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Gene-Expression Data and Survival Analyses. We retrieved all clin-
ical and gene expression data of previously reported microarray
datasets (Table S1). To ensure comparability of expression values
across multiple data sets, ESR1, ERBB2, and AURKA gene ex-
pression values were rescaled before applying the subtype clas-
sifier as in ref. 1 (we used SCMOD1 classifier, which is referred to
as SCM, Subtype Classification Model, in the present study). Our
rescaling approach is implemented and fully documented in our
R/Bioconductor package genefu v1.5.2 [see function ‘rescale’ (1)].
The TNBC identified using the SCM classifier is highly concor-
dant with the “basal-like” subtype using the PAM50 classifier (2)
and shows low ESR1, PgR, and ERBB2 expression (Fig. S1).
Differences in expression of CD73 according to subtype was ex-
amined using the Kruskal–Wallis test. Distant metastasis-free
survival was the primary survival end-point, which is defined as
the time elapsing between breast cancer diagnosis and date of
local or systemic relapse, or death. When distant metastasis-free
survival data were not reported, relapse-free survival information
was used if available. For visualization, survival plots according to
the CD73 tertiles were drawn using the Kaplan–Meier method,
and the significance of the survival differences were evaluated
using the log-rank P-test. In 137 cases, identification of subtype
was not possible because of the absence of AURKA, ESR1, or
ERBB2 gene-expression information. These cases were included
in “all patients” analyses. To assess correlation with clinical out-
comes with just an anthracycline chemotherapy alone, we ana-
lyzed a cohort of breast cancer patients treated with preoperative
epirubicin (a commonly used anthracycline) chemotherapy for
four cycles before surgery in the setting of a clinical trial pre-
viously described (3). The clinical endpoint used was pathologic
complete response (pCR) rates documented at surgery, or com-
plete disappearance of invasive disease, which is an accepted
surrogate for disease-free and overall survival in ER−/HER2−

breast cancer (4). CD73 levels were correlated with pCR as
a continuous variable (i.e., to determine whether higher expres-
sion correlated with a higher chance of obtained pCR), using
a receiver operating characteristic (ROC) curve, with the pre-
dictive ability assessed by calculating the area under the curve
(AUC) together with 95% CI using the concordance index. Pa-
tients were negative for expression of the ER using immunohis-
tochemistry and negative for ERBB2 amplification detected
by FISH.

CD73/CD39 Up-Regulation Assays. T47D, BT474, SKBR3 andMDA-
MB-231 cells were cultured in DMEM (Wisent) 10% (vol/vol)
FBS (Invitrogen). ZR75 cells were cultured in RPMI (Wisent)
10% FBS and MDA-MB-468 were cultured in DMEM/F12 (In-
vitrogen) 10% FBS. Human breast cancer lines were a generous
gift from Sylvie Mader (Institute for Research in Immunology in

Cancer, Montreal, Canada). LOX-1MV1 and A2058 cells (a
generous gift from Karen Sheppard, Peter MacCallum Cancer
Centre, East Melbourne, VIC, Australia) were cultured in RPMI
10% (vol/vol) FCS with Hepes, glutamax, and pen-strep. RPMI-
8226 cells (a generous gift fromRicky Johnstone, PeterMacCallum
Cancer Centre, East Melbourne, VIC, Australia) were cultured
in RPMI 10% FCS with glutamax, and pen-strep. Kasumi-1 cells
(a gift from Ricky Johnstone, Peter MacCallum Cancer Centre,
East Melbourne, VIC, Australia) were cultured in RPMI 20%
FCS with glutamax, nonessential amino acids, sodium pyru-
vate, Hepes, and pen-strep. For in vitro assays, cells were seeded
for 24 h, then treated with chemotherapeutic drugs diluted in their
respective culture media. After 48 h of treatment, cells were col-
lected and stained for flow cytometry with PE-conjugated anti-
human CD73 mAb (clone AD2; BD Bioscience) and APC-con-
jugated anti-human CD39 mAb (clone TU66; BD Bioscience),
except for doxorubicin (DOX)-treated cells, which were stained
with APC-conjugated anti-human CD73 (clone AD2) for breast
cancer cells or purified anti-human CD73 mAb (clone 1D7, Ab-
cam) followed by FITC-conjugated secondary antibody for
melanoma and leukemia cells. Data were acquired using an
LSR Fortessa (BD Biosciences) and analyzed using FlowJo
software.

