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SUPPLEMENTARY MATERIALS

MATERIALS and METHODS

Mice and Virus: C57BIl/6 (wild type) mice were purchased from The Jackson Laboratory (Bar Harbor,
ME). Ifnar1-/- mice were provided by Dr. Genhong Cheng and Dr. Dorian McGavern (NINDS/NIH). Vert-X
IL-10/GFP reporter mice were provided by Dr. Christopher Karp (CCHMC). Six-ten week old mice were
used for all experiments. All mice were housed under specific pathogen-free conditions and mouse
handling conformed to the requirements of the University of California, Los Angeles Animal Research
Committee guidelines. Mice were infected intravenously (i.v) via the retro-orbital sinus with 2x10° plaque
forming units (PFU) of LCMV-Arm or LCMV-CI13. Virus stocks were prepared and viral titers were

quantified as described previously(8).

In vivo blocking antibody treatments: C57BI/6 mice were treated ip with IFNR1 blocking antibody
(clone MAR1-5A3; Leinco Technologies, St. Louis MO) either starting prior to infection: day -1 (500ug),
day 0 (500ug), day 2 (250ug), day 4 (250ug) and day 6 (250ug) or therapeutically in the midst of the
established persistent infection: day 25 (500ug), day 27 (500 ug), and day 29 (250ug). In some
experiments C57BL/6 mice were depleted of CD4 T cells prior to infection with anti-CD4 antibody (clone
YTS; BioXCell, West Lebanon NH) at day -5 (250ug) and day -1 (250ug). For IFNy depletion C57BI/6
mice were treated with 500ug anti-IFNy antibody (clone XMG1.2; BioXCell, West Lebanon NH) on day -1,

3 and 6 after LCMV-CI13 infection.

Cytokine Quantification: IL-10, IFNy and IL-18 levels were determined using cytokine specific
Quantikine ELISA kits (R & D Systems, Minneapolis, MN). Optical density values were read using a
Synergy 2 plate reader (BioTek, Winooski, VT) at 450nm. Luminex was performed using the MILLIPLEX
MAP Mouse Cytokine/Chemokine 22-plex kit (Millipore, Billerica, MA). Samples were analyzed on a Bio-

Plex 200 System with HTF and Bio-Plex Manager 6.1 Software (Bio-Rad, Hercules, CA).

RNA microarray: C57BI/6 mice were either left uninfected (naive) or infected with LCMV-Arm or LCMV-

CI13 (n=3-4 mice per group). Spleens were isolated on day 5, 9 and 30 after infection and immediately



frozen in RNA Later (Qiagen) at 1mg/ml tissue. Whole spleens were subsequently homogenized, and
RNA from splenic homogenates was isolated with the RNeasy extraction kit (Qiagen). RNAs were
evaluated using an Agilent Bioanalyzer, labeled using the Ambion WT labeling kit, and hybridized to the
Affymetrix Mouse Genes ST 1.0 microarray which were scanned and summarized using Affymetrix
Expression Console and RMA16. RMA normalized data was referenced to uninfected spleen samples
and genic probesets with RMA>6.0 that differed between the different sample treatments were identified
using ANOVA with Benjamini Hochberg FDR -corrected p<0.05 and further ranked by relative fold-

differences between LCMV-Arm and CI13 infected sample groups.

Flow cytometry: Analysis of immune cell subsets was performed by staining directly ex vivo for surface
expression of CD45-Pacific Orange or Pacific Blue, CD11c-Pacific Blue or PE, Thy1.1-FITC or PE,
Thy1.2-PerCP, NK1.1-PerCPCy5, B220-APCCy7, CD11bPeCy7, F4/80-PE or APC, MHC Class II-PE,
CD4-Pacific Blue, CD8-Pacific Blue all obtained from BioLegend or BD Pharmingen. MHC tetramers
were obtained from the NIH. IL-10 expression was determined by GFP expression in the Vert-X IL-10-
GFP reporter mouse. Active caspase 1 was quantified by flow cytometry utilizing the FAM-FLICA
Caspase-1 activity kit from (Immunochemistry, Bloomington, MN). LCMV viral antigen was quantified by
flow cytometric analysis using the anti-LCMV nucleoprotein-specific antibody mAb113. Flow cytometric

analysis was performed using a Digital LSR Il or FACSVerse (Becton Dickinson).

