284 0 

Julida Order 0.29 0.11 1222 190 1 

Polydesmida Order 0.81 0.30 3749 1061 1 

Spirostreptida Order 0.25 0.10 1758 284 1 

Characiformes Order 0.20 0.10 1845 279 1 

Isopoda Order 0.06 0.05 8991 1303 0 

Mysida Order 0.07 0.07 1071 165 1 

Chiroptera Order 0.47 0.17 928 177 1 

Actinomycetales Order 0.17 0.06 1642 167 1 

Ciconiiformes Order 0.14 0.13 1085 258 1 

Arecales Order 0.11 0.03 2406 190 1 

Anguilliformes Order 0.07 0.08 870 157 1 

Sarcoptiformes Order 0.05 0.04 9142 1027 0 

Rodentia Order 0.12 0.12 2024 444 1 
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Table S3. The same as Table1 of the main text with references, 
diversification rate and the appearance time for different classes 
 

 

The SGD of each class has been fitted (see Fig. 2 as an example) using the SEO model to yield the 

diversification rate  (third column). From the total number of species in the class (second column) and 

the diversification rate, one may extract the number of "generations" since the first appearance of this 

class (forth column).  In order to translate generations to time, we took a single generation (typical time 

to extinction) as 2.1[1.4-2.8] MY as presented in the fifth column. This result of the SEO model should 

be compared with other, independent estimates, based on either fossil data or genetic analysis (sixth 

column, with the corresponding reference). In most cases, the SEO-based estimates are close to the 

results from independent sources. Note that the definition of generation time is quite arbitrary, and may 

vary among classes; this may explain some mismatch with the fossil data. The factor of 2 differences 

for Malacostraca and Maxillopoda may be related to incomplete data about the number of species.  For 

Diplopoda, the estimates are inconsistent; they may reflect an inadequacy of our demographic model in 

this case, or an underestimation for the generation time of diplopod species.  The Mammal class is 

dominated by the placentals (4600 of the 4832 species), and so the appropriate time is given for the 

placentals. 

 

Name Size 

(number of 

species) 

Growth rate  [± STD] 

Origination rate  [± 

STD] 

Generations 

since  

origination 

Estimated time 

to origination, T 

(MY) 

Independent 

estimate of T 

(MY) 

Arachnida 55147  = 0.055 ±  0600.0    

 = 0.0359 ± 0.0023 

144 [131-

161] 

302[183-  450] 420 
8
 

Magnoliopsida 

(Angiospermopsida) 

87281  = 0.051 ±  0.0058 

 = 0.015 ± 0.0012 

163 [148-

182] 

342 [207-  509] 228 
9
 

Insecta 661370  = 0.037 ± 0.0019 

 = 0.0185 ± 0.0006 

272 [260-

285] 

571 [364-  798] 420 
10

 

Diplopoda 9907  = 0.23 ± 0.0348 

 = 0.10 ± 0.012 

32 [28 -37] 67 [39-103] 420 
11

 

Aves 9913  = 0.08  ± 0.021 

 = 0.089 ± 0.010 

82 [67-107] 172 [93-299] 130 
12

 

Passerine birds 

(order) 

 

6198  = 0.12 ± 0.015 

 = 0.14 ± 0.013 

54[48-60] 113 [67 -168] 82 
13

 

Malacostraca 18419  = 0.086 ± 0.0115 

 = 0.068 ± 0.0054 
84 [76-95] 176 [106 -266] 510 

14
 

Maxillopoda 4963  = 0.06  ± 0.0096 

 = 0.074 ± 0.0146 
94 [83-108] 197 [116-302] 500 

15
 

Amphibia 5753  = 0.051 ± 0.0118 

 = 0.032 ± 0.0042 
110 [93-

137] 

231 [130-383] 315 
16

 

Mammalia 4832  = 0.15 ± 0.0176 

 = 0.118 ± 0.019 

42 [39-47] 88 [54-131] 120 
17
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