NMR- and CD-Monitored Lipid-Binding Studies Suggest a General Role for the FATC Domain as Membrane Anchor of Phosphatidyl-Inositol-3 Kinase-Related Kinases (PIKKs)

Lisa A. M. Sommer¹, Martin Schaad², Sonja A. Dames^{1\$}

From the ¹Chair of Biomolecular NMR Spectroscopy, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany, ²Current Address Quintiles AG, Hochstrasse 50, CH-4053 Basel, Switzerland

^{\$}To whom correspondence may be addressed: Chair of Biomolecular NMR Spectroscopy, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany, Tel.: +49-89-28913292, Fax: +49-89-28913869, E-mail: (sonja.dames@tum.de)

Running title: Role of PIKK FATC as membrane anchor

Supplementary Information

Fig. S1: Top: Charge distribution in the FATC domains of different human PIKKs. Negatively charged residues are colored red and positively charged ones blue. Bottom: Sequence conservation of the FATC domains of ATM, ATR, SMG1, and TRRAP illustrated by alignments of the respective sequences from different organisms. All sequence alignments were generated using the program ESPript (1). See also Fig. 1B.

Fig. S2: Amino acid sequences of the used hDNAPKfatc GB1 fusion proteins and NMR spectra of hDNAPK-gb1ent and of the GB1 tag with a factor Xa instead of a enterokinase site

(gb1xa). Top: Superposition of the ¹H-¹⁵N-HSQC spectra of free ¹⁵N-hDNAPKfatc-gb1ent (black) and ¹⁵N-gb1xa (red). The resonance assignments that were derived based on the NMR spectra for hDNAPKfatc-gb1ent are indicated by the one-letter amino acid code and the sequence position. The amino acid sequences are shown below. The 56 residues of the GB1 domain are colored in red, the linking thrombin-enterokinase or thrombin-factor Xa sites and the C-terminal 33 residues of the human DNA-PKcs FATC domain (4096-4128 in full-length) in black. Residues corresponding to the thrombin cleavage site are additionally labeled with a black circle and these corresponding to the enterokinase cleavage site with a black asterisk. The small insert shows the spectral region containing the resonances for the tryptophan side chain amide protons.

Fig. S3: NMR-titration of ¹⁵N-hDNAPKfatc with DPC (A) and a 4:1 mixture of DioctPA/DOPA (B). See also Fig. 2 A, B. In contrast to Fig. 2 the full ¹H-¹⁵N-HSQC spectra including the region showing the tryptophan side chain amide are shown. The color-coding is indicated at the top of each plot.

Fig. S4: Evaluation of the influence of charged residues in the linking enterokinase (ent, DDDDK) or factor Xa (xa, IEGR) site on the interaction of the respective GB1-hDNAPKfatc fusion proteins with DPC micelles. A-B, Superposition of the ¹H-¹⁵N HSQC spectra of the hDNAPKfatc-gb1ent and hDNAPkfatc-gb1xa in the presence of increasing amounts of DPC, respectively. The used DPC concentrations and the respective color coding are indicated to right side of each plot.

Fig. S5: Superposition of the ¹H-¹⁵N-HSQC spectra of ¹⁵N-hDNAPKfatc-gb1ent in the absence (black) and presence of <30 mM DMPC liposomes (red) or <60 mM DMPC liposomes (green). See also Fig. 2F.

Fig. S6: Chemical shift changes of hDNAPKfatc due the presence of high concentrations of DPC micelles (150 mM, Fig. 2D) or DihepPC/DMPC bicelles (Fig. 2E) as a function of the sequence position. The data was recorded using hDNAPKfatc-gb1ent. The chemical shifts of the nuclei of the micelle-immersed state have been assigned as described in the methods section. Assignments for residues of the bicelle-immersed form were adapted from those of the micelle-immersed where this was possible based on a comparison of the respective

spectra in Fig. 2 D and E. The average chemical shift change for the backbone amide nitrogen and proton $\Delta\delta(N,H)$ av for hDNAPKfatc due to the presence of DPC micelles or DihepPC/DMPC bicelles was calculated as $[(\Delta\delta_{HN})^2 + (\Delta\delta_N/5)^2]^{1/2}$.