Purification of dendritic cells and macrophages: IL-10 producing and non-producing DC and
macrophages were sorted from spleen following B cell depletion (CD19 MACS beads, Miltenyi) as
follows: IL-10 expressing DC (GFP+, CD45+, Thy1.2-, NK1.1-, CD11c+ bright), non-IL-10-producing DC
(GFP-, CD45+, Thy1.2-, NK1.1-, CD11c+ bright); IL-10 expressing macrophage (GFP+, CD45+, Thy1.2-,
NK1.1-, F4/80+), and non-IL-10 producing macrophages (GFP-, CD45+, Thy1.2-, NK1.1-, F4/80+). Cells
were sorted using a FACSVantage fluorescence-activated cell sorter (Becton Dickinson). Post sort purity

was >98%.



IFNB treatment in vitro: Bulk splenocytes were cultured in complete media supplemented with

recombinant IFNB (PBL Interferon, Piscataway, NJ) at a concentration of 250 units/mL for 24 hours.

Histology: Naive and day 9 LCMV-CI13 infected IFNR1 blocking antibody or isotype treated spleens
were excised and fixed for 24hours in 4% paraformaldehyde, then paraffin embedded, sectioned and
stained with Hematoxylin and Eosin (H & E). Embedding, H & E staining and tissue scanning for image

analysis were performed by the Translational Pathology Core Laboratory at UCLA.

Quantitative RT-PCR: RNA purified from sorted dendritic cells or macrophages, whole splenocytes, or
tissue homogenates was isolated with the RNeasy extraction kit (Qiagen). RNA was normalized for input
and amplified directly using the One-Step RT-PCR kit (Qiagen). Mx1, OAS, IRF3, IRF7, PDL1, and
HPRT were amplified using Applied Biosystems Assays-on-Demand TagMan pre-made expression
assays. IFNa and IFNB primer sequences were previously described- IFNa primers amplify multiple IFNa

subtypes (30). RNA expression was normalized to HPRT.

LCMV-specific antibody ELISA: To quantify LCMV-specific IgG, LCMV-CI13 was used to coat 96-well
Maxisorp ELISA plates (Nunc) overnight. Plates were blocked with 3% BSA/PBS/0.05% tween-20.
Subsequently, plasma isolated from the indicated mice was incubated on the LCMV coated plates. Plates
were washed and incubated with an HRP-labeled goat anti-mouse IgG antibody (Invitrogen), followed by
the addition of o-phenylenediamine substrate in 0.05 M phosphate citrate buffer. The reaction was
stopped with 2N H,SO, and the optical density (O.D.) values were read using an ELISA plate reader
(Synergy 2, BioTek) at 490 nm. The concentration of LCMV-specific IgG was interpolated from a standard
curve generated from a serial dilution of purified mouse IgG (Invitrogen; 500 ng/ml -0.49 ng/ml) incubated

on plates coated with goat anti-mouse IgG (Invitrogen).

Statistical Analysis: Student’s t-tests (two-tailed, unpaired) and log-rank Mantel-Cox and Gehan-
Breslow tests (for clearance curve; Fig 4C) were performed using the GraphPad Prism 5 software

(GraphPad Software Inc.).



SUPPLEMENTARY FIGURE LEGENDS

Figure S1: Cytokine and type | interferon expression in the spleen during acute and persistent
infection.

(A) Microarray analysis of cytokine gene expression in whole spleen tissue on the indicated day following
persistent LCMV-CI13 compared to acute LCMV-Arm infection. Increase on the y-axis indicates elevated
expression in persistent infection compared to acute infection.

(B) Whole spleen microarray analysis showing /FNa and IFNS gene expression in LCMV-Arm (red) or
LCMV-CI13 (green) normalized to naive spleen levels. An increase on the y-axis indicates elevated
expression in the specified infection compared to naive mice. Each bar indicates the average expression

of the indicated cytokine for 3-4 mice per group per time point. Error bars are omitted for clarity.

Figure S2: IFN-I signaling supports the immunosuppressive program.

(A) Plasma IL-10 levels (left) and viral titers (right) at the indicated day following LCMV-CI13 infection in
wt (black) and Ifnar1-/- (red) mice.

(B) Flow plots demonstrate LCMV nucleoprotein (LCMV Antigen) staining in splenic dendritic cells (left)
and macrophages (right) on day 9 after LCMV-CI13 infection in isotype and IFNR1 blocking antibody
treated mice. Bar graphs quantify the percent +/- S.D. of LCMV antigen positive DC (left) and
macrophages (right) in the spleen. In (A) and (B) data are representative of the average + SD of 4-6 mice
per group and 2 or more independent experiments.

