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1 Supplementary discussions on methods

Local vs global measures

We differentiate between these two types of measures by the information required to compute them.
If this information (per node) is independent of total system size, the measure is considered local;
whereas a global measure requires information scaling with system size (often a complete description).
For the four properties studied in this paper, we thus consider that:

1. degree is a local measure, as only the number of neighbours of a node is required;
2. membership is a local measure, as the chosen algorithm only requires the neighbourhood of one

given node and that of its neighbours to estimate its membership number;
3. coreness is a global measure, as a node’s coreness depends on the coreness of its neighbours

which in turn depend on the coreness of their neighbours and so on;
4. betweenness centrality is a global measure, since it is calculated by considering the shortest

paths between a given node and all of the other nodes in the network.

For obvious reasons, local measures are less sensitive to incomplete or incorrect information. Adding,
removing or rewiring a link only affects the degree or membership of nodes directly in the neighbour-
hood of the modification; whereas the same alterations can potentially affect the coreness or between-
ness centrality of nodes anywhere in the network through cascading effects. Consequently, measures
based on shorter-range information are always more robust to missing information, and sometimes
quite significantly, as seen on Suppl. Fig. 1.
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Supplementary Figure 1: Robustness of measured from the micro (degree k), meso (memberships m) and macro
(betweenness centrality b) scales when information on the network is removed. The robustness is here measured
by comparing (with a Jaccard coefficient) the ensemble of nodes identified as being in the top 10% of nodes
when a certain fraction of links are randomly removed (horizontal axis) as opposed to the ensemble obtained by
considering the complete data.

Community detection

As mentioned above the link clustering algorithm of Ahn et al. was chosen in part because it can per-
form well (and at times even better) using local information instead of the entire network.1 While we
always partitioned the network globally, by setting a resolution threshold, the identification of struc-
tural hubs is very robust to this global threshold (see Suppl. Fig. 2). More importantly, this algorithm
groups links stemming from a given node in a community based on the similarity of the two neigh-
bourhoods reached through them. Hence, it evaluates the redundancy in second neighbourhoods (how
many of my second neighbours are neighbours of more than one of my neighbours?). This redun-
dancy (or overlap) can then serve as an appropriate measure to gauge the major impact of community
structure on an epidemic process, namely the loss of potential new infections due to clustering. The
link clustering algorithm therefore provides a well-defined method to quantify this loss.

1Y.-Y. Ahn, J. P. Bagrow, & S. Lehmann, Link communities reveal multiscale complexity in networks, Nature, vol. 466,
p.761-764, 2010. See also the corresponding Supplementary Information.
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Supplementary Figure 2: Robustness of our ability to identify structural hubs (1% of nodes with the most
memberships) as the global resolution varies (the final partition is chosen to maximize the community density
shown at the bottom). The color map represents the Jaccard coefficient, i.e. the similarity of ensembles, as
measured between the structural hubs identified with two different resolution parameter. These ensembles are
always very similar when avoiding extreme resolutions (e.g. low density). Note that in the color map, yellow
corresponds to a Jaccard coefficient of 0.6 which implies that 75% of the same structural hubs were found by
both partitions.

Supplementary simulation details

SIS. All nodes are initially infectious and we relax the system by iterating a discrete time propaga-
tion simulation using time step ∆t chosen such that α∆t and β∆t are less than 10−3:

i. at each ∆t, every susceptible neighbour S of every infectious individual I is infected with prob-
ability α∆t;

ii. at each ∆t every infectious individual I recovers with probability β∆t;

the steady-state is averaged over multiple independent simulations to minimize the standard deviation
(due to network structure and finite size).

SIR. A single node is randomly infected and the following stochastic process is iterated until no
infectious nodes remain:

i. I nodes infect each of their S neighbours with probability T and then recover.

The final state, considering only epidemics larger than 1% of the system size, is averaged over multiple
independent simulations to minimize the standard deviation (due to network structure and finite size).

3



HÉBERT-DUFRESNE et al. (2013) Supplementary Information

2 Theoretical modelling

The conclusion drawn in the main text were validated using synthetic networks. In this Section,
we present how these synthetic networks are generated. Furthermore, we describe the mathematical
framework used to calculate the final outcome of the SIR dynamics on these networks. Finally, we
give the parameters used for the main results.

