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Figure 1S: Comparison of a fixed-viscosity (γ=10-3) ejection run in our YUP 

implementation and in our LAMMPS implementation. For our purposes, the two 

implementations yield equivalent results.   
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Figure 2S. A schematic description of the model used in the ejection simulations. A 

spherical capsid of radius, Rc = 238 Å is connected to the cell by a cylindical channel of length Lc = 

250 Å (50 Å of which penetrates inside the capsid), and a bacterial cell modeled as a sphere with a 

radius Rb = 1 µm. 

 

  



 
 

Figure 3S: Comparison of radical (dotted line) and semilogarithmic (solid line) functionals for a 

Langevin collision frequency with γhigh=10-2 ps-1and γlow=10-4 ps-1 calculated according Eqn. 4 and 

Eqn. 5. The scaling factor in the exponent of the radical functional was selected such that the 

starting γ inside the capsid was within a factor of ~2 of γhigh. 
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Figure 4S: Simulated DNA extension under “ejected” force (total force equally distributed among 

all pseudoatoms in the DNA chain; 1atm is equivalent to 1pN force). On the timescale of these 

simulations (larger than the timescale of ejection), the DNA straightens out at ~4atm. 
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Derivation of Equation 4 

 

The  DNA within the viral capsid can be idealized as hexagonally packed 

structures.The cross-sectional area of s DNA strands organized in such fashion is 

a 2D array of circles with a hexagonal symmetry. The fraction of packed DNA,  , 

equals the ratio of the instantaneous 2D density of these circles   to the fully-

packed 2D density of circles    as illustrated in the diagram below. 

 
The average 2D density of the coils varies inversely with the square of the coils’ 

center-center distance, so we have 
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By convention, we measure the fraction   of ejected DNA,      . Assuming 

uniform coil density, the average surface-surface distance between the coils   is 

given by 
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Assuming that the viscosity of the water depends exponentially on the distance 

between DNA surfaces in the packed capsid (as suggested by studies of Riedo 



and co-workers[1]), the dependence of the collision frequency parameter on the 

distance between the DNA strands becomes:   
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where     is the Langevin collision frequency inside the viral capsid,           

is the Langevin collision frequency in the cell medium,        is the center-center 

distance (28 Å) of DNA in a fully-packed capsid, and      (22 Å) is twice the 

radius of our DNA chain. The factor -0.15 was chosen empirically such that     

was within a factor of 2 of       when ejection began.       and      were varied 

for each run. 

Note that the segments of DNA do not actually spread monotonically 

throughout the capsid during ejection; rather, they tend to press against the walls, 

leaving a hollow region in the center of the capsid. The derivation above is meant 

only to provide a useful (though not necessarily rigorous) physical model for a 

new viscosity functional. 
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