SUPPLEMENTAL FIGURE LEGENDS

Figure S1. SEM images illustrating leaf surfaces of two *Oryza* species which were used to calculate stomatal density and size. Analyses showed *O. alta* (A,B) has low density and size of stomates on each side of the lamina; *O. barthii* (C,D) had among the highest stomatal density and size in both lamina surfaces. Scale bars = $200 \ \mu m$ from A to D. See Supplemental Table S3 for data on stomata across *Oryza* accessions.

Figure S2. A, example of light microscopy image of leaf cross-section (*O. australiensis*, 21) used to estimate the leaf mesophyll volume occupied by Intercellular Air Space (IAS, in red). B, Schematic drawing showing the method of estimating the extent of cell surface lobing as cell perimeter tortuosity. This was calculated as arc-chord ratio: black line is the perimeter of mesophyll cell section (arc) and red line is the perimeter of the cell section circumscribed area (chord). ch, chloroplast; m, mitochondria.

Figure S1. SEM images illustrating leaf surfaces of two *Oryza* species which were used to calculate stomatal frequency and size. Analyses showed *O. alta* (A,B) has low density and size of stomates on each side of the lamina; *O. barthii* (C,D) had among the highest stomatal density and size in both lamina surfaces. Scale bars = $200 \mu m$ from A to D. See Supplemental Table S3 for data on stomata across *Oryza* accessions.

Figure S2. A, example of light microscopy image of leaf cross-section (*O. australiensis*, 21) used to estimate the leaf mesophyll volume occupied by Intercellular Air Space (IAS, in red). B, Schematic drawing showing the method of estimating the extent of cell surface lobing as cell perimeter tortuosity. This was calculated as arc-chord ratio: black line is the perimeter of mesophyll cell section (arc) and red line is the perimeter of the cell section circumscribed area (chord). ch, chloroplast; m, mitochondria.

Supplemental Materials and Methods S1. Estimate of cell volume from values of *a*_{cell}.

The mean (luminal) M cell section area in leaf cross-sections (a_{cell} , μm^2) was determined for each accession (n= 3). In addition, in each leaf cross section, the three highest a_{cell} were taken as M cell median sections (a_{cell_med} , μm^2). Across *Oryza* accessions, mean a_{cell_med} (n= 3) and a_{cell} had a close positive correlation (r= 0.83).

Leaf M cells in *Oryza* were assumed to be prolate spheroids; in the leaf cross section, they have the major axis (2a) twice the length of the other two minor axes $(2b_1=2b_2=a)$, as in Sage and Sage (2009) and Scafaro *et al.* (2011). In each leaf cross section, representative major and minor M cell section semiaxes (a and b, respectively) were calculated based on

$$a_{cell med} = \pi^* a^* b \tag{Eq. S1}$$

and they were used to compute cell volume (Vol_{cell}, μm^3) as

$$Vol_{cell} = \frac{4}{3}\pi^* a^* b^2$$
 (Eq. S2)

Cell surface lobing was not taken into account. Mean Vol_{cell} and a_{cell} across *Oryza* accessions had a close positive correlation (r = 0.83; P< 0.05). In addition, in each leaf cross section, the M cell surface area (a_{cell_surf}) corresponding to Vol_{cell} was calculated as

$$a_{cell_surf} = 2\pi * b^2 + 2\pi \frac{ab}{\varepsilon} * \sin^{-1}\varepsilon$$
 (Eq. S3)

where a and b are the major and minor M cell section semiaxes; and $\varepsilon = (\sqrt{a^2 - b^2})/a = 0.8660$ is the eccentricity parameter. Equations S2 and S3 were taken from Beyer, 1978. a_{cell_surf} was edited to take into account for Lob_{cell}. The mean P/ a_{cell} ratio (see list of leaf traits in Table 2) and the mean a_{cell_surf} /Vol_{cell} ratio across *Oryza* accessions showed a positive correlation (r= 0.60).

