

Figure S1 Observed versus expected estimates of nucleotide heterozygosity (Θ w) at 18 *D. pseudoobscura* marker loci based on a coalescent analysis of a population of constant size. Nucleotide heterozygosity estimates based on the number of segregating sites (Θ w) within five gene arrangements (AR, PP, CH, ST, and TL) as well as among all arrangements are shown in the individual panels. The observed (Obs) estimates of Θ w as well as the mean P(0.500) and the 95% confidence interval (P(0.025) to P(0.975)) derived from 1000 coalescent simulations using nested subsamples for a constant population size model. The genetic markers labeled in red on the x-axis are genes within the inverted region of the derived arrangement. The proximal region is to the left.

Figure S2 Observed versus expected estimates of nucleotide heterozygosity (Θ w) at 18 *D. pseudoobscura* marker loci based on a coalescent model of an exponentially growing population. Nucleotide heterozygosity estimates based on the number of segregating sites within five gene arrangements (AR, PP, CH, ST, and TL) as well as among all arrangements are shown in the individual panels. The observed (Obs) estimates of Θ w as well as the mean (P(0.500) and the 95% confidence interval (P(0.025) to P(0.975)) derived from 1000 coalescent simulations using nested subsamples for an exponentially growing population with growth rate parameter α =7. The genetic markers labeled in red on the x-axis are genes within the inverted region of the derived arrangement. The proximal region is to the left.

Figure S3 Frequency of variants at the segregating sites in the five gene arrangements. The five bars represent the frequencies of variants in the five gene arrangements. Each column represents a single segregating site. For each site, the colors of segregating bases from most frequent to least frequent in decreasing order are: blue, red, orange, and purple. The bottom line indicates the base of *D. miranda*, where an indel is designated by a black square. The segregating sites of the different gene regions are separated by white space.

Breakpoint Regions

Non-Breakpoint Regions

Figure S4 Frequency spectra of derived mutations in breakpoint and non-breakpoint regions for five gene arrangements of *Drosophila pseudoobscura*. A total of 509 and 249 segregating sites were in breakpoint and non-breakpoint regions, respectively. The relative frequency of sites is displayed on the z-axis, which is the number of sites that have a particular site frequency divided by the total number of sites. This allows the frequency spectra of the two types of regions to be compared. The arrangements are ordered on the y-axis from youngest (CH in front) to oldest (TL in back).

File S1

Supporting Data

D. pseudoobscura Inversion Gene Markers

The following list provides the sequences of the 18 gene markers in the *D. pseudoobscura* reference strains MV2-25; (RICHARDS *et al.* 2005) used in this study. The title shown in bold gives the number of the marker, the name of the marker, the reference genome strain, the length of the amplified region excluding primers in the reference genome, the length of the aligned sequence. The coordinates for the FASTA entry are given on second line based on release (R2.27) in FlyBase (<u>http://flybase.org</u>) where 3 indicates chromosome 3 of *D. pseudoobscura*. The noncoding sequence is shown in lower case letters and coding sequence is indicated in upper case letters. Coding information is shown below the sequence.

02 engrailed, MV2-25

Ref Length=376 bp, Aligned Length= 407 bp, , Silent Sites w/o Gaps = 302 bp

>3:4595297,4595673 (reverse complemented)

Coding information GA21479

Region	Alignment Coordinates	Actual Coordinates
Intron 1	1386	45956454955258
Exon 2 (position 1)	387407	49552574595297

03 pHYSC, MV2-25

Ref Length=375 bp, Aligned Length= 398 bp, , Silent Sites w/o Gaps = 193 bp >3:6432216,6432591

tatttggacgcagactcagtttaattttcacattttagcccaaaattcactcctagggcc ccgggcagacaaaggcagacaaactgcgctgcaaccgaataaaccatttacaaatacgag tagcattcgagcaaatataggcgattggcattctatttgaatgagctgcatggagcgtcg gtcttaagcttaaggcaattgtttgagtgccttttgctgccgttgatggataggattcaa atagccagaggcgtgggatcacgtaatgcacttccccagcaaccactgggccacaaaaac gaggcagcaaataaggcagtggccaaagtcagccactaattgcaacattaaagctccttt tggttgccactgtgtg

04 exuperantia 1, MV2-25

Ref Length=356 bp, Aligned Length= 358 bp, Silent Sites w/o-Gaps= 176 bp

>3:8591272,8591628

gggcattgaccctctgcgtcggacctaacctaacttttctctacgtctcccctttgccca ttttccagATTGTCCAGTTGGCTGCCTACACTCCAAAGGACAACTTCCAGCAGTACATCA TGCCGTATATGAATCTGAATCCAGCCGCTCGTCAGCGTCATCAAATTCGTGTGATTTCGA TCGGCTTTTATCGCATGCTGAAGTCGATGCAGACCTACAAGgtacattcatacctacact cccgttatgtccgctaattctagcttttattttctccagATTATCAAATCTAAATCGGAGG TTGCTGCTCTCATGGACTTTCTCAACTGGCTTGAGATGCTGGTCGCCCAAACAGCCCA

Coding Information GA21461

Region	Alignment Coordinates	Actual Coordinates
Intron 1	1 68	85912728591339
Exon 2 (position 1)	69221	85913408591492
Intron 2	222279	85914938591550
Exon 3 (position 1)	280358	85915518591628