Synthetic networks

The synthetic networks considered are a clustered and multitype generalisation of the Configuration
Model.2 In these networks, nodes are connected either through single links or through motifs (see
Fig. 7 in the main text for an example). Motifs are composed of M nodes which are all connected to
one another, and a node belongs to i motifs and has j single links with probability p(i, j). This node
therefore has a degree (k) equal to (M−1)i+ j and a membership (m) equal to i+ j.

Networks are generated using a stub pairing scheme: a node belonging to i motifs and having
j single links has i “motif stubs” and j “link stubs”. Groups and single links are then formed by
randomly choosing M motif stubs and 2 link stubs, respectively, and then by linking the corresponding
nodes to one another. This last step is repeated until none of the motif and link stubs remain. The
distribution {p(i, j)}i, j∈N therefore defines a random network ensemble, and the results obtained in this
Section are averaged over this ensemble.

Mathematical formalism

As there exists a mapping—under simple assumptions—between the SIR dynamics and bond percola-
tion on networks3,4. To calculate the outcome of the SIR dynamics on the networks just described, we
use a previously published formalism2 in which we add the possibility for nodes to exist with a given
probability (i.e., site percolation) to simulate immunization strategies. We only give a short outline
of this theoretical model as a general and more formal description will be the subject of a subsequent
publication.

For each pair (i, j) such that p(i, j) , 0 we assign a node type denoted by {i, j} (the set of such
pairs is notedM). As the pair (i, j) is the only information available about the nodes, assigning one
node type per pair allows us to simulate very detailed immunization strategies. Indeed, we define
q{i, j} as the probability for a type-{i, j} node to be immunized; the simulated immunization strategy
is therefore encoded in the set of probabilities {q{i, j}}{i, j}∈M. Also, as explained in the main text, the
infectious agent propagates from an infected node to a susceptible neighbour with probability T . From
a percolation point of view, 1 − q{i, j} is the occupation probability of type-{i, j} sites (nodes) and T is
the occupation probability of bonds (links).

Solving site/bond percolation in motifs

The mathematical formalism that we have developed relies on probability generating functions (PGFs)
and therefore implicitly requires the networks under consideration to have a tree-like structure. As the

2A. Allard, L. Hébert-Dufresne, P.-A. Noël, V. Marceau, and L. J. Dubé (2012). Bond percolation on a class of correlated
and clustered random graphs. J. Phys. A, 45(40):405005.

3M. E. J. Newman (2002). Spread of epidemic disease on networks. Phys. Rev. E, 66(1):016128.
4E. Kenah and J. Robins (2007). Second look at the spread of epidemics on networks. Phys. Rev. E, 76(3):1-12.

4
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networks we consider contain motifs, which clearly do not comply with that assumption, we need to
solve the bond and site percolation within motifs beforehand.

As previously shown5, the bond percolation outcome—the distribution of the number of nodes
that can be reached by following links from an initial node—can be exactly obtained by iterating a set
of simple equations. We denote n the |M|-tuple whose elements6 n{i, j} correspond to the number of
nodes of each type (i.e., there are n{i, j} type-{i, j} nodes). For the remaining, each boldfaced variable
will correspond to such |M|-tuple.

Let us define Q{i, j}(l|n) as the probability to find a component of l nodes in a motif of size (and
composition) n from an initial type-{i, j} node. Although nodes are initially all connected to one
another in motifs, we are interested in the number of nodes (and their type) that can be reached from
an initial node when links are followed with a probability T (bond percolation). Following previous
work5, Q{i, j}(l|n) is obtained by iterating

Q{i, j}(l|n) = Q{i, j}(l|l)
∏

{i′, j′}∈M

(
n{i′, j′} − δii′δ j j′

l{i′, j′} − δii′δ j j′

) ∏
{i′′, j′′}∈M

(1 − T )n{i′ , j′}(n{i′′ , j′′}−l{i′′ , j′′}) (2.1a)

Q{i, j}(l|l) = 1 −
∑
m<l

Q{i, j}(m|l) (2.1b)

from the initial condition Q{i, j}(δ{i, j}|δ{i, j}), where δi j is the Kronecker delta, and where δ{i, j} is an
|M|-tuple whose elements are all equal to 0 except for the {i, j}-th one that is equal to one. The sum
in Eq. (2.1b) is over all m such that m{i, j} ≤ l{i, j} for every node type {i, j} but with the additional
constraint that m , l. The initial condition simply states that the probability of finding a component
of one type-{i, j} node from a type-{i, j} node in a motif containing only one type-{i, j} node is one (the
initial node is always included in the size of the component). Then, Eqs. (2.1) iteratively increase the
size of the motif and compute the size distribution along the way until the complete distribution for a
motif of the desired size (and composition) is obtained.