Fig. S7: Supplementary NMR analysis of the interaction of selected human PIKK FATC domains with different membrane-mimetics. A) Superposition of ¹H-¹⁵N-HSQC spectra of hATMfatc-gb1ent in the absence and presence of increasing amounts of DPC. The color coding and the respective DPC concentrations are given in the spectrum. To better identify the signals of the ATM FATC part, the spectrum of the GB1 tag (GB1-xa) is additionally shown in green on top. B) Superposition of the natural abundance ¹H-¹⁵N-HSQC spectra of hSMG1fatc in the absence and presence of DihepPC micelles.

Fig. S8: Analysis of the interaction of the hATRfatc peptide with DPC micelles by 1D ¹H-NMR spectra. The spectrum of the free form is shown in blue, the one in the presence of 50 mM d_{38} -DPC in red. The top panel shows the full spectrum. The middle panel shows only the amide region. Here almost all signals arise from the protein. Only the sharp signal at about 7.6 ppm presumably arises from residual chloroform or another substance present in the DPC stock. The bottom panel shows part of the aliphatic region. Here, several signals from buffer substances are visible (see labels in the plot).

Fig. S9: The free isolated DNA-PKcs FATC domain is largely unstructured. The CD spectrum of hDNAPKfatc (top) shows a minimum around 200 nm typical for unstructured proteins and only a very weak minimum around 222 nm that usually together with a second minimum a 208 nm indicates the presence of α-helical secondary structure. This is consistent with the ¹³C^α secondary shifts measured for free hDNAPKfatc-gb1ent (Fig. 3) and the measured ¹H^α shifts (not shown) and ³J_{HNHα} coupling constants (bottom) of hDNAPKfatc. The ³J_{HNHα} coupling constants were derived from a 3D HNHA spectrum (grey uncorrected, black corrected by 11% as suggested in the literature, see methods). Values below about 6-6.5 Hz are typically observed in α-helical regions, whereas values above about 8-8.5 Hz are characteristic for residues in β-sheets. Values in the range of about 6.5-8 Hz are typical for protein regions undergoing conformational exchange (see also methods).

Fig. S10: A-C, additional secondary shifts for micelle-immersed hDNAPKfatc based on data recorded using hDNAPKfatc-gb1ent. The ${}^{1}\text{H}^{\alpha}$ -secondary shifts are similar to the ${}^{13}\text{C}^{\alpha}$ -secondary shifts given in Fig. 4A sensitive to the adopted secondary structure (2). The ${}^{1}\text{H}^{N}$ - and ${}^{15}\text{N}$ - secondary shift are not very sensitive to the particular secondary structure and were just plotted to show that the respective chemical shift values of the micelle immersed state deviate significantly from reported for random coil values (3). D, the shown table lists the presence of ${}^{1}\text{H}$ - ${}^{1}\text{H}$ NOE-correlations typically observed in helical protein regions (4) for micelle-immersed hDNAPKfatc.

Fig. S11: Backbone dynamics of hDNAPKfatc-gb1ent in the free (A) and micelle-immersed state induced by the presence of 150 mM DPC (B), in each subfigure: 15 N-T₁ (top panel), 15 N -T₂ (middle panel) and { 1 H}- 15 N NOE values (bottom panel).

Fig. S12: Top two panels, additional secondary shifts for micelle-immersed hATMfatc to complement Fig. 4B. The ¹H^N- and ¹⁵N- secondary shift are not very sensitive to the particular secondary structure and were just plotted to show that the respective chemical shift values of the micelle immersed state deviate significantly from reported for random coil values (3). Bottom plot, ${}^{3}J_{HNH\alpha}$ values for micelle-immersed hATMfatc. For more explanations see legend of Fig. S9. The data was recorded using the construct hATMfatc-gb1ent.

Fig. S13: Analysis of changes in the backbone dynamics of hATMfatc-gb1ent upon interaction with DPC micelles based on {¹H}-¹⁵N-NOE data. The data for the free form is shown in the top spectra, the one in the presence of DPC in the bottom ones. Positive peaks are colored black and red, negative peaks in blue and yellow. Each plot shows a superposition of the spectrum without (reference) and with NOE-effect. The plots to the right are the same as the ones to the left but show additionally the spectrum of the GB1 tag followed by factor xa site (gb1xa) in green on top to facilitate the identification of the peaks corresponding to the FATC part (no green peaks on top). For peaks corresponding clearly to the linker region (mostly in the more crowded central region) or the FATC part (for comparison see also the assigned spectra for hDNAPKfatc in Fig. 2 and SI Fig. S2) and that are labeled by numbers, the NOE-values have been determined and are displayed below. The assignments for the micelle-immersed ATM FATC domain are indicated by the one-letter amino acid code and the sequence position. For labels in brackets the NOE value is not given below. Since several

peaks of the free state of the ATM FATC domain are not visible, presumably due to motional averaging, which broadens them beyond detection, the respective chemical shift assignment was hampered.