05 pSTAR, MV2-25

Ref Length= 467 bp, Aligned Length= 473 bp, Silent Sites w/o-Gaps= 440 bp >3:8900356,8900823

06 pHYST, MV2-25

Ref Length= 805 bp, Aligned Length= 1,486 bp, Silent Sites w/o-Gaps= 484 bp

>3:9140888,9141693

 $CGCAATGCAAAGCCATGTCGATATTGAAGAATTCTTTATGAAAGTGGATTCAAGTGGTGC\\ GCACGATCAGACGGTGCACGgtaagtttatagcatatacatttgtgtatattcgctcata\\ tgctttcttttgatagGTCTTGGCGTATACGATTTGCACGAAATGGTGGAAAAGGCTAA\\ GAAGATAGATCAACAAATGCAGTCCTCTCAGCCCACCTTTATCCATCATCGCTTTCGCTA\\ Actgcctttgaaaactttaagactataacaacaacaaaattattattattcatgtcatt\\ atttttggatatgcttattgccttactttgttcgattgttcggttatttggaaaatttc\\ aatattgtttattgcttctgtcccgggtaccctgtgattatctattacgatcagtggc\\ acttcgataagaagccacaaaagcgaaattaaagcaagaatggattgtgcagaagatcgg\\ atactttataactatagtttattagtgttcaatcagcgttaggtaattaaagcaatt\\ taactctaccatgcataagtgaacacagcctaaaataacacgttcgtgctattcagttccgg\\ attattcctaacattccacatcaatataacgtaattaatattctgtgctcccgg\\ attattcctacatgtgacacagctgaattaataatactagtaaagtggacaat\\ attgaaccaaattttagGATGCCGTCGTCTTTAAATTTACAAACGTCGTCTGCGGGAGT\\ TACAACCAATCCTGGTTCGTGTTCCA$

Coding Information GA21596 (Dmel CG9183) and GA24829

Region	Alignment Coordinates	Actual Coordinates
Exon 1 (position 3)	1 80	9140888 9140967
Intron	81 145	9140968 9141024
Exon 2 (position 2)	146 247	9141025 9141128
Noncoding	2481418	9141129 9141626
Exon 1 (position 1)	14191486	9141627 9141693

07 dSTPP, MV2-25

Ref Length= 572 bp, Aligned Length= 587 bp, Silent Sites w/o-Gaps= 523 bp

>3:9832256,9832828

Coding Information GA24854

Region	Alignment Coordinates	Actual Coordinates
Exon (position 1)	1 18	98322559832275
Noncoding	19587	98322769832828

08 dSCTL, MV2-25

Ref Length= 403 bp, Aligned Length= 444 bp, Silent Sites w/o-Gaps= 374 bp

>3:10830478,10830881

09 even-skipped

MV2-25, Ref Length= 373 bp, Aligned Length= 374 bp, Silent Sites w/o-Gaps= 146 bp >3:10904241,10904614 (reverse complemented)

Coding Information GA15349

Region	Alignment Coordinates	Actual Coordinates
Exon 1 (position 1)	1103	1090461410904512
Intron 1	104173	1090451110904442
Exon 2 (position 2)	174374	1090444110904241

10 Myocyte enhancing factor 2

MV2-25, Ref Length= 384 bp, Aligned Length= 413 bp, Silent Sites w/o-Gaps= 315 bp >3:10967159, 10967543

Coding Information GA12881

Region	Alignment Coordinates	Actual Coordinates
Exon 3 (position 2)	1 21	1090461410904512
Intron 3	22392	1090451110904442
Exon 4 (position 2)	393413	1090444110904241

11 Amylase 1, MV2-25

Ref Length= 422 bp, Aligned Length= 453 bp, Silent Sites w/o-Gaps= 326 bp

Coding Information GA24265

Region	Alignment Coordinates	Actual Coordinates
Exon 2 (position 3)	1 46	1184956911849524
Noncoding	47453	1184952011849147

12 pSCCH, MV2-25

Ref Length= 378 bp, Aligned Length= 402 bp, Silent Sites w/o-Gaps= 326 bp >3:14259606, 14259984

13 dSTAR, MV2-25 Ref Length= 516 bp, Aligned Length= 651 bp, Silent Sites w/o-Gaps= 309 bp

>3:14801829,14802345

Coding Information GA17716

Region	Alignment Coordinates	Actual Coordinates
Intron	1613	1480182914802227
Exon (position 2)	614651	1480222814802345

14 dSCCH, MV2-25

Ref Length= 353 bp, Aligned Length= 354 bp, Silent Sites w/o-Gaps= 85 bp

>3:15426293,15426646 (reverse complemented)

Coding Information Ga12328

Region	Alignment Coordinates	Actual Coordinates
Exon 1 (position 1)	1354	1542629315426646

15 F6, MV2-25

Ref Length= 430 bp, Aligned Length= 434 bp, Silent Sites w/o-Gaps= 428 bp

>3:16605742,16606172 (reverse complemented)

