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I. Cluster-based criteria for identifying Switching distributions 
 

 Randomly selected clonal populations infected with single integrations of our 
experimental model of the HIV viral Tat-feedback circuit exhibit GFP distributions that fall into 
one of three categories: Dim, Bright, or Switching. These expression phenotypes are typically 
qualitatively distinguishable by eye. Here we discuss the qualitative features of these expression 
phenotypes that are apparent by eye, and our use of distribution clustering to define criteria for 
systematic phenotype assignment. 

Clonal distributions that were qualitatively labeled as Dim (i.e., “by eye”) approximately 
resemble those of the Tat-null system, which was analyzed in this study as well as in previous 
work (1, 2). These distributions are wide and highly right-skewed, but are mono-modal and far 
less variable than those categorized as Switching for the feedback circuit. Furthermore, Dim 
distributions typically demonstrate significant overlap with the Dim peak of their multi-
integration parent bulk fluorescence distribution and with the autofluorescence distribution that 
was measured for uninfected cells, with a large majority of distribution weight falling in 
approximately the lower third of our cytometer log-fluorescence range. Clonal distributions that 
were qualitatively labeled as Bright were also mono-modal and similarly shaped, but with 
distribution peaks at higher fluorescence. These distributions are well separated from the Dim 
range of fluorescence, and instead demonstrate significant overlap with the Bright peak of their 
parent multi-integration bulk fluorescence distribution and minimal overlap with the 
autofluorescence distribution, with the large majority of distribution weight falling in the upper 
half of our log-fluorescence cytometer range.  

In contrast to these Dim and Bright distributions, clonal distributions with significant 
weight in the middle of the log fluorescence range were typically significantly wider than Tat-
null distributions, with significant distribution weight simultaneously in the Dim and Bright 
ranges of fluorescence. Many of these distributions demonstrated bimodality. It is these clonal 
distributions, with individual cells demonstrating both basal and transactivated expression, that 
we wished to label as Switching, and that we consider to be a model for stochastically-generated 
latent infection. 
 In previous studies, variegated phenotypes, such as ‘Switching’ distributions, had been 
scored by eye based on their distinctive features (1, 3). However, the range of expression 
phenotypes across a population of viral integrations is a continuum. Thus, there exist apparently 
‘Dim’ distributions with tails that extend through the middle fluorescence range and apparently 
‘Bright’ distributions with large opposite skew and tails extending across the middle 
fluorescence range, as well as distributions peaked in the middle 3rd of the log-fluorescence 
range that might be only slightly wider than typical Tat-null distributions but do not significantly 
extend into both the ‘Dim’ and ‘Bright’ fluorescence ranges.  

In this study, our goal was to identify genetic elements that quantitatively modulate the 
distribution of expression phenotypes across a sampling of viral integrations. In particular, we 
were interested in identifying mutations that increase the Switching fraction. Thus, we required 
objective criteria for labeling phenotypes as Dim, Bright or Switching in order to quantitatively 
compare the distributions of phenotypes that arise under different experimental conditions. In 
particular, we needed to systematically extend our qualitative phenotypic scoring to those 
distributions whose phenotypes were ambiguous by eye. To solve this problem, we used feature-
based clustering as a tool to identify by eye threshold values for distribution feature measures 



that could be applied uniformly across the entire set of integration clones – a clonal distribution 
exceeding the cut-off value for any one of these feature measures was labeled as Switching. Our 
feature-based criteria, which we describe in more detail below, could be applied unambiguously 
to all of our clonal distributions, allowing us to quantitatively compare the distribution of 
phenotypes over viral integrations between mutant and WT Tat feedback circuits. 

We began by identifying 8 distribution features, which distinctively characterized the 
clonal expression phenotypes that were unambiguously labeled by eye as Dim, Bright, or 
Switching (Table S1). All distribution features were calculated based on the log-binned relative-
frequency fluorescence histograms generated by our cytometer, (covering 4 orders of magnitude 
in fluorescence on 1024 bins), and each feature was normalized by its inter-quartile range over 
the set of analyzed clones to put them on a comparable scales (except for Dim weight, which 
falls between 0 and 1 by design). See Figure S2A for the distribution of normalized features over 
the set of clonal distributions analyzed in this study. 

In order to organize the full set of clonal distributions and view them simultaneously, we 
applied k-means clustering to the complete set of clonal expansions of single integrations of the 
transactivation circuit that were analyzed in this study (including all mutants and methods of 
selection). Clustering was implemented in MATLAB (The Mathworks), based on the 8 
normalized distribution features enumerated above, using a Euclidean distance, on 20 clusters 
(for which distribution types that were qualitatively different by eye were well separated).  