- 1. Gouet, P., Courcelle, E., Stuart, D. I., and Metoz, F. (1999) *Bioinformatics* **15**(4), 305-308
- 2. Wishart, D. S., Sykes, B. D., and Richards, F. M. (1992) *Biochemistry* **31**(6), 1647-1651
- 3. Wishart, D. S., Bigam, C. G., Holm, A., Hodges, R. S., and Sykes, B. D. (1995) *J Biomol NMR* **5**(1), 67-81
- 4. Wüthrich, K. (1986) *NMR of proteins and nucleic acids*, Wiley-Interscience Publ., New York

	ļ		10	20	30
P42345_TOR 2517-2549	DT	LDVP	TQVELL	I <mark>KQAT</mark> SH <mark>E</mark> NLC	QCYIGWCPFW
P78527_DNA-PKcs 4096-4128	SG	LSEE	TQVKCL	M <mark>D Q A T D</mark> P N I L C	RTWEGWEPWM
Q13315_ATM 3024-3056	ΤV	LSVG	GQ V NLL	IQQAI <mark>D</mark> PKNLS	R <u>LFP</u> GWKAWV
Q13535_ATR 2612-2644	LP	LSIE	GHVHYL	IQ <mark>EATDENLL</mark> C	QMYLGWTPYM
Q96Q15_SMG1 3629-3661	RR	MSVA	EQVDYV	IKEATNLDNLA	QLYEGWTAWV
09¥4A5 TRRAP 3827-3859	OF	EGGE	SKWNTL	VAAANSLDNIC	RMDPAWHPWL

negatively charged/positively charged

	1	1 <u>0</u>	2 <u>0</u>	30
Q13315_human	ΤV <mark>LSV</mark> GG	QVNLLIQQA	IDPKNLSRLI	F P <mark>G W</mark> K A W <mark>V</mark>
B3VMJ2_dog	TVLSVGG	QVNLLIQQAI	MDPKNLSRLI	F P <mark>G W</mark> K A W <mark>V</mark>
Q6PQD5_pig	TVLSVGG	QVNFLIQQAI	MDPKNLSKLI	FS <mark>GW</mark> KAWV
Q62388_mouse	TVLSVGG	QVNLLIQQAI	MDPKNLSRLI	F P <mark>G W</mark> K A W V
D4ACL8_rat	TVLSVGG	QVNLLIQQAI	MDPKNLSRLI	F P <mark>G W</mark> K A W V
Q5MPF8_frog	MVLSVGG	QVNHLIQQAI	MDPKNLSSLI	F P <mark>G W</mark> K A W V
Q59IS5_zebrafish	TVLSVGG	QVNLLIQQAI	MDPKNLSRLI	F P <mark>G W</mark> Q A W V
H2MBY9_japanesericefish	AVLSVGG	QVNLLIQQAI	MDPKNLSRLI	FS <mark>GW</mark> QAWV
Q9N3Q4_seaurchin	VTLSVAG	QVSLLIQEAI	RDPKNLSRL	Y P <mark>G W</mark> S P W L
Q9N3Q4_worm	TAQSSNI	QIRRLLREA	T S A D N L S R M I	FC <mark>GW</mark> MPFL
Q5EAK6_fruitfly	G D <mark>S N V</mark> E A	QVERLINEA	TLPSNLCMLI	F P <mark>G W</mark> D P H L
Q9M3G7_mouseearcress	EMRSIHG	QAQQLIQDA	IDTDRLSHMI	FP <mark>GW</mark> GAWM
B9RB21_castorbean	ELRSVHG	QVQQLIQDA	T D A D R L C Q L I	FP <mark>GW</mark> GAWM
P38110_bakersyeast	NGLSVES	SVQDLIQQA	TDPSNLSVI	Y M <mark>G W</mark> S P F Y
074630_fissionyeast	ST <mark>LSV</mark> EA	SVGELIRIA	QDPS <mark>YL</mark> ALMI	FC <mark>GW</mark> SAFQ