Should we be interested in studying bond percolation on motifs solely, we would keep the dis-
tribution {Q{i, j}(l|n)} for a given size n, and discard the distributions for motifs of intermediate size
obtained while iterating Eqs. (2.1). These intermediate distributions can however be used to exactly
predict the distribution of the number of nodes that can be reached by following links from an initial
node in motifs where links and nodes exist with given probabilities (bond and site percolation). In-
deed, as each node exists independently with a given probability, the probability for a motif of original
size n to be of size m after the random removal of its nodes is simply

W{i, j}(m|n) =
∏

{i′, j′}∈M

(
n{i′, j′} − δii′δ j j′

m{i′, j′} − δii′δ j j′

)[
1 − q{i′, j′}

]m{i′ , j′}−δii′δ j j′
[
q{i′, j′}

]n{i′ , j′}−m{i′ , j′}
, (2.2)

where we assume that the initial type-{i, j} exists. Then, the probability for a type-{i, j} node to lead
to a component of size l in a motif of original size n but whose links and nodes have been randomly
removed is simply

P{i, j}(l|n) =

n∑
m=δ{i, j}

Q{i, j}(l|m)W{i, j}(m|n) . (2.3)

5A. Allard, L. Hébert-Dufresne, P.-A. Noël, V. Marceau, and L. J. Dubé (2012). Exact solution of bond percolation on
small arbitrary graphs. EPL, 98(1):16001.

6|M| is the number of elements (i.e., the cardinality) of the setM, hence the number of node types.
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The site and bond percolation can therefore be exactly solved for motifs by iterating Eqs. (2.1)–(2.3).
As expected, if applied to the simplest motifs, i.e. links, the type-{i, j} node at the other end of the
link will be reached with probability T (1−q{i, j}) and will not be reached with probability 1−T (1−q{i, j}).

As motifs and single links are built by randomly matching stubs, the probability for a type-{i, j}
node to appear in a motif [a link] is proportional to [ip(i, j)] [ jp(i, j)]. The probability for a motif to
be composed by n nodes is given by the multinomial distribution

R(m)(n) =
M![∑

{i, j}∈M ip(i, j)
]M

∏
{i, j}∈M

[
ip(i, j)

]n{i, j}

n{i, j}!
. (2.4a)

The same applies for the composition of links

R(l)(n) =
2![∑

{i, j}∈M jp(i, j)
]2

∏
{i, j}∈M

[
jp(i, j)

]n{i, j}

n{i, j}!
. (2.4b)

Finally, for the purpose of calculating the outcome of the bond and site percolation on the synthetic
networks, let us define the two following generating functions:

θ(m)
{i, j}

(
x
)

=
∑

n

n{i, j}R(m)(n)∑
n′ n′
{i, j}R

(m)(n′)

 n∑
l=δ{i, j}

P(m)
{i, j}(l|n)

∏
{i′, j′}∈M

[
x{i′, j′}

]l{i′ , j′}−δii′δ j j′

 (2.5a)

θ(l)
{i, j}

(
y
)

=
∑

n

n{i, j}R(l)(n)∑
n′ n′
{i, j}R

(l)(n′)

 n∑
l=δ{i, j}

P(l)
{i, j}(l|n)

∏
{i′, j′}∈M

[
y{i′, j′}

]l{i′ , j′}−δii′δ j j′

 (2.5b)

where the superscript “m” (resp. “l”) indicate that the quantities have been solved for motifs (resp.
links). In other words, the function θ(m)

{i, j}
(
x
)

generates the probability distribution for the number
of nodes of each type that can be reached from a type-{i, j} node in a random motif [i.e., whose
composition is averaged over R(m)(n)]. Specifically, the coefficient in front of xs

{i′, j′} in Eq. (2.5a) is
the probability of reaching s type-{i′, j′} nodes from a type-{i, j} node in a random motif. The same
applies to θ(l)

{i, j}
(
y
)
.