LITERATURE CITED

Beyer WH (1978) Handbook of mathematical sciences. 5th edition, CRC Press, Boca Raton, FL,

USA

- Sage TL, Sage RF (2009) The functional anatomy of rice leaves: implications for refixation of photorespiratory CO₂ and efforts to engineer C₄ photosynthesis into rice. Plant Cell Physiol 50: 756-772
- Scafaro AP, von Caemmerer S, Evans JR, Atwell BJ (2011) Temperature response of mesophyll conductance in cultivated and wild *Oryza* species with contrasting mesophyll cell wall thickness. Plant Cell Environ 34: 1999-2008

Supplemental Materials and Methods S2. Magnitude of the CO_2 diffusion leaks into and from the Fluorometer Leaf Chamber and its effect on *A* and *C_i* calculation

A quantitative analysis of CO₂ leakage into and from the LI-COR 6400XT Fluorometer Leaf Chamber was performed, as suggested by LI 6400XT manual (LI-COR Biosciences, 2008) and following Flexas *et al.* (2007) and Rodegheiro *et al.* (2007) suggestions. A portion of a dead and dry leaf of *Oryza sativa* IR64 was enclosed in the cuvette having one neoprene (below) and one polyethylene (above) foam gasket; synthetic rubber (*Terostat* IX, HenkelTechnologies, Düsseldorf, Germany) was used to improve the sealing. Air surrounding the cuvette was ventilated: the ambient CO₂ molar fraction nearby the chamber was constant during the test (400 μ mol CO₂ mol⁻¹ air). The same molar bulk flow rate through the chamber which was adopted for leaf measurements was employed (300 μ mol air s⁻¹); chamber block temperature was set at 30°C. Drierite knob was turned to bypass, so that there would be corresponding H₂O molar fraction (mmol H₂O mol⁻¹ air) inside the cuvette and in the surrounding air.

Several C_a values over the range from 40 to 1500 μ mol CO₂ mol⁻¹ air were imposed to the LI-COR 6400XT equipment; at each C_a , the CO₂ molar concentrations measured by chamber's inlet and outlet gas analyzers (C_r and C_s , μ mol CO₂ mol⁻¹ air, respectively) were recorded. Three replicates were taken. The gradients between C_r and C_s [(C_r - C_s)_{leak}, μ mol CO₂ mol⁻¹ air] were calculated and plotted versus C_s : a linear model was adopted to fit the data

$$(C_{\rm r}-C_{\rm s})_{\rm leak} = -0.0008C_{\rm s} + 0.3630 \ ({\rm R}^2 = 0.96; {\rm P} < 0.001) \ ({\rm Eq. S4})$$

From the leaf gas exchange measurements taken on the Oryza accessions the value of A was

then calculated (μ mol CO₂ m⁻² s⁻¹) at each imposed C_a, *i.e.* at each C_s, as

$$A = \frac{F(C_r - C_s)}{100S} - C_s E + \frac{F(C_r - C_s)_{leak}}{100S} \quad (Eq. S5)$$

according to the LI-COR 6400XT manual (LI-COR Biosciences, 2008); F is the molar flow rate (μ mol air s⁻¹); ($C_r - C_s$) is the gradient of CO₂ molar concentration (μ mol CO₂ mol⁻¹ air) measured by chamber's inlet and outlet gas analyzers; S is the surface area of the chamber lumen (m²); *E* is the transpiration rate per unit leaf surface area (mol H₂O m⁻² s⁻¹); and ($C_r - C_s$)_{leak} is the differential of CO₂ molar concentration (μ mol CO₂ mol⁻¹ air) due to CO₂ diffusion leaks which was provided by Eq. S4.

As reported by Flexas *et al.* (1997), CO₂ leaks into and from the leaf chamber affect A and C_i in opposite direction; see the LI-COR 6400XT manual (LI-COR Biosciences, 2008) for the equation 1-18 (which includes A) adopted to calculate C_i .

