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Model Background. Some of the earliest identified toxin–antitoxin
systems were ccdAB (1), kis-kid (2), pemIK (identical to kis-kid)
(3), and phd-doc (4), found on plasmids F, R1, R100, and P1,
respectively. In those systems, the toxin–antitoxin locus appears to
act as a so-called addiction module, ensuring the stable mainte-
nance of the plasmid. Following plasmid loss, the toxin outlasts the
labile antitoxin and kills the cell, albeit in a variety of manners:
ccdAB blocks DNA replication via DNA gyrase (5, 6), whereas kis-
kid and phd-doc target different aspects of the translational ma-
chinery (7, 8). Eventually, toxin–antitoxin systems were identified
in chromosomes as well. The mazEF locus, originally dubbed
chpA, or chromosomal homologous to pem (9), was followed by
others, including relBE (10) and yefM-yoeB (11). In fact, the dis-
tinction between plasmid-borne and chromosomal toxin–antitoxin
systems is blurry: ccdAB, originally found on plasmid F, can also be
found on the chromosome of Escherichia coli O157 (12). On the
basis of the form of the antitoxin and its method of toxin neu-
tralization, toxin–antitoxin systems are classified as type I, II, or
III. Type II systems, which we model in this work, account for
more than half the toxin–antitoxin systems in E. coli and are
characterized by an antitoxic protein, as opposed to RNA, that
binds directly to the toxic protein (13). Like their plasmid-borne
counterparts, chromosomal toxin–antitoxin systems were first de-
scribed as suicide modules, the executors of programmed cell
death (14). However, it was later shown that poisoned cells could

recover, suggesting that chromosomal toxin–antitoxin systems in-
stead induce reversible bacteriostasis (15), reminiscent of a per-
sistent cell.

Known Molecular Mechanisms. Toxin and antitoxin syntheses are
translationally coupled and the relative positioning of genes
ensures more antitoxin is produced (4, 16, 17). The antitoxin
neutralizes the toxin by forming a tight complex (14, 18–22) and
can bind more than one toxin (23–27). In fact, the ability to bind
a second toxin has probably led to at least one debate regarding
toxin–antitoxin stoichiometries in solution (23, 27, 28). The anti-
toxin is also an autorepressor that binds two or more operators. In
most well-studied toxin–antitoxin systems, the operators are dis-
similar, with one dominant, high-affinity site (25, 28–32). Fur-
thermore, the antitoxin increases in both affinity and cooperativity
when in complex with a toxin (25, 28, 30, 32–34), in at least some
cases via a bridging mechanism (31, 35–37). However, when the
antitoxin binds a second toxin, its affinity and cooperativity are
reduced—this conditional cooperativity controls the ratio of toxin
to antitoxin, in addition to the overall concentrations. Increased
proteolytic activity removes the relatively labile antitoxin (14, 38–
42), allowing the free toxin to inhibit cellular translation in various
ways (43). Details vary: the number of operator sites, the target of
translational inhibition, and whether the stable toxin is monomeric
or dimeric. Nevertheless, the picture remains remarkably consis-
tent across a broad spectrum of systems.
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Fig. S1. Varying the cooperativity of toxic inhibition. Steady-state toxin concentrations for n = 2 (blue), 2.5 (green), and 3 (red) are shown. (A) Varying λA while
holding μmax=μ0max =1. (B) Varying μmax while holding λA=λ0A = 1. As n increases, the width of the bistable buffer increases.
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Fig. S2. Dynamic response to small perturbations in toxin concentration. (A) For n = 2.5 and μmax=μ0max = 0:65, without noise, the steady-state toxin con-
centration (black circle) is perturbed by +0.5 nM (solid blue line), +1.5 nM (solid red line), +2.5 nM (solid green line), −0.5 nM (dashed blue line), −1.5 nM
(dashed red line), or −2.5 nM (dashed green line) and then allowed to return to steady state. (B and C) Dynamic responses to the instantaneous change starting
from either the high (B) or the low (C) toxin concentrations. (D and E) The dynamic responses shown in B and C, respectively, normalized to initial (T1) and final
(T0) steady-state values.
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Fig. S3. Stochastic simulation of a single system with small perturbations. (A and B) For n = 2.5 and μmax=μ0max = 0:65, the system was poised at either the high
(A) or the low (B) steady-state toxin concentration and then simulated with stochastic noise (d = 0.1) (gray) or without noise (blue). (C and D) Starting from the
same high (C) or low (D) toxin concentrations, the tests were repeated 500 times (gray). The mean of 50 of the stochastic simulations (green) and the mean of
all 500 stochastic simulations (red) are compared with the deterministic simulation without noise (blue).
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Table S1. Parameter measurements and estimates

Parameter kis-kid ccdAB mazEF phd-doc relBE yefM-yoeB Used

p 2 (1, 2) 3 (3) 3 (4) 2 (5) 2 (6) 2 (7) 2
n 2
σ 2 (8) 14 (9) 10 (10) 10
α, nM/min 1
tμ, min 30
tA, min 30 (11, 12) 30 (13) 120 (14) >60 (10) 60 (15) 60
tT, h >2 (11) >4 (13) 48
KH, nM 10–10,000 (16) <100 (18)* 350 (19) 0.33 (10) 400 (15)* 100

0.020 (17)* 240 (19)*,† 154 (20)*
KP1, μM 2.4–4.8 (2)‡ 2.8–3.6 (21)‡ 1–4 (22)‡ 0.2 (24) 4.1–16.6 (6)‡ >0.25 (7)‡ 1

1.6–2.4 (16)‡ 2.5–2.8 (23) 0.24 (25) 12.5 (26)
2.5 (3) 0.25–0.5 (19)‡

KP2, nM <400 (21)‡,§ <100 (22)‡,§ 20 (24) 3.4 (6) <12 (7)‡ 10
<440 (16)‡,§ <50 (19)‡,§ 12.5–75 (6)‡ 200–800 (27)‡

300 (19)† 23.4 (26)
KT1, nM <500 (28)‡,{ <0.0011 (29)‡,{ 10
KT2, nM 100

Values are listed by toxin–antitoxin system, including experimental values culled from published literature and estimates based on published figures. Values
used in our model are listed in the last column. For simplicity, we list the normal cellular doubling time, tμ, and the normal half-lives of the toxin and antitoxin,
tT and tA, rather than the corresponding rate constants μ0max , λ

0
T , and λ0A, which are trivially related by μ0max = ln2=tμ, λ0T = ln2=tT , and λ0A = ln2=tA.

*Experiments used a monomeric antitoxin fragment.
†Values appear in the cited article’s supplemental information.
‡Ranges are estimates based on published EMSAs.
§Estimates assume all antitoxin is in complex with toxin.
{Experiments measured translation of single proteins in vitro.
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