Calculating the average fate of an outbreak

We are now in a position to solve the bond and site percolation on the synthetic networks defined pre-
viously. For the purpose of the present study, we are interested in the quantity Rf: the relative size of
the extensive (giant) component. To highlight the nontrivial effect of immunization7, Rf is expressed
in terms of the fraction of the existing nodes (i.e., 1 − ε) that are part of the giant component.

It is convenient to introduce the following function

g{i, j}
(
x, y

)
=

[
θ(m)
{i, j}

(
x
)]i[

θ(l)
{i, j}

(
y
)] j

(2.6)

generating the distribution of the number of nodes of each type that are in the immediate neighbour-
hood of a type-{i, j} node. The immediate neighbourhood refers to the nodes to which the type-{i, j}

7The relative size of the giant component cannot exceed 1 − ε on networks for which a fraction ε of the nodes has been
removed. This reduction in size obviously occurs during any immunization strategy and, for comparison purposes, must be
taken into account.
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node is connected either via its single links or via its motifs. Similarly, we define

f (m)
{i, j}

(
x, y

)
=

[
θ(m)
{i, j}

(
x
)]i−1[

θ(l)
{i, j}

(
y
)] j

(2.7a)

f (l)
{i, j}

(
x, y

)
=

[
θ(m)
{i, j}

(
x
)]i[

θ(l)
{i, j}

(
y
)] j−1

(2.7b)

generating the distribution of the number of nodes of each type that are in the immediate neighbour-
hood of a type-{i, j} node that has been reached by either one of its single links or one of the motifs it
is a part of (if applicable). In other words, these functions generate the excess degree distribution.

To calculate Rf , let us define a{i, j} as the probability that a link to a type-{i, j} node does not lead
to the giant component. Similarly, we define b{i, j} as the probability that a type-{i, j} node reached
through a motif does not lead to the giant component. Due to the effective tree-like structure of the
networks—recall that the outcome of percolation on the motifs has already been solved—a{i, j} and
b{i, j} must satisfy the following self-consistency relations

a{i, j} = f (m)
{i, j}

(
a, b

)
(2.8a)

b{i, j} = f (l)
{i, j}

(
a, b

)
. (2.8b)

Put simply, these equations state that if a type-{i, j} node reached from either a link or a motif does
not lead to the giant component, then neither should the nodes that can be reached from it. The
probability that a type-{i, j} node is part of the giant component is then 1− g{i, j}

(
a, b

)
. The probability

that a randomly existing node is part of the giant component—which corresponds to its size as well—is
therefore

Rf =
∑
{i, j}∈M

(1 − q{i, j})p(i, j)
[
1 − g{i, j}

(
a, b

)]∑
{i′, j′}∈M(1 − q{i′, j′})p(i′, j′)

. (2.9)

The theoretical predictions (lines) on Fig. 8 in the main text were obtained by solving Eqs. (2.1)–(2.9)
for various values of T and {q{i, j}}{i, j}∈M. Comparison with results obtained from numerical simulations
(symbols) confirms the validity of our theoretical model.

Parameters used for theoretical calculations

Table 1 shows the distribution {p(i, j)}i, j∈N used for the synthetic networks considered in the main text.
It also gives the degree (k{i, j}) and the membership (m{i, j}) of each node type {i, j} ∈ M. Motifs were
composed of M = 4 nodes, and numerical simulation results (symbols on Fig. 8) were averaged over
5× 105 realisations of networks of 2.5× 105 nodes. For node types with k{i, j} > 2, we let sets of M − 1
links to either be part of cliques of M nodes or be single links in order to avoid unintended degree
correlations8. For a given fraction ε of the nodes to immunize, we have∑

{i′, j′}∈M

q{i′, j′}p(i′, j′) = ε . (2.10)

The probabilities q{i, j} are chosen to satisfy this condition and in decreasing order of degree or mem-
bership.

8I.Z. Kiss & D.M. Green (2008), Comment on “Properties of highly clustered networks”, Phys. Rev. E, 78:048101.
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{i, j} p(i, j) k{i, j} m{i, j}
{0, 1} 0.43930 1 1
{0, 2} 0.13179 2 2
{0, 9} 0.00712 9 9
{1, 3} 0.25831 6 4
{1, 6} 0.04982 9 7
{2, 3} 0.02325 9 5
{3, 0} 0.09041 9 3

Supplementary Table 1: Distribution {p(i, j)}i, j∈N used for the synthetic networks
discussed in the main text. The degree and the membership of each node type is
computed according to k{i, j} = (M − 1)i + j and m{i, j} = i + j, respectively, with
M = 4.