LITERATURE CITED

- Flexas J, Diaz-Espejo A, Berry JA, Cifre J, Galmes J, Kaldenhoff R, Medrano H, Ribas-Carbo M (2007) Analysis of leakage in IRGA's leaf chambers of open gas exchange systems: quantification and its effects in photosynthesis parameterization. J Exp Bot 58: 1533–1543
- LI-COR Biosciences (2008) Using the LI 6400/LI-6400 XT Portable Photosynthesis System. Manual version 6. Book 1. LI-COR Biosciences, NE, USA
- Rodeghiero M, Niinemets Ü, Cescatti A (2007) Major diffusion leaks of clamp-on leaf cuvettes still unaccounted: how erroneous are the estimates of Farquhar *et al.* model parameters? Plant Cell Environ **30**: 1006-1022

Supplemental Materials and Methods S3

Fick's laws applied to estimate g_m

Based on (First and Second) Fick's Laws (Nobel, 2009), under the assumptions of isothermal and isobaric conditions and of absence of sources and sinks along the one-dimensional diffusion

path, the flow for species *j* in a solution through a barrier can be calculated as:

$$J_{j} = \frac{D_{j} * K_{j} * A_{b} * (C_{j1} - C_{j2})}{d}$$
(Eq. S6)

where J_j is the flux for species *j* (mol s⁻¹), D is the diffusion coefficient (m² s⁻¹), K_J is the partition coefficient, A_b is the barrier cross-sectional area (m²), C_j is the concentration of j before and after the barrier (mol j m⁻³ air), d is the path length (m).

When the species is CO₂ that diffuses in the leaf mesophyll from Intercellular Air Space (IAS) to chloroplast stroma in a liquid solution through cell wall and membranes, the barrier cross-section area A_b could be represented by the mesophyll cell surface area exposed to IAS expressed per unit (one side) leaf surface area (S_{mes} , $\mu m^2 \mu m^{-2}$) and the CO₂ flux density, which corresponds to net photosynthetic rate per unit leaf surface area (A, mol CO₂ m⁻² s⁻¹), could be calculated as:

$$A = \frac{D_{CO2} * K_{CO2} * S_{mes} * (C_i - C_c)}{d}$$
(Eq. S7)

where C_i and C_c are intercellular and chloroplastic CO₂ concentration (mol CO₂ m⁻³ air), respectively. Given that the equation based on Fick's Laws can usually be applied to calculate mesophyll conductance to CO₂ diffusion (g_m , m s⁻¹)

$$g_m = \frac{A}{(C_i - C_c)}$$
(Eq. S8)

and replacing A with Eq. S7, g_m corresponds to

$$g_m = \frac{D_{CO2} * K_{CO2} * S_{mes}}{d}$$
 (Eq. S9)

and

$$\frac{g_m}{S_{mes}} = \frac{D_{CO2} * K_{CO2}}{d}$$
(Eq. S10)

where the second term corresponds to permeability to CO_2 (m s⁻¹) from Intercellular Air Space to

chloroplasts in a liquid solution through cell wall and membranes (Nobel, 2009). In this term, d is the path length for CO_2 to move from IAS to chloroplasts. In the present study Thick_{cw} is considered a significant component of d, based on the evidence that the chloroplasts during the light time are anchored against the cell membrane/walls that directly face the IAS (Takagi *et al.*, 2009).

Vice-versa, S_{mes}/g_m can be taken as a measure of the reciprocal of permeability to CO₂, *i.e.* of diffusive resistance in the liquid phase, from the IAS to chloroplasts. Note in this study, S_{mes}/g_m was used, which has a very high correlation with S_{chl}/g_m (estimated by Evans *et al.*, 2009) due to the high percentage of chloroplast covering the cell walls exposed to IAS.

LITERATURE CITED

- **Evans JR, Kaldenhoff R, Genty B, Terashima I** (2009) Resistances along the CO₂ diffusion pathway inside leaves. J Exp Bot **60**: 2235-2248
- **Nobel PS** (2009) Physicochemical and environmental plant physiology. 4th edition, Academic Press, San Diego, CA
- **Takagi S, Takamatsu H, Sakurai-Ozato N** (2009) Chloroplast anchoring: its implications for the regulation of intracellular chloroplast distribution. J Exp Bot **60**: 3301-3310