CD73 Expression in Vivo. Female nonobese diabetic (NOD)-SCID
mice (JAX mice, The Jackson Laboratory) were injected sub-
cutaneously with 106MDA-MB-231 cells and treated at day 20 with
an intratumoral injection of DOX (1 mM in 50 μL PBS) or PBS
(three mice per group). Tumors were removes 48 h later for CD73
expression analysis. For IHC, tumors were embedded in OCT and
snap-frozen. Sections were cut at 5 μm with a cryostat microtome,
fixed in 100% (vol/vol) precooled (−20 °C) acetone, incubated with
1.5% (vol/vol) H2O2, and blocked for 30 min with protein block
solution (Dako), incubated with anti-human CD73 mAb (clone
1D7; Abcam) for 1 h followed by biotin-conjugated secondary
antibody and streptavidin-conjugated HRP (Dako). For immu-
noblotting, tumor lysates (20 μg of protein) were subjected to SDS/
PAGE, and transferred onto nitrocellulose membranes (0.45 μm)
(Bio-Rad), blocked 1 h in 5% (wt/vol) milk and incubated with
anti-human CD73 mAb (1:1,000) clone 1D7 (Abcam) and anti-
Actin (1:25,000) at 4 °C overnight. Detection was carried out
using anti-mouse HRP-conjugated secondary antibody and
chemiluminescence-based detection systems according to the
manufacturer’s recommendations (Thermo Scientific). For LI-COR
imaging, membranes were incubated with anti-CD73 (1:2,000) and
anti-GAPDH (1:5,000) at 4 °C overnight and proteins detected with
fluorescence-conjugated anti-mouse or anti-rabbit antibodies (IR-
Dye 800CW or IRDye 680RD; Li-COR) using Odyssey (Li-
COR). Quantification of bands was done using Image studio 2.0
software (Li-COR).
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Table S1. Compendium of microarray datasets of unique breast cancer patients

Dataset Microarray technology Survival data Treatment No. of patients No. of probes Source Reference