TTCATggtttgaaataccaactggagagagaactgtataaactgaactgaataagacctt tagccacgctctgacagctagaacaaaagccattgatagggctcccacgacaATGCTTC TCCGGCACTCGTTGGCGTTGGCCATGTTCCGGCTGGCACTGATCTTTGGGCTGTATCTTC CCCTATATTCCCCTATCTCTGGCAGTTCCATCTGCGGCAGGAACGAGGTGCAGGTAGCCT GTGGCAATCCCTGCCCCAAGTCCTGTTATCCCCAACGTTGTGTGGACGTCTTGTGCTATG GCCGTTGCAACTGCATCGGTGGATACAGACGGGGTTAACAAGTACCAGGGGCCCTGTGTCC TTCCCAGCGAGTGTGGAAGGTATCCCATGTTGGAGATACACAAGCAAACGACCAACAAG GAAGGAGCAAA

Coding Information

Region	Alignment Coordinates	Actual Coordinates
Exon 1 (position 1) GA24156 comp	1 5	1660574216605746
Noncoding	6 116	1660574716605839
Exon 1 (position 1) GA25052	117434	1660584016606172

This is the gene annotation in FlyBase for *D. pseudoobscura*. The pattern of nucleotide diversity is not consistent with a coding region. The dn/ds ratio for the partial sequence is fairly high and the outgroup *D. miranda* sequence has a partial deletion within the gene. The AUG start codon in gene GA25052 is polymorphic (AUG versus UUG). Therefore, we assume the following annotation.

>3:16605742,16606172

16 dHYSC, MV2-25

Ref Length= 361 bp, Aligned Length= 382 bp, Silent Sites w/o-Gaps= 323 bp

17 dHYST, MV2-25

Ref Length= 896 bp, Aligned Length= 923 bp, Silent Sites w/o-Gaps= 641 bp

>3:17705232,17706128

Coding Information (Note: This region includes two genes on opposite strands. GA25100 is on the plus strand and GA18077 is on the minus strand)

dHYST analysis of (324..923) GA25100 coding regions

Region	Alignment Coordinates	Actual Coordinates
Noncoding	1819	1770523217706030
Exon 1 (position 1) GA25100	820824	1770603117706035
Intron 1	825889	1770603617706095
Exon 2 (position 3) GA25100	890923	1770609617706129

dHYSTc analysis of (601..923) GA18077 coding regions

Region	Alignment Coordinates	Actual Coordinates
Noncoding	1600	1770612917705555
Exon 1 (position 1) GA18077	601655	1770555417705550
Intron 1	656707	1770549917705448
Exon 2 (position 2) GA18077	708892	1770544717705263
Intron 2	893923	1770526217705232

18 Ecdysone Receptor, MV2-25

Ref Length= 335 bp, Aligned Length= 343 bp, , Silent Sites w/o-Gaps= 127 bp

Coding Information GA14596

Region	Alignment Coordinates	Actual Coordinates
Exon 2 (position 2)	1209	17896734
Intron 2	210288	
Exon 3 (position 1)	289343	17896399

Frequency Spectra of Derived Mutations Within the Five Gene Arrangements. We used the *D. miranda* sequence to polarize the mutations within *D. pseudoobscura* to better understand the accumulation of new variants in the different gene arrangement backgrounds. We observed 758 polymorphic sites in the 18 regions. At 88.3 % of the 758 segregating sites, the most frequent *D. pseudoobscura* nucleotide matches the *D. miranda* nucleotide leading to the inference that the derived nucleotide is generally the lower frequency base. *D. miranda* has an inferred indel mutation at 3.3 % of the *D. pseudoobscura* segregating sites, which prevents an unambiguous inference of the derived base. For these sites, we made the conservative assumption that the majority base is the ancestral base, which will lead to an underestimate of the derived base frequency at the site if our ancestral base inference is wrong. Figure S3 shows the frequency spectra data for each segregating site.

Figure S4 shows the derived frequency spectra for segregating sites at breakpoint and non-breakpoint regions. The major difference between the two frequency spectra is in the relative frequencies of rare and fixed derived mutations. The breakpoint regions have a slightly lower frequency of rare derived variants and a higher frequency of fixed derived mutations than the non-breakpoint regions. In breakpoint regions, the frequency of rare variants increases as the age of the gene arrangement increases while this trend is less obvious in the non-breakpoint regions.

Unique, Shared and Fixed Polymorphisms Among Breakpoint and Non-breakpoint Regions of the *D. pseudoobscura* Gene Arrangements. We examined the distribution of the 758 polymorphisms among the five gene arrangements to determine whether they are unique to a particular arrangement, shared among arrangements, or represent a fixed difference within a gene arrangement. Each polymorphic site was classified into one of six categories based on the distribution of polymorphism among the five gene arrangements. Category 0 polymorphisms occurred when a segregating site was fixed in one to four gene arrangements. Category 1 polymorphisms occurred when a site was polymorphic in one arrangement and monomorphic in the other four arrangements (five possible configurations). Category 2 polymorphisms were defined when a site was polymorphisms were indicated when a site was polymorphic in three arrangements (ten possible combinations). Category 3 polymorphisms were indicated when a site was polymorphic in three arrangements and monomorphic in the other two arrangements (ten possible combinations). Category 4 polymorphisms occurred when a site was polymorphic in all, but one arrangement (five possible configurations). Finally, Category 5 polymorphisms were defined by sites that were polymorphic in all five arrangements.

