Supporting Information

Sprowl et al. 10.1073/pnas.1305321110

Fig. S1. Characterization of transfected cell lines. (A–C) Transport of tetraethylammonium (TEA), a positive control substrate, by mouse organic cation transporter 1 (mOct1) (*A*), mouse organic cation transporter 2 (mOct2) (*B*), and human OCT2 (hOCT2) (*C*) transfected (2μ M; 30-min incubations). Data represent the mean of triplicate observations from experiments performed on at least 3 separate occasions, and are expressed as the average percent of uptake values in cells transfected with an empty vector (VC). Error bars represent the SE. The asterisk denotes a significant difference from VC (*P* < 0.05), and *P* values above the bars denote statistical comparison between uptake data in cells transfected with the transporter or the corresponding flag-tagged transporter. (*D*) Expression of the tagged mOct1, mOct2, and hOCT2 proteins by Western blot. (*E*) Comparative expression of 84 transporter genes in HEK293 cells overexpressing hOCT2 or transfected with VC (*n* = 3 each). Each symbol represent transporter genes in HEK293 hOCT2 overexpressing cells with expression considered to be significant difference from VC. No genes other than the solute carrier family member 22a2 (*SLC22A2*) are associated with transport of platinum agents.

Fig. 52. OCT2 expression in colorectal tissue and dorsal root ganglia. Real-time PCR expression levels of *SLC22A2* (normalized to *GAPDH*) in 48 colorectal samples (stage 0: n = 6, stage I: n = 3, stage IIA: n = 14, stage IIB: n = 2, stage IIIB: n = 8, stage IIIC: n = 8, stage IV: n = 7), seven colorectal tumor cell lines, and human dorsal root ganglia (n = 2). Data are presented as the mean (bars) and SE (error bars).

Fig. S3. Dose-dependence of oxaliplatin pharmacokinetics and toxicity. (*A*–*D*) Recovery of total platinum (Pt) in urine, feces, kidney, and liver in adult male wild-type mice at 72 h following a single i.p. administration of oxaliplatin at a dose of 10 mg/kg (*A*), 20 mg/kg (*B*), 30 mg/kg (*C*), or 40 mg/kg (*D*). Data are presented as the mean (bars) and SE (error bars) of 5 observations per group. (*E*) Oxaliplatin-dose-dependent toxicity as determined from the percentage loss in total body weight compared with baseline (time 0) at 1, 2, or 3 d after drug administration. Data are presented as the mean (symbols) and SE (error bars) of five observations per group.

Fig. 54. Oxaliplatin disposition in male and female mice with a genetic deletion of the Oct1 and Oct2 transporters $[Oct1/2(^{-/-}) mice]$. (A–C) Time course of total plasma concentrations (Ct) and unbound plasma concentrations (Cu) (A), liver concentrations (B), and kidney concentrations (C) of total platinum in male wild-type mice and Oct1/2($^{-/-}$) mice following a single i.p. administration of oxaliplatin at a dose of 40 mg/kg. (D–F) Time course of total plasma concentrations (Ct) and unbound plasma concentrations (Cu) (D), liver concentrations (E), and kidney concentrations (F) of total platinum in female wild-type mice and Oct1/2($^{-/-}$) mice following a single i.p. administration of oxaliplatin at a dose of 40 mg/kg. D–F) Time course of total platinum in female wild-type mice and Oct1/2($^{-/-}$) mice following a single i.p. administration of oxaliplatin at a dose of 40 mg/kg. Data are presented as the mean (symbols or bars) and SE (error bars) of four observations per group per time point.

Fig. 55. OCT2 regulation of oxaliplatin-induced neuropathy. (A) Sensitivity to cold associated with a single dose of oxaliplatin (40 mg/kg) in wild-type and Oct1/2(^{-/-}) mice, as determined by a cold-plate test. Data are presented as percentage change in the number of paw lifts or licks compared with baseline following exposure to a temperature of $-4 \degree$ C for 5 min at 24 h [wild type: n = 25; Oct1/2(^{-/-}): n = 17] or 48 h [wild type: n = 25; Oct1/2(^{-/-}): n = 16] after drug administration. (*B*) Mechanical allodynia associated with a single dose of oxaliplatin (40 mg/kg) in wild-type and Oct1/2(^{-/-}) mice, as determined by a Von Frey Hairs test. Data are presented as percentage change in the force required to promote paw withdrawal (referred to as "Paw withdrawal force") compared with baseline at 24 h [wild type: n = 11; Oct1/2(^{-/-}): n = 11] or 48 h [wild type: n = 11; Oct1/2(^{-/-}): n = 10] after drug administration. (C) Change in sensitivity to cold in wild-type (n = 7) and Oct1/2(^{-/-}): n = 11] or 48 h [wild type: n = 11; Oct1/2(^{-/-}): n = 10] after drug administration. (C) Change in sensitivity to cold in wild-type (n = 7) and Oct1/2(^{-/-}): n = 11] or 48 h [wild type: n = 11; Oct1/2(^{-/-}): n = 10] after drug administration. (C) Change in sensitivity to cold in wild-type (n = 7) and Oct1/2(^{-/-}): n = 10] and Oct1/2(^{-/-}): n = 10] after drug administration. (C) Change in sensitivity to cold in wild-type (n = 7) and Oct1/2(^{-/-}): n = 10] and Oct1/2(^{-/-}): n = 10] after drug administration. (C) Change in sensitivity to cold in wild-type (n = 7) and Oct1/2(^{-/-}): n = 10] after drug administration. (C) Change in sensitivity to cold in wild-type (n = 7) and Oct1/2(^{-/-}): n = 10] after drug administration with cimetidine (30 mg/kg, i.v. bolus). (E) Change in sensitivity to cold in wild-type (n = 7) 24 h after receiving oxaliplatin (5 mg/kg) alone (n = 7) or in combination with cimetidine (i.v. bolus) at a concentration of 5 (n = 7) or 30 m