EXPO Affymetrix HGU NA NA 353 54,675 GEO: GSE2109 1
VDX* Affymetrix HGU RFS, DMFS Untreated 344 22,283 GEO: GSE2034/GSE5327 2, 3
NKI* Agilent RFS, DMFS, OS Untreated, chemo 337 24,481 Rosetta Inpharmatics 4, 5
UCSF* In-house cDNA DNFS, RFS, OS Untreated, chemo, hormonal 170 10,368 Authors’ Web site 6, 7
STNO2* In-house cDNA RFS, OS Untreated, chemo, hormonal 122 7,787 SMD 8
NCI* In-house cDNA RFS Untreated, chemo, hormonal 99 6,878 Authors’ Web site 9
MSK Affymetrix HGU DMFS Heterogeneous 99 22,283 GEO: GSE2603 10
UPP* Affymetrix HGU RFS Untreated, hormonal 251 (190)† 44,928 GEO: GSE3494 11
STK Affymetrix HGU RFS Untreated, chemo, hormonal 159 44,928 GEO: GSE1456 12
UNT* Affymetrix HGU RFS, DMFS Untreated 137 (94)† 44,928 GEO: GSE2990 13, 14
UNC4* Agilent RFS, OS Heterogeneous 337 17,779 UNC DB 15
NCH Agilent DMFS, RFS, OS Heterogeneous 135 17,086 AE: E-UCON-1 16
IGR2 Afymetrix NA Chemo 49 22,283 Journal Web site 17
CAL* Affymetrix HGU RFS, DMFS, OS Chemo, hormonal 118 22,283 AE: E-TABM-158 18
TRANSBIG* Affymetrix HGU RFS, DMFS, OS Untreated 198 22,283 GEO: GSE7390 19
DUKE Affymetrix HGU95 OS Heterogeneous 171 12,625 GEO: GSE3143 20
DUKE2 Affymetrix X3P NA Chemo 160 61,359 GEO: GSE6961 21
MAINZ* Affymetrix HGU DMFS Untreated 200 22,283 GEO: GSE11121 22
LUND2 Swegene NA Hormonal 105 27,648 GEO: GSE5325 23
LUND Swegene NA Heterogeneous 143 26,824 GEO: GSE5325 24
LUH In-house cDNA NA Heterogeneous 58 3,389 Authors’ Web site 25
FNCLCC In-house cDNA NA Chemo 150 9,216 GEO: GSE7017 26
MDA Affymetrix HGU NA Chemo 133 (3)† 22,283 MDACC DB 27
MDA3 Affymetrix HGU NA Chemo 45 22,283 MDACC DB NA
MDA4 Affymetrix HGU NA Chemo 129 (64)† 22,283 MDACC DB 28, 29
MDA6 Affymetrix HGU NA Chemo 102 (6)† 22,283 MDACC DB 30
EMC2* Affymetrix HGU DMFS Chemo 204 54,675 GEO: GSE12276 31
MUG Operon NA Chemo 152 35,788 GEO: GSE10510 32
NCCS Affymetrix HGU NA NA 196 22,283 GEO: GSE5364 33
MCCC Illumina NA NA 75 48,701 GEO: GSE19177 34
KOO* Affymetrix HGU95 NA NA 88 48,701 Authors’ Web site 35
EORTC10994 Affymetrix HGU NA Chemo 49 22,283 GEO: GSE1561 36
HLP Illumina NA Chemo 53 48,701 AE: E-TABM-543 37
DFHCC* Affymetrix HGU DMFS Heterogeneous 115 54,675 GEO: GSE19615 38
DFHCC2 Affymetrix HGU NA Chemo 84 54,675 GEO: GSE18864 39
DFHCC3 Affymetrix HGU NA Chemo 40 (33)† 54,675 GEO: GSE3744 40
DFHCC4* Affymetrix HGU NA Untreated 129 (98)† 54,675 GEO: GSE5460 41
MAQC2 Affymetrix HGU NA Chemo 230 22,283 GEO: GSE20194 42
JBI Affymetrix HGU NA NA 97 54,675 GEO: GSE20711 43
MGH Arcturus DMFS, RFS Hormonal 60 22,575 GEO:GSE1378 44
TAM Affymetrix HGU DMFS, RFS Hormonal 345 (242)† 44,928 GEO: GSE6532/GSE9195 45
MDA5 Affymetrix HGU DMFS Hormonal 298 22,283 GEO: GSE17705 46
VDX3 Affymetrix HGU DMFS Hormonal 136 22,283 GEO: GSE12093 47
TOP Affymetrix HGU pCR Chemo 120 54,675 GEO: GSE16446 48