ATR

				1.	•				~						•
	<u>+</u>			<u> </u>	<u>ب</u>				21	?		_			Ģ
Q13535_human	LPL	SIE	GH	V	ΗY	LΙ	QE	ΑΤΓ)E	ILL	CQ	MY	Ľ	W	ТРΥМ
G3Q¥I4_gorilla	LPL	SIE	GH	V	ΗY	LΙ	QE	ΑΤΓ)E	ΙLL	CQ	ΜY	L (W	ГΡΥΜ
H2PBM9_orangutan	LPL	SIE	GH	V	ΗY	LΙ	QE	ΑΤΓ)E	ΙLL	CQ	ΜY	L (W	ГΡΥΜ
F7HT00_macaque	LPL	SIE	GH	V	ΗY	LΙ	QE	ΑΤΓ)E	ΙLL	CQ	ΜY	L (W	ГΡΥΜ
E2QXA4_dog	LPL	SIE	GH	V	ΗY	LΙ	QE	ATI)E	ΙLL	CQ	MY	Ľ	W	ГΡΥΜ
F1SKG2_pig	LPL	SIE	GH	V	ΗY	LΙ	QE	ATI)E	ΙLL	CQ	MY	Ľ	W	ГΡΥΜ
G3TF68_elefant	LPL	SIE	GH	V	ΗY	LΙ	QE	ΑΤΓ)E	ΙLL	CQ	ΜY	L (W	ГΡΥΜ
Q9JKK8_mouse	LPL	SIE	GH	V	ΗY	LΙ	QE	ATI)E	ΙLL	CQ	MY	Ľ	W	ГΡΥΜ
D3Z822_rat	LPL	SIE	GH	V	ΗY	LΙ	QE	ATI)E	ΙLL	CQ	MY	Ľ	W	ГΡΥΜ
G1SGC5_rabbit	LPL	SIE	GH	V	ΗY	LΙ	QE	ATI	A	lΓΓ	CQ	ΜY	. T (W	ГРΥМ
HOV935_guineapig	LPL	SIE	GH	V	ΗY	LΙ	QE	ΑΤΓ)E	ΙLL	CQ	ΜY	L (W	ГΡΥΜ
F6TZV8_oposum	LPL	SIE	GH	V	ΗY	LΙ	QE	ATI)E	ΙLL	CQ	MY	Ľ	W	ΓΡΥΙ
G3WTE5_tasmaniandevil	MVN	GMG	PM	G'	ΓЕ	GЬ	FRI	RAC	E	VΤΜ	RL	MR	DÇ	<u>)</u> R	EPLM
F6T1S2_turkey	LPL	SIE	GH	V	ΗY	LΙ	QE	ATI)E	lΓΓ	CQ	ΜY	. T (W	ГРΥМ
F1NGW1_chicken	LPL	SIE	GH	V	ΗY	LΙ	QE	ASI	D	ΙLL	CQ	ΜY	M	W.	APYM
G1KDD8_chameleon	LPL	SIE	GH	V	ΗH	LΙ	QD	ATI)E	ΓLL	CQ	ΜY	. T (W	APYM
Q9DE14_frog	LPL	SIE	GH	V	ΗY	LΙ	QE	ΑΤΓ)E	ΙLL	SQ	ΜY	L (W.	APYM
F1R6S9_zebrafish	LPL	SIE	GH	V	ΗY	LΙ	QE	ΑΤΓ	D	ΙLL	СМ	ΜY	L (W	GPYI
H2M9Q9_japanesericefish	LPL	SIE	GH	V	ΗY	LΙ	QE	ATI)E	ΚLL	CQ	ΜY	. T (W	GPYI
H2UEP9_fugu	LPL	SIE	GH	V	ΗY	LΙ	QE	ATI	D	ΚLL	CQ	ΜY	. T (W	GPYI
Q22258_worm	ΗPΜ	QVS	QL	A	SS	LΙ	ЕL	ATS	SE	ΞKL	SE	ΜY	L (W	ΜΑΤΙ
Q9VXG8_fruitfly	IPL	STE	GQ	VI	ΝF	LΙ	NE	ATF	۲V	DNL	AS	ΜY	ΊC	W	GAFI
Q9FKS4_mouseearcress	VPL	PVE	GQ	A	R R	LΙ	AD	AVS	ΓL	ENL	GK	ΜY	ĪV	1WI	MPWF
A2YH41_riceindian	LPL	SVE	GQ	A]	R R	LΙ	AE	AVS	SH S	5 N L	GK	ΜY	V	7 W I	MAWF
Q5Z987_ricejapanese	LPL	SVE	GQ	A	R R	LΙ	AE	AVS	SH	SNL	GK	ΜY	V	1WI	MAWF
Q59LR2_candidaalbicans	LPM	NIH	IGQ	V	DV	LΙ	QE	ATS	ΓL	ERL	SQ	ΜY	'A(W	AAYM
P38111_bakersyeast	LVL	SVA	∖GQ	T	ΕТ	LΙ	QE	ATS	SEI	DNL	SK	ΜY	IC	W.	LPFW
Q75DB8_ashbyagossypii	LPL	SVE	٩ <mark>G</mark> Q	V	DΤ	VV	QQ	ASS	5 D	ENL	AQ	ΜY	ΊC	W	LPFW
	-			-	^				2	~				2	~