Fig. S6. Histology of dorsal root ganglia following administration of oxaliplatin. Histological images representing L4 dorsal root ganglia removed from wild-type or Oct1/2(-^{/-}) mice following 72 h administration of saline or oxaliplatin (40 mg/kg). Images demonstrate a lack of cellular damage of the dorsal root ganglia following treatment.

Table S1.	Genes included	on the mouse	transporter RT ²	profiles PCR	array system
-----------	----------------	--------------	-----------------------------	--------------	--------------

Number	Symbol	Number	Symbol	Number	Symbol	Number	Symbol	Number	Symbol
1	Abca1	21	Abcc12	41	Slc5a1	61	Slc22a3	81	Slco3a1
2	Abca2	22	Abcd1	42	Slc5a4a	62	Slc22a6	82	Slco4a1
3	Abca3	23	Abcd3	43	Slc7a11	63	Slc22a7	83	Slco22a4
4	Abca4	24	Abcd4	44	Slc7a4	64	Slc22a8	84	Slco29a3
5	Abca9	25	Abcf1	45	Slc7a5	65	Slc22a9	85	Tap1
6	Abca12	26	Abcg2	46	Slc7a6	66	Slc25a13	86	Tap2
7	Abca13	27	Abcg8	47	Slc7a7	67	Slc28a1	87	Vdac1
8	Abcb1a	28	Aqp1	48	Slc7a8	68	Slc28a2	88	Vdac2
9	Abcb1b	29	Aqp7	49	Slc7a9	69	Slc29a1	89	Gusb*
10	Abcb4	30	Aqp9	50	Slc10a1	70	Slc29a2	90	Hprt1*
11	Abcb5	31	Atp6v0c	51	Slc10a2	71	Slc31a1	91	Hsp90ab1*
12	Abcb6	32	Atp7a	52	Slc15a1	72	Slc38a2	92	Gapdh*
13	Abcb11	33	Atp7b	53	Slc15a2	73	Slc38a5	93	Actb*
14	Abcc1	34	Mvp	54	Slc16a1	74	Slco1a4	94	MGDC*
15	Abcc2	35	Ralbp1	55	Slc16a2	75	Slco1a5	95	RTC*
16	Abcc3	36	Slc2a1	56	Slc16a3	76	Slco1a6	96	PPC*
17	Abcc4	37	Slc2a2	57	Slc19a1	77	Slco1b2		
18	Abcc5	38	Slc2a3	58	Slc19a2	78	Slco1c1		
19	Abcc6	39	Slc3a1	59	Slc22a1	79	Slco2a1		
20	Abcc10	40	Slc3a2	60	Slc22a2	80	Slco2b1		

Abc, ATP binding cassette family of transporters; Actb, beta actin; Aqp, aquaporins; Atp6v0c, ATPase proton transporting lysosomal 16kDa V0 subunit c; Atp7a and Atp7b, ATPase copper transporting polypeptides; Gapdh, glyceraldehyde-3-phosphate dehydrogenase; Gusb, glucuronidase; Hprt1, hypozanthine phosphoribosyltrans-ferase1; Hsp90ab1, heat shock protein 90kDa alpha (cytosolic) class B member 1; MGDC, monogalactosyldiacyl-glycerol synthase 3; Mvp, major vault protein; PPC, phosphoenolpyruvate carboxylase; Ralbp1, ralA binding protein 1; RTC, RNA 3'-terminal phosphate cyclase; Slc, solute carrier family of transporters; Slco, solute carrier family of organic anion transporters; Tap1 and Tap 2, transporter 1 and 2; Vdac1 and Vdac2, voltage-dependent anion channels.

*Included as controls/housekeeping genes.

SANG SANG