The observed numbers of the six categories and 32 possible configurations of polymorphisms are shown in Table S7. We asked whether the observed frequencies of the polymorphism configurations depart from expectations derived from the observed polymorphism frequencies within the five arrangements. We used the fraction of sites that were polymorphic in each arrangement to estimate the joint probability for each outcome (AR, 302/758 = 0.398; PP 248/758 = 0.327; ST, 218/758=

13 SI

0.288; CH, 321 / 758=0.423; TL, 138/ 758= 0.182). If *p* is the fraction of polymorphic sites within arrangement, then the monomorphic fraction was obtained from 1- *p*. A chi-square goodness-of-fit test rejects the hypothesis that the distribution of polymorphisms among the five arrangements is independent (X²=512.7, df=31, P=3.7 x 10⁻⁹¹). The residuals show that there is an excess of category 1 polymorphisms (466 Observed versus 258.6 Expected), which are sites polymorphic in one arrangement and not in the others. The largest excess of sites occurs within the AR arrangement (140 Observed versus 68.3 Expected). Other configurations with a significant excess of sites are found in the Categories 3, 4, and 5. In category 3, there is a significant excess of sites where the polymorphism is shared among PP, CH, and TL. In category 4, AR, PP, ST, and CH are polymorphic and TL is monomorphic for more sites than expected (44 Observed versus 9.8 Expected). Of the 44 sites in this configuration, 11 sites represent fixations of the derived allele in the TL lineage.

We tested whether the distribution of polymorphic sites into the six categories was homogeneous between breakpoint and non-breakpoint regions with a chi-square test of homogeneity (Table S8). The category distribution is not homogeneous between breakpoint and non-breakpoint regions (X²=25.4, df=5, P=0.0001). Two categories are responsible for rejecting the null hypothesis of homogeneity, categories 1 and 4 in non-breakpoint regions. Both cases are due to a significant deficiency of sites within non-breakpoint versus breakpoint loci.

We tested whether the frequency of unique polymorphisms within each arrangement was proportional to the frequency of total polymorphisms within each arrangement. We rejected the hypothesis of homogeneity with the AR arrangement having a significant excess of unique polymorphisms (X^2 =16.5, *df*=4, *P*=0.002) (Table S9).

We observed 25 category 0 polymorphisms where all arrangements are monomorphic for a single nucleotide, but at least one arrangement is fixed for a derived variant. Of these polymorphisms, only one site is found in a non-breakpoint region (Amy1), six polymorphic sites in the dSTAR regions are fixed for the derived mutation only in the AR chromosome, and 11 polymorphic sites in the dHYSC region are fixed for the derived mutation in the TL arrangement. Overall, fixed derived mutations in just the TL chromosome accounts for 14 of the 25 category 0 polymorphic sites, which is greater than expected given the relative proportion of polymorphic sites in TL (X^2 =30.5, df=2, P=3.4x10⁻⁷) (Table S10).

Overall, this analysis shows that each arrangement has accumulated unique polymorphisms with the AR, one of the youngest arrangements, having the greatest number of unique polymorphisms (Table S7). Breakpoint regions, however, do not have a significant excess of unique polymorphisms compared to non-breakpoint regions (Table S8).

Table S1 Primer Sequences Used for PCR Amplification

Primer Name	Primer Sequence	Coordinate Interval	Length (bp)	Cytological Position	Annealing Temp (° C)
pSTPP_f	GAT ACC ACT CGG CAA GCA GAA G	2,292,7522,293,105	354	64C	55
pSTPP_r	CGC CTC AGT TAA TTA GCC CAC AAA				
pHYSC_f	TGG TGT TGA GTA TCT GCC GTG GTT	6,432,2166,432,591	376	68C	60
pHYSC_r	CTG CTG CCG CTG CTC CTA TCA				
pSTAR_f	CCT GAT ACC CAC GGA GTC TTC	8,900,3568,900,823	468	76B	55
pSTAR_r	TCG CTA CAG GGA TCA GGT TTT				
					(0
pHYST_f	CTT ATT CCC GCC TCT TGT GTA GC	9,140,8889,141,693	806	76B	60
pHYST_r	GAC GGC CCT CAG ACG ATA GTT G				
					50
dSTPP_f	ATC GGT ACA ACA GCC AGG GAC AAC	9,832,2569,832,828	573	75B	38
dSTPP_r	ACT TCG TGG GAT CGC TGG CAT AAT				
					60
dSCTL_f	ATG GCG ATG GAG TCC TCT GTC TAT	10,830,47810,830,881	404	74B	00
dSCTL_r	ACT GGC GCC ATG TCT CTG TCT CG				
					57
pSCCH_f	AAC CGG CAT ACA CCC TCA TTC	14,259,60614,259,984	377	70C	51
pSCCH_r	GTT GCG CAT TAT TTA TTC CCT GTA				
10,000			250		55
dSCCH_f	TCC GGA GAT CGC AAA ACT GTC G	1542629315426646	379	///B	
dSCCH_r	TAT GCG CTG CTT CTG ATG CTT GAT				
AUVSC f		17 444 401 17 444 952	262	700	58
		1 /,444,4911 /,444,852	362	790	
an i SC_r	TAT COTOCO FIO TOCOTA ATC AGC				

The abbreviated name represents the location (p, proximal or d, distal) of the breakpoint on the chromosome, and the last four letters represent the two arrangements involved in the inversion. The first two letters are the ancestral arrangement and the last two letters are the derived arrangement. For example, the STPP notation is for the breakpoints that converted the ancestral Standard arrangement into the derived Pikes Peak arrangement. Primer names are the abbreviated region names with the addition of "f" and "r" for forward or reverse. The coordinates are the location of the genetic marker in the genome strain (RICHARDS *et al.* 2005), which carries the Arrowhead arrangement.