SMG1

	-	
Q96Q15 human	RRMS	VAEQVDYVI
H9F9J1_macaque	RRMS	VAEQVDYVI
F1PBU5_dog	RRMS	VAEQVDYVI
F1MBL6_pig	RRMS	VAEQVDYVI
G3TL75_elefant	RRMS	VAEQVDYVI
G1LX38_giantpanda	RRMS	VAEQVDYVI
Q8BKX6_mouse	RRMS	VAEQVDYVI
G3IKE4_chinesehamster	RRMS	VAEQVDYVI
G1N769_turkey	RRMS	VAEQVDFVI
C5J7W8_zebrafish	RRMS	VTEQVDYVI
K1QQ53_oyster	KRFS	VAEQVEFVL
001510_worm	RKLS	PREEADILI
H9XVZ7_freshwaterflatworm	SKPA	INQYIDKLI
F1KPQ3_pigroundworm	KPMT	PIEQADALI
Q70PP2_fruitfly	QRST	VAEQVDYVI

÷					1	Ģ									2	ò									د	ò			
RR	MS	V	ΑI	ΞÇ	<u>v</u>	D	Y	V	Ι	K	Е	A	т	N	\mathbf{L}	D	N	L	A	Q	\mathbf{L}	Y	E	G	W	т	A	WV	7
RR	MS	V	ΑI	ΞÇ	<u>v</u>	D	Y	v	Ι	K	Е	A	т	N	\mathbf{L}	D	N	L	А	Q	L	Y	Е	G	W	т	А	W	V
RR	MS	V	ΑI	ΞÇ	<u>v</u>	D	Y	v	Ι	K	Е	A	т	N	\mathbf{L}	D	N	L	А	Q	L	Y	Е	G	W	т	А	W	V
RR	MS	v	ΑI	ΞÇ	<u>v</u>	D	Y	v	Ι	K	Е	A	т	N	\mathbf{L}	D	N	L	А	Q	L	Y	E	G	W	т	A	W	V
RR	MS	V	ΑI	ΞÇ	<u>v</u>	D	Y	v	Ι	K	Е	A	т	N	\mathbf{L}	D	N	L	А	Q	L	Y	Е	G	W	т	А	W	V
RR	MS	V	ΑI	ΞÇ	<u>v</u>	D	Y	v	Ι	K	Е	A	т	N	\mathbf{L}	D	N	L	А	Q	L	Y	Е	G	W	т	А	W	V
RR	MS	v	ΑI	ΞÇ	<u>v</u>	D	Y	v	Ι	K	Е	A	т	N	\mathbf{L}	D	N	L	А	Q	L	Y	E	G	W	т	A	W	V
RR	MS	V	ΑI	ΞÇ	<u>v</u>	D	Y	v	Ι	K	Е	A	т	N	\mathbf{L}	D	N	L	А	Q	L	Y	Е	G	W	т	А	W	V
RR	MS	V	ΑI	ΞÇ	<u>v</u>	D	F	v	Ι	K	Е	A	т	N	\mathbf{L}	D	N	L	А	Q	L	Y	Е	G	W	т	А	W	V
RR	MS	v	ΤI	ΞÇ	<u>v</u>	D	Y	v	Ι	K	Е	A	т	N	V	D	N	L	А	Q	L	Y	E	G	W	т	A	W	V
KR	FS	V	ΑI	ΞÇ	<u>v</u>	Έ	F	v	г	K	Е	A	R	N	\mathbf{L}	D	N	L	s	V	L	Y	Е	G	W	т	Р	W	V
RK	LS	P	RI	ΞE	A	D	Ι	L	Ι	Α	Е	A	т	s	т	Ρ	N	L	s	Q	М	Y	Е	G	W	т	А	W	V
SK	ΡA	I	ΝÇ	ΩY	Ί	D	K	L	Ι	K	s	A	R	s	A	Е	N	L	А	R	M	Y	E	G	W	т	A	W	V
ΚP	Μ <mark>Ί</mark>	Ρ	ΙI	ΞÇ) A	D	A	L	Ι	R	Е	A	т	s	\mathbf{L}	s	N	L	А	г	М	Y	Е	G	W	т	А	W	V
QR	SI	V	ΑI	ΞÇ	<u>v</u>	D	Y	v	Ι	R	Е	A	С	N	Р	Е	N	L	А	v	L	Y	Е	G	W	т	Р	W	V