To use our clusters as a tool for systematic phenotypic determination, we considered 5 
feature measures out of our group of 8 that most often by eye to identified Switching 
distributions: IQR (Feature 2); 3rd distribution moment (Feature 3); peak separation and dip for 
bimodal distributions (Features 5 and 6); and the product of Dim and Bright weights (Feature 8). 
We ordered our clusters by their centroid value separately for each of these features and chose as 
a cut-off value the cluster centroid such that the typical distribution shape in those clusters with 
centroid values above the cut-off appeared sufficiently variegated to be labeled as Switching by 
eye. Once these cut-offs were identified, we labeled a clonal distribution as Switching if any one 
of the considered 5 feature measures exceeded the identified cut-off, and imposed the additional 
requirement that all Switching distributions have weight in both the Dim and Bright fluorescence 
range (i.e. their value for Feature 8 was not 0). Distributions that were not labeled as Switching 
were then labeled as Bright if their ‘Dim’ weight (Feature 7) fell below 2/3, and the remaining 
distributions were labeled as Dim. All cut-offs are labeled in Figure S2A.  

Figure S2B provides the full set of clustered distributions. Clusters are ordered there by 
the product of Dim and Bright weight (Feature 8) at the cluster centroid and by IQR (Feature 2) 
for those distributions with either Bright or Dim weight equal to 0. Because clustering was based 
on distribution features rather than the distributions themselves, the final clustering did not 
necessarily group distributions whose profiles coincided, but rather grouped distributions with 
similar shape features. For example, because only one of the eight features was a measure of 
center, similarly shaped distributions that were significantly shifted from one another on the log 
fluorescence scale with little overlap could be assigned to the same cluster.  A heat-map 
presentation provides another visualization of the full set of clustered distributions (Figure S2C).  

We find that clusters 9-20 (Figure S2B) are all highly variegated, and all distributions in 
these clusters are labeled as Switching. These distributions unambiguously depict the type of 
behavior that we envisioned as a Switching phenotype, and these distributions would have been 



labeled as such by eye. Similarly, all distributions in clusters 1-4 are labeled as either Bright or 
Dim. These distributions are all mono-modal and more sharply peaked by comparison, and 
would not have been labeled as Switching by eye. Phenotypic labeling of distributions in the 
remaining clusters may have been ambiguous by eye, and it is here that our threshold-based 
criteria are an essential tool for systematic phenotype specification. It is on the basis of these 
systematic criteria that Switching fractions were calculated for the transactivation circuit variants 
analyzed in our study. 

While our approach to phenotypic specification is not an unsupervised method for 
defining a Switching criterion, it provides a means of unambiguously extending our by-eye 
intuition as to which distributions are sufficiently variegated to merit this label. Our approach is 
further supported by our simulation analysis of the transactivation circuit, which suggests that the 
distribution shapes that we labeled as Switching are in fact associated with delayed switching 
between low and high levels of expression, as discussed in the main text.  
II. Estimating Switching fractions from sub-sorted clonal data 
 

 A distinctive feature of the variegated phenotypes that are here labeled as Switching, is 
significant weight in the middle of the fluorescence range (which coincides with the dip in the 
multi-integration bulk-population histograms of the Tat feedback circuit). Here, as in previous 
work (1, 3), we found that collections of clonal populations generated from cells selected from 
the middle third of the bulk population fluorescence range were enriched in Switching 
phenotypes. Thus, sampling integrations of the Tat feedback circuit from the middle of the 
fluorescence range might provide a more efficient means of selecting and characterizing 
Switching phenotypes. However, our study required quantifying Switching fraction modulations 
over the full set of viral integrations for selected mutations, rather than the subset of integrations 
that are selected in a mid sort form the bulk population. Indeed, the sampling of integration 
clones induced by selecting cells only from the mid fluorescence range of the bulk population 
would be biased towards clones having more weight in the middle range of fluorescence (i.e. in 
the sort region). If our selected mutations were found to differentially affect the distribution of 
phenotypes for this mid-fluorescence-biased set of integrations, then effects on the Switching 
fraction of a mid sort might not be indicative of an effect on the Switching fraction for the full 
sampling of genomic integrations.    