3 Introduction to the supplementary results

The last sections of this Supplementary Information present a more complete view of the results
obtained on empirical networks and are structured as follows. Each section covers one of the 17
datasets used in the study. Firstly, a brief discussion on the nature of each network is given, along
with:

• the number of nodes (N), of links (L) and the degree distribution (k links per node);

• the maximal community density ρ and corresponding Jaccard threshold Jρ.

• the maximal values of degree k, coreness c, betweenness centrality b and memberships m.

Secondly, correlations between degree, betweenness centrality, coreness and memberships are quan-
tified using Spearman’s rank correlation coefficient (defined below). We leave to the reader to ob-
serve how, given the correlation coefficient between memberships ranking and degree ranking, along
with the mean community density, one can somewhat predict if the membership-based immunization
will be more or less efficient than the degree-based version. Finally, the results of all immunization
methods (random or on the four measures) are presented for SIS and SIR dynamics for a virulence
(probability of disease transmission) close and far from the network’s epidemic threshold.

Spearman’s rank correlation coefficient

The Spearman’s rank correlation coefficient quantifies the statistical dependence of two different or-
derings of the same set of items (nodes) on a scale of −1 (perfectly anti-correlated) to 1 (perfectly
correlated).9

Consider xi to be the rank of item i according to measure X, and yi to be the rank of the same
item according to a different measure Y . If for example, 10 items have the same score according to
X and would otherwise be ranked from x j to x j+9, they are all given the rank

[∑9
k=0 x j+k

]
/10. The

Spearman’s rank correlation coefficient σ(X,Y) is then given by:

σ(X,Y) =

∑
i

(xi − x̄) (yi − ȳ)

 / ∑
i

(xi − x̄)2
∑

i

(yi − ȳ)2

1/2

,

where ū is the average rank according to measure U (the mean of {ui}).
9C. Spearman (1904), The proof and measurement of association between two things, Amer. J. Psychol., 15:72101.
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4 arXiv co-authorship

The cond-mat arXiv database uses articles published at http://arxiv.org/archive/cond-mat between April
1998 and February 2004. In this network, an article written by n co-authors contributes to a link of
weight (n − 1) between every pair of authors. The unweighted network was obtained by deleting all
links with a weight under the selected threshold of 0.1.10

Supplementary Table 2: arXiv statistics

N L kmax cmax bmax mmax ρ

30561 125959 191 15 6.9e + 06 127 0.35

Supplementary Table 3: arXiv correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.7766 0.7717 0.6639 0.7461 0.9411 0.5388

Supplementary Figure 3: arXiv degree distribution
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Supplementary Figure 4: Intervention against epidemics on arXiv after different immunization: randomly (grey
squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality (blue triangles)
or memberships (red diamonds).
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10Palla, G., Derenyi, I., Farkas, I. & Vicsek, T. (2005) Uncovering the overlapping community structure of complex
networks in nature and society. Nature 435:814-818
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5 Brightkite online social network

Brightkite was a location-based online social network where users could “check in” to the physical
places they were visiting to connect with nearby friends. This datasets was obtained from a total of
4,491,143 check-ins over the period of Apr. 2008 - Oct. 2010.11

Supplementary Table 4: Brightkite statistics

N L kmax cmax bmax mmax ρ

58228 214078 1134 52 2e + 08 1118 0.55

Supplementary Table 5: Brightkite correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.9845 0.8919 0.9477 0.8822 0.9659 0.7767

Supplementary Figure 5: Brightkite degree distribution
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Supplementary Figure 6: Intervention against epidemics on Brightkite after different immunization: randomly
(grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality (blue
triangles) or memberships (red diamonds).
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11Cho, E., Myers, S.A. & Leskovec, J. (2011) Friendship and Mobility: User Movement in Location-Based Social Net-
works. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD).
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6 University email exchange

Network of email communication between accounts from the University Rovira i Virgili.12

Supplementary Table 6: Email statistics

N L kmax cmax bmax mmax ρ

1134 5143 1080 8 6.1e + 05 929 0.13

Supplementary Table 7: Email correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.9900 0.9474 0.9560 0.9447 0.9613 0.8831