Region (Silent Sites)	Sample	n	S	$ heta \pm Sd$	k	π ± Sd	Tajima's D
pSTPP (353 bp)	All	91	26	0.014 ± 0.004	3.519	0.010 ± 0.005	-0.945
	AR	23	14	0.011 ± 0.004	2.842	0.008 ± 0.004	-0.887
	РР	20	12	0.010 ± 0.004	3.321	0.009 ± 0.005	-0.065
	ST	21	11	0.009 ± 0.004	2.919	0.008 ± 0.005	-0.159
	СН	22	11	0.009 ± 0.004	3.108	0.009 ± 0.005	0.104
	TL	4	2	0.003 ± 0.002	1.000	0.003 ± 0.002	-0.710*
<i>en</i> (302 bp)	All	142	46	0.029 ± 0.008	3.603	0.012 ± 0.006	-1.728*
	AR	50	27	0.020 ± 0.007	2.830	0.009 ± 0.005	-1.748*
	РР	25	8	0.007 ± 0.003	1.740	0.006 ± 0.003	-0.567
	ST	27	18	0.015 ± 0.006	2.621	0.009 ± 0.005	-1.544
	СН	32	15	0.012 ± 0.005	4.763	0.016 ± 0.008	0.927
	TL	7	9	0.012 ± 0.007	3.428	0.011 ± 0.007	-0.355
pHYSC/pSCTL (193 bp)	All	93	27	0.027 ± 0.008	5.200	0.027 ± 0.013	-0.051
	AR	23	6	0.008 ± 0.004	0.885	0.005 ± 0.003	-1.394
	РР	19	15	0.022 ± 0.009	4.971	0.026 ± 0.013	0.592
	ST	23	11	0.015 ± 0.007	1.375	0.007 ± 0.005	-1.843*
	СН	23	12	0.017 ± 0.007	2.300	0.012 ± 0.007	-1.014
	TL	4	11	0.031 ± 0.018	5.500	0.028 ± 0.017	-0.837
<i>exu 1</i> (176 bp)	All	144	17	0.018 ± 0.006	1.312	0.007 ± 0.005	-1.546
	AR	53	8	0.010 ± 0.004	1.066	0.006 ± 0.004	-1.067
	РР	26	3	0.004 ± 0.003	0.671	0.004 ± 0.003	-0.359
	ST	25	5	0.008 ± 0.004	1.319	0.008 ± 0.005	-0.011

 Table S2
 Nucleotide Polymorphism in 18 Regions of the D. pseudoobscura Third Chromosome.

	СН	32	5	0.007 ± 0.004	1.402	0.008 ± 0.005	0.347
	TL	7	2	0.005 ± 0.004	0.762	0.004 ± 0.004	-0.274
pSTAR (440 bp)	All	90	83	0.037 ± 0.010	9.559	0.022 ± 0.010	-1.374
	AR	24	35	0.021 ± 0.008	8.221	0.019 ± 0.009	-0.468
	РР	19	31	0.020 ± 0.008	8.795	0.020 ± 0.010	-0.033
	ST	22	45	0.028 ± 0.010	9.918	0.023 ± 0.011	-0.772
	СН	20	41	0.026 ± 0.010	10.147	0.023 ± 0.011	-0.487
	TL	4	10	0.012 ± 0.007	5.167	0.012 ± 0.007	-0.527
pHYST 484 bp)	All	90	59	0.024 ± 0.007	8.854	0.018 ± 0.009	-0.776
	AR	23	29	0.016 ± 0.006	7.154	0.015 ± 0.007	-0.340
	РР	19	33	0.019 ± 0.007	10.443	0.022 ± 0.010	0.423
	ST	19	10	0.006 ± 0.003	3.846	0.008 ± 0.004	1.221
	СН	24	23	0.013 ± 0.005	5.594	0.012 ± 0.006	-0.339
	TL	4	21	0.024 ± 0.013	10.501	0.022 ± 0.013	-0.854
dSTPP (523 bp)	All	90	43	0.016 ± 0.005	7.918	0.015 ± 0.007	-0.210
	AR	24	21	0.011 ± 0.004	3.896	0.007 ± 0.004	-1.125
	РР	19	4	0.002 ± 0.001	0.926	0.002 ± 0.001	-0.562
	ST	19	7	0.004 ± 0.002	1.109	0.002 ± 0.001	-1.490
	СН	22	22	0.012 ± 0.004	5.104	0.010 ± 0.005	-0.578
	TL	4	0	0.000 ± 0.000	0.000	0.000 ± 0.000	
dSCTL (374 bp)	All	92	47	0.025 ± 0.007	8.242	0.022 ± 0.010	-0.341
	AR	22	11	0.008 ± 0.004	2.649	0.007 ± 0.004	-0.423
	РР	19	17	0.013 ± 0.005	4.749	0.013 ± 0.006	-0.090
	ST	22	9	0.007 ± 0.003	2.009	0.005 ± 0.003	-0.624
	СН	23	22	0.016 ± 0.006	4.893	0.013 ± 0.007	-0.665