TRRAP

	ļ	10	20	зọ
Q9Y4A5_human	QFEGG <mark>ES</mark>	KVNTLVAAAN	I SLDNLCRMDP	AWHPWL
F7F6R5_macaque	Q F E G G <mark>E S</mark>	KVNTLVAAAN	ISLDNLCRMDP	AWHPWL
E2RJS8_dog	QFEGG <mark>ES</mark>	KVNTLVAAAN	ISLDNLCRMD P	AWHPWL
E1BKJ5_pig	QFEGG <mark>ES</mark>	KVNTLVAAAN	ISLDNLCRMD P	AWHPWL
G1LJY3_giantpanda	QFEGG <mark>ES</mark>	KVNTLVAAAN	ISLDNLCRMD P	AWHPWL
E9PWT1_mouse	QFDGG <mark>ES</mark>	KVNTLVAAAN	ISLDNLCRMD P	AWHPWL
D3ZGS2_rat	Q F D G G <mark>E S</mark>	KVNTLVAAAN	SLDNLCRMDP	AWH <mark>PW</mark> L
H2V1S0_fugu	Q F E G G <mark>E S</mark>	KVNTLVAAAN	SLDNLCRMDP	AWH <mark>PW</mark> L
C5NN12_japanesericefish	QFEGG <mark>ES</mark>	KVNTLVAAAN	ISLDNLCRMD P	AWHPWL
A5AAC6_aspergillusniger	GNLPA <mark>NQ</mark>	TTIDLISKAV	'NPQHLAACD A	LWM <mark>P</mark> YL
P38811_bakersyeast	TPTVT <mark>T</mark> Q	FILDCIGSAV	<mark>'SPRNLARTD</mark> V	'NFM <mark>P</mark> WF
Q9HFE8_fissionyeast	GNLPVNQ	TAIDYLAQAS	SSKVLAQMDV	'LWA <mark>P</mark> WL
Q54T85_dictyostelium	CFISP <mark>IV</mark>	KKVNQLIQNS	<u>; L</u> S S <mark>N I</mark> S Q L <mark>D</mark> Q	LSCPWL

(57-62)

site (63-67/66)

(68 - 100)

¹⁵N (ppm)

A Chemical shift changes for hDNAPKfatc due to DPC micelles (see Fig. 2D)

B Chemical shift changes for hDNAPKfatc due to Dihep-PC/DMPC bicelles (see Fig. 2E)

D micelle-immersed hDNAPKfatc

	4100	4101	4102	4103	4104	4105	4106	4107	4108	4109	4110	4111	4112	4113	4114
n, n i-1	+	+	++	++	++	(+)	(+)	(+)	++	(+)	++	++	++	++	х
n, n i+1	+	++	++	++	-	+	+	+	++	(+)	++	++	++	+	х
n, α i-3	х	(+)	-	+	-	+	-	(+)	-	++	-	++	++	+	х
n, α i-2	-	+	+	+	-	+	+	(+)	+	-	++	(+)	++	(+)	х
n, α i-4	х	х	-	-	-	+	-	+	+	(+)	-	-	++	-	х
n, α i-1	+	+	+	+	+	++	+	+	++	++	++	++	++	++	х

	4115	4116	4117	4118	4119	4120	4121	4122	4123	4124	4125	4126	4127	4128
n, n i-1	-	++	++	(+)	+	+	+	+	+	++	+	х	+	(+)
n, n i+1	++	+	(+)	(+)	(+)	+	+	(+)	++	+	-	х	(+)	х
n, α i-3	-	-	+	-	-	+	-	+	-	-	+	x	-	+
n, α i-2	++	-	(+)	(+)	(+)	-	-	+	-	-	-	х	+	-
n, α i-4	-	-	(+)	-	-	+	(+)	-	-	-	-	х	-	-
n, α i-1	++	++	(+)	+	+	+	+	(+)	-	+	-	х	(+)	+

++, strong; +, weak; (+), overlap

residue number

free hATMfatc-gb1ent