Supplementary Figure 7: Email degree distribution
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Supplementary Figure 8: Intervention against epidemics on university email network after different immuniza-
tion: randomly (grey squares) and based on coreness (green pentagons), degree (black circles), betweenness
centrality (blue triangles) or memberships (red diamonds).
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12Guimera, R., Danon, L., Diaz-Guilera, A., Giralt, F. & Arenas, A. (2003) Self-similar community structure in a network
of human interactions. Phys. Rev. E 68:065103(R)
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7 Enron email exchange

Network of email interchanges between all different Enron email addresses built from a dataset of
around half million emails (made public by the Federal Energy Regulatory Commission).13

Supplementary Table 8: Enron statistics

N L kmax cmax bmax mmax ρ

36692 183831 1383 43 4.3e + 07 1306 0.61

Supplementary Table 9: Enron correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.9325 0.7567 0.9173 0.7585 0.9839 0.6862

Supplementary Figure 9: Enron degree distribution
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Supplementary Figure 10: Intervention against epidemics on Enron email network after different immunization:
randomly (grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality
(blue triangles) or memberships (red diamonds).
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13Klimmt, B. & Yang, Y. (2004) Introducing the Enron corpus. CEAS conference.
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8 Gnutella peer-to-peer network

A snapshot of the Gnutella peer-to-peer network, where nodes are hosts and edges connections, from
August 30th 2002. The data is originally directed (files taken from one host to another), but was made
undirected for this work.14

Supplementary Table 10: Gnutella statistics

N L kmax cmax bmax mmax ρ

36682 88328 55 7 5.3e + 06 52 0.03

Supplementary Table 11: Gnutella correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.9849 0.9848 0.9796 0.9925 0.9823 0.9743

Supplementary Figure 11: Gnutella degree distribution
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Supplementary Figure 12: Intervention against epidemics on Gnutella network after different immunization:
randomly (grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality
(blue triangles) or memberships (red diamonds).
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14Ripeanu, M., Foster, I. & Iamnitchi, A. (2002) Mapping the Gnutella Network: Properties of Large-Scale Peer-to-Peer
Systems and Implications for System Design. IEEE Internet Computing Journal 6:50-57
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9 Google weblinks

Directed network of hyperlinks between Google’s webpages (considered undirected for this study).15

Supplementary Table 12: Google statistics

N L kmax cmax bmax mmax ρ

15763 149456 11401 102 9.0e + 07 2883 0.49

Supplementary Table 13: Google correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.8862 0.7941 0.8401 0.7735 0.9723 0.6995

Supplementary Figure 13: Google degree distribution
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Supplementary Figure 14: Intervention against epidemics on Google network after different immunization:
randomly (grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality
(blue triangles) or memberships (red diamonds).

 0

 0.1

 0.2

 0.3

 0.4

 0.001  0.01  0.1
Fraction of nodes removed

I*

Google, ρ = 0.49
SIS, λ = 0.10  0.4

 0.5
 0.6
 0.7
 0.8
 0.9

 0.001  0.01  0.1
Fraction of nodes removed

I*

Google, ρ = 0.49
SIS, λ = 1.00

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0.001  0.01  0.1
Fraction of nodes removed

Rf

Google, ρ = 0.49
SIR, T = 0.10  0.1

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.001  0.01  0.1
Fraction of nodes removed

Rf

Google, ρ = 0.49
SIR, T = 0.75

15Palla, G., Farkas, I.J, Pollner, P., Derényi, I. & Vicsek, T. (2007) Directed network modules. New. J. Phys. 9:186
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10 Gowalla social network

Gowalla is a location-based social networking website similar to Brightkite. This friendship network
is undirected and composed from a total of 6,442,890 check-ins over the period of Feb. 2009 - Oct.
2010.16

Supplementary Table 14: Gowalla statistics

N L kmax cmax bmax mmax ρ

196591 950327 14730 51 6.3e + 09 14600 0.54

Supplementary Table 15: Gowalla correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.9792 0.8363 0.9514 0.8311 0.9724 0.7309

Supplementary Figure 15: Gowalla degree distribution
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Supplementary Figure 16: Intervention against epidemics on Gowalla network after different immunization:
randomly (grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality
(blue triangles) or memberships (red diamonds).
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16Cho, E., Myers, S.A. & Leskovec, J. (2011) Friendship and Mobility: Friendship and Mobility: User Movement in
Location-Based Social Networks. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD).
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11 Internet autonomous systems