	TL	4	8	0.012 ± 0.007	5.000	0.013 ± 0.008	1.442
<i>eve</i> (146 bp)	All	142	24	0.031 ± 0.010	3.337	0.023 ± 0.012	-0.659
	AR	51	6	0.009 ± 0.004	1.471	0.010 ± 0.006	0.261
	РР	26	10	0.018 ± 0.008	3.441	0.024 ± 0.012	1.025
	ST	26	2	0.004 ± 0.003	0.224	0.002 ± 0.002	-1.226
	СН	31	17	0.029 ± 0.011	3.015	0.021 ± 0.011	-0.991
	TL	7	0	0.000 ± 0.000	0.000	0.000 ± 0.000	
<i>Mef 2</i> (315 bp)	All	125	43	0.026 ± 0.007	5.122	0.016 ± 0.008	-1.095
	AR	40	10	0.007 ± 0.003	1.654	0.005 ± 0.003	-0.884
	РР	26	12	0.010 ± 0.004	2.718	0.009 ± 0.005	-0.457
	ST	24	10	0.009 ± 0.004	1.166	0.004 ± 0.002	-1.884*
	СН	27	17	0.014 ± 0.005	3.534	0.011 ± 0.006	-0.695
	TL	7	12	0.016 ± 0.008	3.808	0.012 ± 0.007	-1.212
<i>Amy 1</i> (363 bp)	All	142	51	0.027 ± 0.007	5.369	0.015 ± 0.007	-1.284
	AR	50	20	0.012 ± 0.004	3.082	0.008 ± 0.004	-0.988
	РР	25	3	0.002 ± 0.001	0.661	0.002 ± 0.001	-0.417
	ST	27	13	0.009 ± 0.004	2.323	0.006 ± 0.004	-1.051
	СН	32	11	0.008 ± 0.003	1.942	0.005 ± 0.003	-0.917
	TL	7	13	0.015 ± 0.007	5.046	0.014 ± 0.008	-0.268
pSCCH (326 bp)	All	86	29	0.018 ± 0.005	5.026	0.015 ± 0.008	-0.398
	AR	21	7	0.006 ± 0.003	0.981	0.003 ± 0.002	-1.607
	РР	20	8	0.007 ± 0.003	3.747	0.011 ± 0.006	2.230*
	ST	21	5	0.004 ± 0.002	0.476	0.001 ± 0.001	-1.982*
	СН	19	8	0.007 ± 0.003	3.275	0.010 ± 0.005	1.474
	TL	4	0	0.000 ± 0.000	0.000	0.000 ± 0.000	

dSTAR(<i>vg</i>) (309 bp)	All	143	95	0.058 ± 0.015	17.799	0.058 ± 0.026	0.119
	AR	52	20	0.014 ± 0.005	3.319	0.011 ± 0.006	-0.793
	РР	23	27	0.024 ± 0.009	7.858	0.025 ± 0.012	0.280
	ST	28	25	0.021 ± 0.008	7.818	0.025 ± 0.012	0.782
	СН	31	43	0.035 ± 0.012	5.040	0.016 ± 0.008	-1.956*
	TL	7	33	0.044 ± 0.021	11.097	0.036 ± 0.019	-1.008
dSCCH (85 bp)	All	90	8	0.019 ± 0.008	1.417	0.017 ± 0.010	-0.251
	AR	22	4	0.013 ± 0.007	1.389	0.016 ± 0.010	0.747
	РР	20	1	0.003 ± 0.003	0.101	0.001 ± 0.002	-1.158
	ST	22	1	0.003 ± 0.003	0.369	0.004 ± 0.004	0.600
	СН	21	2	0.007 ± 0.005	0.560	0.007 ± 0.006	0.017
	TL	4	2	0.013 ± 0.010	1.338	0.016 ± 0.012	1.929*
F6 (428 bp)	All	126	57	0.025 ± 0.007	6.463	0.015 ± 0.007	-1.210
	AR	45	31	0.017 ± 0.005	3.663	0.009 ± 0.004	-1.638
	РР	24	24	0.015 ± 0.006	4.598	0.011 ± 0.005	-1.055
	ST	25	16	0.010 ± 0.004	3.367	0.008 ± 0.004	-0.725
	СН	24	22	0.014 ± 0.005	4.533	0.011 ± 0.005	-0.848
	TL	7	5	0.005 ± 0.003	2.571	0.006 ± 0.004	1.287
dHYSC (323 bp)	All	87	39	0.024 ± 0.007	4.421	0.014 ± 0.007	-1.359
	AR	24	11	0.009 ± 0.004	3.094	0.010 ± 0.005	0.171
	РР	19	11	0.010 ± 0.004	2.795	0.009 ± 0.005	-0.402
	ST	21	10	0.009 ± 0.004	3.248	0.010 ± 0.005	0.582
	СН	18	12	0.011 ± 0.005	2.497	0.008 ± 0.004	-1.050
	TL	4	7	0.012 ± 0.007	3.500	0.011 ± 0.007	-0.817