To overcome the above difficulty, we derived a method of estimating the Switching 
fraction over the full population of genomic integrations of the Tat feedback circuit, based on a 
sample of integration clones generated from mid-sorted cells. The derivation builds on an 
application of Bayes’ Theorem, and requires an estimate of the ratio of bulk distribution weight 
in the sort region to the mean weight of the population of clonal Switching distributions in the 
sort region.  
 In the following, we are interested in the probability that a randomly selected cell taken 
from the bulk population of viral integrations will contain an integration of the transactivation 
circuit that would demonstrate a Switching phenotype by our categorization if that cell were 
expanded into a clonal population. We would like to relate this probability to the probability of 
selecting a Switching integration by choosing a cell whose fluorescence falls within a restricted 
range (the ‘sort’ region). This later probability is estimated by the fraction of Switching 
distributions measured experimentally for a set of clonal populations expanded from individual 



cells selected from the sort region. For concreteness, we consider the Mid-range of fluorescence, 
as specified in our experiments, in our derivation.  

To proceed, we assume that the bulk population of viral integrations consists of a 
representative sample of genomic integrations of the transactivation circuit. We further assume 
that the sub-population of cells generated from each integration (the descendants of each 
individual viral integration generated by the initial infection) is sufficiently randomized, such 
that the probability of observing a given range of fluorescence for any single cell in the bulk 
population is given by the weight in sort region of the steady-state distribution that would be 
observed if that cell were expanded to a large clonal population. Thus, we assume that the bulk 
fluorescence distribution that we measure samples from a steady-state distribution that is 
essentially a normalized weighted sum of the steady-state clonal fluorescence distributions 
generated by the full set of possible viral integrations; the weighting factor is proportional to the 
probability that a given viral integration is generated by the initial infections and subsequently 
observed in our experimental preparation.  

Let S be the event that a randomly selected cell contains an integration that would be 
labeled as Switching if that cell were expanded to a clonal population. Let M be the event that 
the cell is found in the fluorescence range specified by a mid sort of the bulk population. Let 
~ M  be the event that the selected cell is not found in the mid-sort region, i.e. the probability 
that its fluorescence falls outside of the mid-sort range. Then by the law of total probability,  

P S( ) = P S M( )P M( ) + P S ~ M( )P ~ M( ) .  

Here, P S M( )  is the probability that the selected cell contains a Switching integration, given 
that its fluorescence was found to be in the fluorescence range of the mid sort. This conditional 
probability, of finding a Switching phenotype in a mid sort, is estimated by the fraction of the 
expanded clonal populations that were labeled as Switching out of the set of clonal populations 
that were expanded from the mid sort in a given experiment. Similarly,P M( )  is the probability 
of finding an infected cell with fluorescence in the range of the mid sort (with any integration 
phenotype) and is estimated by taking the weight of the bulk histogram in the mid-sort region 
(typically the sort region was defined to either include approximately the middle 1/3 or the 
middle 1/6 of the fluorescence range of the bulk population).  

Unfortunately, we do not have a direct way to estimate P S ~ M( ) . This is the probability 
of finding a Switching integration outside of the mid-sort. Clones selected from this complement 
fluorescence range were only measured for our initial stratified estimate of the Switching 
fraction for the WT transactivation circuit (with probability sampling over the full range of 
fluorescence). This provides a way to validate the method derived here, and we found in the 
main text that the estimated Switching fractions match well (Figure 1D). 

We proceed by way of Bayes’ Theorem:  

P S ~ M( ) = P ~ M S( )P S( ) / P ~ M( )  

Here, P S( )  is precisely the Switching fraction that we wish to estimate (over the full population 
of genomic integrations), and P ~ M S( )  is the weight of the fluorescence distribution of the full 
Switching population outside of the sort region, which may be written as:  



P ~ M S( ) = 1! P M S( ) .  

Combining this with our original expression, we find: 

P S( ) = P S M( )P M( ) / P M S( ) , 
which is simply another expression of Bayes Theorem. Thus, we require an estimate of the 
weight of the full Switching population in the sort region, P M S( ) . This probability is also 
equal to the average weight of a Switching clone in the sort region, taken over the full set of 
Switching integrations. We next proceed to obtain an estimate for this quantity.   

By construction, all Switching distributions have weight in the mid-sort regions used in 
our experiments, because they have weight in both the Dim and Bright ranges and they are 
continuous. Thus, we can consider the set of Switching integrations, obtained from a mid sort, as 
a probability sample taken from the full set of Switching integrations. The sampling weight for 
each individual Switching integration is proportional to its weight in the sort region.  