(C) PDL1T mRNA expression (left) in FACSorted DC and macrophages following in vitro treatment with
media (black) or IFNB (blue). PDL1 mRNA was normalized to expression of HPRT and each group is a
pool of cells from 6-8 mice. The results are representative of 2 independent experiments. IL-10
production (right) quantified in the culture supernatant of splenocytes from LCMV-CI13 infected wt mice
stimulated with media alone (black) or with IFNB (blue) for 18 hours.

(D) Viral titers at day 9 following LCMV-Arm infection of wt vs. Ifnar1-/- mice and isotype vs. IFNR1
blocking antibody treated mice. Each symbol in the scatter plot represents an individual mouse with bars

indicating the mean of the group. *p <0.05.



Figure S3: IFNR1 blocking antibody treatment alters the immune environment.

Wild-type mice were treated with isotype or IFNR1 blocking antibody beginning 1 day prior to LCMV-CI13
infection. (A) OAS (top), Mx1 (middle) and IRF7 (bottom) mRNA expression relative to HPRT in spleen
(left), liver (middle) and kidney (right) from naive (white), isotype (black) or IFNR1 blocking antibody
treated (red) mice on day 9 after LCMV-CI13 infection. Bar graphs depict the average + SD of 4-5 mice
per group and 2 independent experiments. Graphs on the right indicate OAS and Mx7 expression in the
indicated FACSorted cell populations from isotype (black) or IFNR1 blocking antibody treated (red) mice.
Each cell population is a pool from 6 mice and is representative of 2 independent experiments.

(B) The indicated cytokines were quantified by Luminex in the plasma on day 9 post LCMV-CI13 infection
(top). Inflammasome dependent cytokines were quantified in the plasma by Luminex (IL-1p and IL-1a) or
ELISA (IL-18) 9 days after infection (bottom). The bar graph indicates the average +/- SD of DC (left) and
macrophages (right) exhibiting enzymatically active caspase 1. Each symbol in the scatter plots indicates
an individual mouse and data in the bar graphs is representative of 4-5 mice per group and 2 independent
experiments.

(C) Whole spleen images. H and E staining of spleen from naive mice or on day 9 after LCMV-CI13
infection of mice treated with isotype or IFNR1 blocking antibody. IFNR1 blocking antibody treated
animals exhibited highly organized and demarcated splenic red pulp, marginal zone and white pulp
regions, whereas isotype treated mice displayed the characteristic loss of structure during persistent
infection.

* p <0.05.

Figure S4. Cellular makeup and antibody production following IFNR1 blockade.

Wild-type mice were treated with isotype or IFNR1 blocking antibody beginning 1 day prior to LCMV-CI13
infection. (A) Quantification of total splenocytes and the indicated immune subsets in the spleen on day 9
following LCMV-CI13 infection.

(B) Graphs represent LCMV-specific IgG and total 1gG levels in the plasma (ng/ml) on day 9 (left plots)

and day 30 (right plots) after infection.



(C) Representative flow plots of LCMV- Np396 (left) and Gp276 (right) tetramer positive responses in
isotype of IFNR1 blocking antibody treated mice 9 days after LCMV-CI13 infection. Each symbol in the

*

scatter plots represents an individual mouse and bar graphs are comprised of 3-5 mice per group. *, p

<0.05.

Table S1: IFN signaling is significantly enhanced in persistent compared to acute LCMV infection.
P-values are shown for microarray analysis for the interferon receptor inducible genes, STAT genes and
interferon responsive genes on the indicated day following persistent LCMV-CI13 compared to acute
LCMV-Arm infection. Red highlighting indicates significantly elevated expression in persistent compared

to acute infection.
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Table S1

IFN-I receptor inducible genes

Gene day 5 day 9 day 30
Mx2 0.5590
Oas1a 0.3220
Oas1g 0.7070
Oas2 0.2700
Oas3
Oasl1 0.2840
Oasl2 0.1580
Stat genes
Gene day 5 day 9 day 30
Stat1
Stat2 0.0841
Stat3 0.0754
Stat4 0.1140 0.5520 0.1580
Statba 0.0792 0.1460 0.5710
Stat6 0.8000 0.8800
IFN-I responsive genes
Gene day 5 day 9 day 30
IRF1
IRF2 0.1380 0.1050
IRF3 0.6590 0.6490
IRF4 0.5070
IRF5 0.4500 0.7110
IRF6 0.5520 0.1080
IRF7 0.7010
IRF8 0.2560
IRF9 0.5120
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