dHYST (641 bp)	All	94	54	0.016 ± 0.005	8.600	0.013 ± 0.006	-0.596
	AR	24	27	0.011 ± 0.004	9.115	0.014 ± 0.007	0.975
	РР	19	30	0.013 ± 0.005	10.256	0.016 ± 0.008	0.773
	ST	23	18	0.008 ± 0.003	4.593	0.007 ± 0.004	-0.212
	СН	23	36	0.015 ± 0.005	7.125	0.011 ± 0.005	-1.037
	TL	4	0	0.000 ± 0.000	0.000	0.000 ± 0.000	
EcR (127 bp)	All	142	21	0.031 ± 0.010	1.532	0.012 ± 0.007	-1.669*
	AR	51	16	0.028 ± 0.010	1.793	0.014 ± 0.008	-1.530
	РР	25	6	0.012 ± 0.006	1.073	0.008 ± 0.006	-0971
	ST	26	4	0.008 ± 0.005	1.323	0.010 ± 0.007	0.700
	СН	32	8	0.016 ± 0.007	1.573	0.012 ± 0.008	-0.623
	TL	7	2	0.006 ± 0.005	0.572	0.004 ± 0.004	-1.234

n, sample size; *S*, number of segregating sites; $\theta \pm$ sd, nucleotide heterozygosity per site based on the number of segregating sites with its standard deviation (WATTERSON 1975); $\pi \pm$ sd, nucleotide heterozygosity per site based on the number of pairwise differences with its standard deviation assuming no recombination (TAJIMA 1983); Tajima's (1989) *D*, a test of the frequency spectrum's departure from expectations of the neutral theory where values of Tajima's *D* marked with an asterisk have a probability less than 0.05.

Table S3 HKA test for the Arrowhead gene arrangement

Gene	AR_Obs_S	AR_Exp_S	Dmir_Obs_D	AR_Exp_D
pSTPP	14	11.04	5.28	8.25
en	27	18.74	3.28	11.54
pHYSC	6	8.40	8.68	6.28
exu1	8	5.57	0.96	3.39
pSTAR	35	33.29	22.87	24.59
pHYST	29	28.64	21.03	21.40
dSTPP	21	17.70	9.77	13.07
dSCTL	11	14.10	13.77	10.67
eve	6	6.56	4.58	4.02
Mef2	10	13.42	12.12	8.70
Amy1	20	17.74	8.66	10.92
pSCCH	7	11.72	13.71	8.99
dSTAR	20	24.39	19.28	14.89
dSCCH	4	4.42	3.77	3.35
F6	31	26.80	12.70	16.90
dHYSC	11	12.93	11.48	9.55
dHYST	27	35.41	34.56	26.15
EcR	16	12.13	3.57	7.44
т	1.76			
X2	16.17			
Р	0.212			
sim	9982			

Gene	PP_Obs_S	PP_Exp_S	Dmir_Obs_D	PP_Exp_D
pSTPP	12	9.43	5.28	7.85
en	8	6.33	3.28	4.95
pHYSC	15	12.83	8.68	10.84
exu1	3	2.23	0.96	1.73
pSTAR	31	29.2	22.87	24.68
pHYST	33	29.29	21.03	24.75
dSTPP	4	7.46	9.77	6.31
dSCTL	17	16.68	13.77	14.09
eve	10	8.22	4.58	6.36
Mef2	12	13.6	12.12	10.52
Amy1	3	6.54	8.66	5.12
pSCCH	8	11.84	13.71	9.86
dSTAR	27	25.71	19.28	20.57
dSCCH	1	2.6	3.77	2.17
F6	24	20.49	12.70	16.21
dHYSC	11	12.18	11.48	10.3
dHYST	30	34.99	34.56	29.57
EcR	6	5.37	3.57	4.2
т	1.95			
X2	11.67			
Р	0.559			
sim	9639			

Gene	ST_Obs_S	ST_Exp_S	Dmir_Obs_D	ST_Exp_D
pSTPP	11	8.22	5.28	8.07
en	18	11.11	3.28	10.18
pHYSC	11	10.05	8.68	9.62
exu1	5	3.08	0.96	2.88
pSTAR	45	34.47	22.87	33.4
pHYST	10	15.44	21.03	15.6
dSTPP	7	8.34	9.77	8.43
dSCTL	9	11.56	13.77	11.2
eve	2	3.41	4.58	3.16
Mef2	10	11.37	12.12	10.75
Amy1	13	11.3	8.66	10.36
pSCCH	5	9.44	13.71	9.27
dSTAR	25	23.31	19.28	20.97
dSCCH	1	2.42	3.77	2.35
F6	16	14.83	12.70	13.87
dHYSC	10	10.84	11.48	10.64
dHYST	18	26.86	34.56	25.7
EcR	4	3.93	3.57	3.64
т	2.53			
X2	18.22			
Р	0.145			
sim	9813			

Table S5 HKA test for the Standard gene arrangement

Gene	CH_Obs_S	CH_Exp_S	Dmir_Obs_D	CH_Exp_D
pSTPP	11	9.81	5.28	6.47
en	15	11.45	3.28	6.83
pHYSC	12	12.52	8.68	8.16
exu1	5	3.73	0.96	2.23
pSTAR	41	38.07	22.87	25.8
pHYST	23	26.79	21.03	17.25
dSTPP	22	19.14	9.77	12.63
dSCTL	22	21.66	13.77	14.11
eve	17	13.47	4.58	8.11
Mef2	17	17.93	12.12	11.19
Amy1	11	12.31	8.66	7.35
pSCCH	8	12.86	13.71	8.85
dSTAR	43	38.88	19.28	23.4
dSCCH	2	3.46	3.77	2.31
F6	22	21.11	12.70	13.59
dHYSC	12	13.82	11.48	9.66
dHYST	36	42.73	34.56	27.83
EcR	8	7.25	3.57	4.33
т	1.4			
X2	8.28			
Р	0.783			
sim	9875			