*Microarray datasets of unique breast cancer patients (6,209) used in this study were retrieved from journal or authors’ Web sites, Gene Expression Omnibus
(GEO; www.ncbi.nlm.nih.gov/geo/), ArrayExpress (AE; http://www.ebi.ac.uk/arrayexpress/), Stanford Microarray Database (SMD; http://smd.stanford.edu/), MD
Anderson Cancer Center Microarray database (MDACC DB; http://bioinformatics.mdanderson.org/pubdata.html), University of North Carolina database (UNC
DB; https://genome.unc.edu), and Rosetta Inpharmatics (www.rosettabio.com/). Each dataset was assigned a short acronym and an instance number if several
datasets were published by the same institution or consortium: CAL: dataset of breast cancer patients from the University of California, San Francisco and the
California Pacific Medical Center (United States); DFHCC: Dana-Farber Harvard Cancer Center (United States); DUKE: Duke University Hospital (United States);
EMC: Erasmus Medical Center (The Netherlands); EORTC10994: Trial number 10994 from the European Organization for Research and Treatment of Cancer
Breast Cancer (Europe); EXPO: Expression Project for Oncology, large dataset of microarray data published by the International Genomics Consortium (United
States); FNCLCC: Fédération Nationale des Centres de Lutte contre le Cancer (France); HLP: University Hospital La Paz (Spain); JBI: Jules Bordet Institute
(Belgium); KOO: Koo Foundation Sun Yat-Sen Cancer Centre (Taiwan); LUH: Lund University Hospital (Germany); LUND: Lund University Hospital (Sweden);
MAINZ: Mainz hospital (Germany); MAQC: Microarray Quality Control Consortium (United States); MCCC: Peter MacCallum Cancer Centre (Australia); MDA: MD
Anderson Cancer Center (United States); MGH: Massachusetts General Hospital (Boston, MA); MSK: Memorial Sloan-Kettering (United States); MUG: Medical
University of Graz (Austria); NCCS: National Cancer Centre of Singapore (Singapore); NCH: Nottingham City Hospital (U.K.); NCI: National Cancer Institute
(United States); NKI: National Kanker Instituut (The Netherlands); STK: Stockholm. Karolinska University Hospital (Sweden); STNO: Stanford/Norway (United
States and Norway); TAM: tamoxifen-treated dataset collected by Jules Bordet Institute (Belgium); TOP: TOP trial initiated at the Jules Bordet Institute;
TRANSBIG: dataset collected by the TransBIG consortium (Europe); UCSF: University of California, San Francisco; UNC: University of North Carolina (United
States); UNT: cohort of untreated breast cancer patients from the Oxford Radcliffe (United Kingdom) and Karolinska (Sweden) hospitals; UPP: Uppsala Hospital
(Sweden); VDX: Veridex (The Netherlands). These datasets were generated with diverse microarray technologies developed either by Agilent (www.genomics.
agilent.com), Affymetrix (HGU GeneChips, which include chips HG-U133A, HG-U133B, and HG-U133PLUS2, and X3P GeneChip; www.affymetrix.com); Arcturus
(http://products.invitrogen.com); Swegene (www.genomics.agilent.com), Operon (www.operon.com), or developed in-house (cDNA, cDNA, platforms). For
most datasets survival data [distant metastasis-free survival (DMFS), relapse-free survival (RFS), and overall survival (OS)], the complete pathological response
(pCR) and information regarding the adjuvant treatment (untreated, chemo, hormonal, and heterogeneous, standing for no treatment, chemotherapy,
hormonal therapy, and heterogeneous combination of therapies, respectively) was available, otherwise missing information is referred to as not available
(NA). All untreated patients had surgery, and most of them had radiation therapy, although information is not available for all datasets.
†Duplicated patients were removed from the UNT, UPP, MDA4, DFHCC2, DFHCC3, and TAM datasets for the estimation of concordance and prognostic value.
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Fig. S1. Triple-negative breast cancer (TNBC) as defined by the subtype classifier model (SCM) has similar levels of estrogen receptor (ESR1), progesterone
receptor (PgR), and ERBB2 as the prediction analysis of microarray 50-gene classifier (PAM50)-defined “basal-like” subtype. ESR1, PgR, and ERBB2 expression
values were rescaled within each dataset (see Materials and Methods). HER2, human epidermal growth factor receptor 2.

Fig. S1

Fig. S2. Boxplots showing CD73 gene expression is highest in TNBC subtype. CD73 expression values were rescaled within each dataset (see Materials and
Methods). Kruskal–Wallis P value is shown (n = 6,209).

Fig. S2
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Fig. S3. Gene expression profiles of 44 publically available microarray datasets were collected. Patients were assigned to the three main molecular subtypes
using the SCM. Correlation (Spearman ρ) heatmaps of CD73 expression with ESR1 (single gene and gene module) and PLAU (plasminogen activator urokinase,
invasion gene and gene module) are shown according to subtypes. Red indicates positive correlation, with green indicating inverse correlation and black
indicating no correlation.