This dataset is a symmetrized snapshot of the structure of the Internet at the level of autonomous
systems, reconstructed from BGP tables posted at archive.routeviews.org. This snapshot was created
by Mark Newman from data for July 22nd 2006.17

Supplementary Table 16: Internet statistics

N L kmax cmax bmax mmax ρ

22963 48436 2390 25 3.8e + 07 1710 7e − 4

Supplementary Table 17: Internet correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.9857 0.7933 0.9469 0.7807 0.9631 0.7079

Supplementary Figure 17: Internet degree distribution
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Supplementary Figure 18: Intervention against epidemics on Internet network after different immunization:
randomly (grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality
(blue triangles) or memberships (red diamonds).
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17Hébert-Dufresne, L., Allard, A., Marceau, V., Noël, P.-A. & Dubé, L.J. (2011) Structural Preferential Attachment:
Network Organization beyond the Link. Phys. Rev. Lett. 107:158702
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12 Internet Movie Database

This dataset details the co-acting network of for movies released after December 31st 1999 as com-
piled by IMDb.1819

Supplementary Table 18: IMDb statistics

N L kmax cmax bmax mmax ρ

716463 7665259 4625 192 N/A 2152 0.52

Supplementary Table 19: IMDb correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.6830 N/A 0.6186 N/A 0.9813 N/A

Supplementary Figure 19: IMDb degree distribution
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Supplementary Figure 20: Intervention against epidemics on IMDb network after different immunization: ran-
domly (grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality
(blue triangles) or memberships (red diamonds).
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18http://www.imdb.com/
19Hébert-Dufresne, L., Allard, A., Marceau, V., Noël, P.-A. & Dubé, L.J. (2011) Structural Preferential Attachment:

Network Organization beyond the Link. Phys. Rev. Lett. 107:158702
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13 MathSciNet co-authorship

Co-authorship network of MathSciNet before 2008.2021

Supplementary Table 20: MathSci statistics

N L kmax cmax bmax mmax ρ

391529 873775 496 24 1.9e + 09 485 0.40

Supplementary Table 21: MathSci correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.8645 0.8320 0.7749 0.7835 0.9465 0.6200

Supplementary Figure 21: MathSci degree distribution
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Supplementary Figure 22: Intervention against epidemics on MathSci network after different immunization:
randomly (grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality
(blue triangles) or memberships (red diamonds).
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20http://www.ams.org/mathscinet/
21Palla, G., Farkas, I.J., Pollner, P., Derényi, I. & Vicsek, T. (2008) Fundamental statistical features and self-similar

properties of tagged networks. New J. Phys. 10:123026
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14 Myspace online social network

Friendships between the first 100,000 users encountered while crawling Myspace accounts from
September to October 2006 (excluding Tom Anderson, the cofounder of MySpace, which is connected
to everyone).2223

Supplementary Table 22: Myspace statistics

N L kmax cmax bmax mmax ρ

100000 841224 59108 78 2.6e + 09 59102 0.77

Supplementary Table 23: Myspace correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
1.0000 0.8667 0.9995 0.8667 0.9995 0.8662

Supplementary Figure 23: Myspace degree distribution
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Supplementary Figure 24: Intervention against epidemics on Myspace after different immunization: randomly
(grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality (blue
triangles) or memberships (red diamonds).
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22http://www.myspace.com/
23Ahn, Y.-Y., Han, S., Kwak, H., Moon, S. & Jeong, H. (2007) Analysis of Topological Characteristics of Huge Online

Social Networking Services, Proc. of International World Wide Web Conference
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15 Pretty-Good-Privacy data exchange

Dataset describing the giant component in the network of users of the Pretty-Good-Privacy algorithm
for information exchange.24

Supplementary Table 24: PGP statistics

N L kmax cmax bmax mmax ρ

10680 24316 205 31 7.5e + 06 110 0.50

Supplementary Table 25: PGP correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.8862 0.8599 0.7256 0.7973 0.8973 0.5464