Table S6 HKA test for the Chiracahua gene arrangement

Category	Configuration	Obs	Exp	Residuals
0	P() M(AR, PP, ST, CH, TL)	25	103.1	-7.7
1	P(AR) M(PP, ST, CH, TL)	140	68.3	8.7
1	P(PP) M(AR, ST, CH, TL)	81	50.1	4.4
1	P(ST) M(AR, PP, CH, TL)	68	41.6	4.1
1	P(CH) M(AR, PP, ST, TL)	126	75.7	5.8
1	P(TL) M(AR, PP, ST, CH)	51	22.9	5.9
2	P(AR, PP) M(ST, CH, TL)	14	33.2	-3.3
2	P(AR, ST) M(PP, CH, TL)	12	27.6	-3.0
2	P(AR, CH) M(PP, ST, TL)	30	50.1	-2.8
2	P(AR, TL) M(PP, ST, CH)	4	15.2	-2.9
2	P(PP, ST) M(AR, CH, TL)	5	20.2	-3.4
2	P(PP, CH) M(AR, ST, TL)	13	36.8	-3.9
2	P(PP, TL) M(AR, ST, CH)	10	11.2	-0.3
2	P(ST, CH) M(AR, PP, TL)	23	30.6	-1.4
2	P(ST, TL) M(AR, PP, CH)	5	9.3	-1.4
2	P(CH, TL) M(AR, PP, ST)	6	16.9	-2.6
3	P(AR, PP, ST) M(CH, TL)	13	13.4	-0.1
3	P(AR, PP, CH) M(ST, TL)	11	24.4	-2.7
3	P(AR, PP, TL) M(ST, CH)	5	7.4	-0.9
3	P(AR, ST, CH) M(PP, TL)	8	20.2	-2.7
3	P(AR, ST, TL) M(PP, CH)	1	6.1	-2.1
3	P(AR, CH, TL) M(PP, ST)	2	11.2	-2.7
3	P(PP, ST, CH) M(AR, TL)	7	14.9	-2.0
3	P(PP, ST, TL) M(AR, CH)	3	4.5	-0.7
3	P(PP, CH, TL) M(AR, ST)	16	8.2	2.7
3	P(ST, CH, TL) M(AR, PP)	6	6.8	-0.3
4	P(AR, PP, ST, CH) M(TL)	44	9.8	10.9
4	P(AR, PP, ST, TL) M(CH)	0	3.0	-1.7
4	P(AR, PP, CH, TL) M(ST)	6	5.4	0.2
4	P(AR, ST, CH, TL) M(PP)	3	4.5	-0.7
4	P(PP, ST, CH, TL) M(AR)	11	3.3	4.2
5	P(AR, PP, ST, CH, TL) M()	9	2.2	4.6

 Table S7
 Shared, unique, and fixed polymorphisms among the five gene arrangements of D. pseudoobscura.

Category, polymorphism category; Configuration, P() and M() indicate which arrangements were polymorphic or monomorphic at a site, respectively. Obs, observed numbers of each configuration; Exp, expected number of each configuration assuming that the polymorphisms are distributed independently. The colored boxes in the residuals column indicate deficiencies (blue) or excesses (red) of polymorphic sites for a particular configuration.

Category	Breakpoint	Non-Breakpoint
0	24 (16.8)	1 (8.2)
1	298 (312.9)	168 (153.1)
2	80 (81.9)	42 (40.1)
3	44 (48.3)	28 (23.7)
4	56 (43.0)	8 (21.0)
5	7 (6.0)	2 (3.0)

 Table S8
 Observed and expected numbers of polymorphic sites classified into the six unique, shared, and fixed categories for the five gene arrangements of *D. pseudoobscura*.

Observed (Expected); The blue shaded box indicates a

significant deficiency of observed values based on the residuals.

_			
Arrangement	Unique	Non-Unique	
	Polymorphisms	Polymorphisms	
СН	126 (121.9)	195 (199.1)	
AR	140 (114.7)	162 (187.3)	
РР	81 (153.8)	167 (153.8)	
ST	68 (82.8)	150 (135.2)	
TL	51 (52.4)	87 (85.6)	

Table S9 Observed and (expected) numbers of unique polymorphic sites for the five gene arrangements of *D. pseudoobscura*.

Arrangement	Unique Fixed	Non-Unique Fixed
	Polymorphisms	Polymorphisms
AR	6 (9.2)	296 (292.8)
PP	1 (7.6)	247 (240.4)
TL	14 (4.2)	124 (133.8)

Table S10 Observed and (expected) numbers of category 0 polymorphic sites for the three gene arrangements of *D. pseudoobscura*.

File S2

Literature Cited

RICHARDS, S., Y. LIU, B. R. BETTENCOURT, P. HRADECKY, S. LETOVSKY *et al.*, 2005 Comparative genome sequencing of *Drosophila pseudoobscura*: Chromosomal, gene and *cis*-element evolution. Genome Research **15**: 1-18.

TAJIMA, F., 1983 Evolutionary relationship of DNA sequences in finite populations. Genetics **105:** 437-460.

TAJIMA, F., 1989 Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics **123**: 585-595.

WATTERSON, G. A., 1975 On the number of segregating sites in genetical models without recombination. Theoretical Population Biology **7:** 256-276.