Fig. S3

Fig. S4. (A) Effect of CD73 overexpression in AT-3 mouse breast tumor cells (gray: unstained; doted: AT3-GFP; full line: AT3-CD73 cells). AT3-GFP and AT3-CD73
cells were treated with increasing doses of DOX for 48 h and cell viability was measured by colorimetric assay. (B) Effect of CD73 gene silencing by shRNA in
MDA-MB-231 cells (gray: unstained; white: MDA-MB-231 shGFP; black: MDA-MB-231 shCD73 cells). MDA-MB-231 shGFP and MDA-MB-231 shCD73 cells were
treated with increasing doses of DOX for 48 h and cell viability was measured by colorimetric assay. (C) 4T1.2 cells were treated with increasing doses of DOX
with or without α,β-methyleneadenosine 5′-diphosphate (APCP; 100 μM) for 48 h and cell viability was measured by colorimetric assay. Means ± SEs of trip-
licates are shown. (D) Relative mRNA levels of Cd73, Bcl-2, p-glycoprotein and 18S in MDA-MB-231 shRNA cells compared with MDA-MB-231 shGFP cells
(relative to 18S). (E) Subtypes and baseline CD73 expression levels in human breast cancer cells.

Fig. S4

Fig. S5. DOX treatment up-regulates CD73 expression in vivo. NOD-SCID mice were injected subcutaneously with MDA-MB-231 human breast tumor cells (106

cells) and treated when tumors reached 50 mm2 (day 20) with an intratumoral injection of DOX (1 mM in 50 μL PBS) or PBS (control, CTR). Tumors were
removed 48 h later for CD73 expression analysis. (A) IHC analysis of CD73 expression (in brown) in control-treated and DOX-treated tumors (20×magnification).
(B) Whole tumor protein extracts were analyzed for CD73 and β-actin expression levels by immunoblotting (n = 2/group). (C) Same as B, except that a Li-Cor
imager was used to measure CD73 expression.

Fig. S5

Fig. S6. Chemotherapy-induced CD73/CD39 up-regulation in breast cancer cells. Human breast cancer cell lines (i.e., MDA-MB-231, MDA-MB-468, SKBR3,
BT474, ZR75, and T47D) were treated with increasing doses of DOX, cyclophosphamide (cyclophos), paclitaxel (PAC), 5-fluorouracil (5-FU), cisplatin, or ox-
aliplatin. CD73 and CD39 expression levels were measured by flow cytometry 48 h after treatment and reported as fold increase relative to untreated cells
(means ± SEs of triplicates are shown).

Fig. S6

Fig. S7. Chemotherapy-induced CD73/CD39 up-regulation in melanoma and leukemia cells. Human melanoma (LOX-1MV1 and A2058) and leukemia (Kasumi-
1 and RPMI-8226) cells were treated with increasing doses of DOX, cyclophosphamide (cyclophos), and 5- FU. CD73 and CD39 expression levels were measured
by flow cytometry 48 h after treatment and reported as fold increase relative to untreated cells.

Fig. S7

Fig. S8. (A) Linear regression analysis of CD73 and CD39 up-regulation in response to chemotherapy (using data from Figs. S6 and S7 for DOX). (B) Linear
regression analysis of CD73 (Left) and CD39 (Right) maximum up-regulation in human breast cancer cells (from Fig. S6) in response to DOX in relation to
baseline CD73 and CD39 expression levels, respectively.

Fig. S8

Loi et al. www.pnas.org/cgi/content/short/1222251110 4 of 4

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1222251110/-/DCSupplemental/sfig03.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1222251110/-/DCSupplemental/sfig04.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1222251110/-/DCSupplemental/sfig05.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1222251110/-/DCSupplemental/sfig06.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1222251110/-/DCSupplemental/sfig07.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1222251110/-/DCSupplemental/sfig06.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1222251110/-/DCSupplemental/sfig07.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1222251110/-/DCSupplemental/sfig06.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1222251110/-/DCSupplemental/sfig08.pdf
www.pnas.org/cgi/content/short/1222251110