Supplementary Figure 25: PGP degree distribution
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Supplementary Figure 26: Intervention against epidemics on the PGP network after different immunization:
randomly (grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality
(blue triangles) or memberships (red diamonds).
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24Boguñá, M., Pastor-Satorras, R., Dı́az-Guilera, A. & Arenas, A. (2004) Models of social networks based on social
distance attachment. Phys. Rev. E 70:056122
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16 Power grid

The topology of the Western States Power Grid of the United States as compiled by Duncan Watts and
Steven Strogatz.25

Supplementary Table 26: Power grid statistics

N L kmax cmax bmax mmax ρ

4941 6594 19 5 3.5e + 06 18 0.49

Supplementary Table 27: Power grid correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.9192 0.8605 0.6191 0.8042 0.7342 0.5788

Supplementary Figure 27: Power grid degree distribution
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Supplementary Figure 28: Intervention against epidemics on the power grid after different immunization: ran-
domly (grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality
(blue triangles) or memberships (red diamonds).
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25Watts, D.J. & Strogatz, S.H. (1998) Collective dynamics of small-world networks. Nature 393:440-442
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17 Protein interactions network

Protein-protein interactions (ProteinCore) in S. cerevisiae as listed by the Database of Interacting
Proteins.2627

Supplementary Table 28: ProteinCore statistics

N L kmax cmax bmax mmax ρ

2640 6600 111 8 4.0e + 05 71 0.32

Supplementary Table 29: ProteinCore correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.8538 0.9118 0.7702 0.8828 0.9543 0.7712

Supplementary Figure 29: ProteinCore degree distribution
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Supplementary Figure 30: Intervention against epidemics on the protein interactions network after different
immunization: randomly (grey squares) and based on coreness (green pentagons), degree (black circles), be-
tweenness centrality (blue triangles) or memberships (red diamonds).
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26http://dip.doe-mbi.ucla.edu/
27Palla, G., Derényi, I., Farkas, I. & Vicsek, T. (2005) Uncovering the overlapping community structure of complex

networks in nature and society. Nature 435:814-818
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18 Slashdot online social network

Network of tagged relationships (friends or foes) in the community of the Slashdot news website in
November 2008.2829

Supplementary Table 30: Slashdot statistics

N L kmax cmax bmax mmax ρ

77360 469180 2539 54 1.2e + 08 2506 0.46

Supplementary Table 31: Slashdot correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.9958 0.9373 0.9832 0.9358 0.9870 0.8855

Supplementary Figure 31: Slashdot degree distribution
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Supplementary Figure 32: Intervention against epidemics on Slashdot after different immunization: randomly
(grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality (blue
triangles) or memberships (red diamonds).
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28http://slashdot.org/
29Leskovec, J., Lang, K., Dasgupta, A. & Mahoney, M. (2009) Community Structure in Large Networks: Natural Cluster

Sizes and the Absence of Large Well-Defined Clusters. Internet Mathematics 6:29-123
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19 Word association network

Word association graph (built by survey) obtained from the South Florida Free Association norms.3031

Supplementary Table 32: Word ass. statistics

N L kmax cmax bmax mmax ρ

7207 31784 218 7 1.2e + 06 137 0.16

Supplementary Table 33: Word ass. correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.9698 0.9230 0.9110 0.9229 0.9281 0.8337

Supplementary Figure 33: Word ass. degree distribution
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Supplementary Figure 34: Intervention against epidemics on the word association graph after different immu-
nization: randomly (grey squares) and based on coreness (green pentagons), degree (black circles), betweenness
centrality (blue triangles) or memberships (red diamonds).
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30http://www.usf.edu/FreeAssociation/
31Palla, G., Derényi, I., Farkas, I. & Vicsek, T. (2005) Uncovering the overlapping community structure of complex

networks in nature and society. Nature 435:814-818
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20 World Wide Web

Network of links between the webpages within nd.edu domain and considered undirected for this
study.32

Supplementary Table 34: WWW statistics

N L kmax cmax bmax mmax ρ

325729 1090108 10721 155 2.5e + 10 6993 0.86

Supplementary Table 35: WWW correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.9569 0.8683 0.9020 0.8665 0.9614 0.7905

Supplementary Figure 35: WWW degree distribution
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Supplementary Figure 36: Intervention against epidemics on the WWW after different immunization: randomly
(grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality (blue
triangles) or memberships (red diamonds).
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32Barabási, A.-L. & Albert, R. (1999) Emergence of scaling in random networks. Science 286:509-512
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