Let the random variable WS  represent the fluorescence distribution weight in the sort 
region of a randomly selected clone from the full population of Switching integrations, with 
associated probability density function (PDF) !S w( ) . Let WM  represent the distribution weight 
in the sort region of a randomly selected clone from a mid-sorted population of Switching 
integrations, with associated PDF, !M w( ) . If all Switching clones have some weight in the sort 
region (as is ensured by our Switching criteria), the PDF for the mid-sorted clones is given by: 

!M w( ) = w!S w( ) / E WS[ ]    
Here, the probability of observing a weight w in the sort region for a cell selected from the sort 
region is proportional to that weight, and the expectation, ES W[ ] ! "S w( )

0

1

# dw = P M S( ) , 

which acts as normalization, is precisely the probability that we seek to estimate. However, we 
require an estimate that is based only on a sample selected from the sort region, and we can only 
directly estimate the density !M w( )  from such a sample, rather than !S w( ) . To solve this 
problem, we integrate the above expression and solve for E WS[ ] . We find: 

E WS[ ] = 1 / w( )!M dw0

1

"( )#1 $ 1 / E 1 /WM[ ]  

Because the ordinary plug-in estimate for expectation on the right hand side above will 
not be robust to sampling error at small values of w  and to experimental errors in these 
measurements, we considered estimates based on approximating the PDF by a Fourier series 
(coefficients matched to the first 4 distribution moments), or parametrically using a truncated 
Beta distribution. However, for our data set, we found all of these methods to provide estimates 
comparable to the plug-in value (with comparable confidence intervals, as calculated using a 
boot-strap approach), and therefore used the ordinary plug-in estimate for our analysis: 

 P̂ M S( ) = Ê 1 /WM[ ] = 1 / wi
i=1
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where the wi  are the mid-weights of the ns  Switching distributions obtained from our sample of 
expanded populations taken from the mid sort. 

Finally, we used our above estimate of the average weight in the sort region for the 
Switching population (P M S( ) ), together with our estimate of expected bulk weight in the sort 
region (P M( ) ), and our estimate of expected ‘Switching’ fraction for the mid sort 

( P̂ S M( ) = ns / n  where n is the number of expanded clonal populations sampled in the mid 
sort), to obtain an estimate of Switching fraction over the full set of viral integrations in the bulk 
population. We calculated uncertainties about this point estimate, due to both errors in estimating 
the Switching fraction of our mid sort based on our sample and in using this to infer Switching 
fractions over the full set of viral integrations by the method outlined above, via a bootstrap 
method. This allowed a bootstrap estimated 95% confidence interval about our point estimate 
Switching fractions, as well 95% CIs for estimated differences between WT Switching fractions 
and mutant Switching fractions, which are quoted in the main text.   

 
III. A model of intrinsic expression variability for the Tat positive feedback circuit 
 

 Our model of the Tat positive feedback circuit is an expansion of a basic Markovian 
model of gene expression that has been used in a number of other studies to analyze expression 
variability from promoters in the absence of feedback regulation (2, 4-6). Each process – gene 
activation, transcription, and translation – is assumed Markovian, proceeding at a fixed 
probability per unit time, which depends only on the current state of the system. The state of the 
system is specified by the ordered triple (a/i, m, n), representing the activation state of the 
promoter (a for active, i for inactive), the number of copies of the transcript of interest in the cell 
(m), and the number of copies of the protein of interest (n). For the transactivation circuit, we 
take the expressed protein to be Tat. The probability of finding the cell in a given state, will be 
denoted as ! a / i,m,n( ) . 

The following elementary reactions define our model: 
 

1) I ka0 1+!a f P[ ]( )( )" #"""" A  (gene activation, including Tat-dependence) 

2) A ki! "! I  (gene inactivation)  

3) A kt 0
+ 1+!t f P[ ]( )( )" #"""" A + T  (transcript production, including Tat dependence) 

4) T kt
!

" #" X  (transcript degradation, assumed to occur independently for each transcript) 

5) T kp
+

! "! T + P  (protein production, assumed to occur independently for each transcript) 

6) P kp
!

" #" X  (protein degradation, assumed to occur independently for each protein) 

 



Here, A = active state of the gene, I = inactive state of the gene, T = transcript, P = protein, X = 
degraded. The above ‘microscopic’ rates represent probabilities per unit time for each reaction, 
and can be related to ‘macroscopic’ reaction rates via appropriate scaling by system volume. 

 The function, f P[ ]( )  characterizes transactivation in our model, where P[ ] = n / v  is the 
concentration of Tat (with cell volume v ), which we assume to be proportional to GFP 
fluorescence. For !a = ! t = 0 , the model reduces to the previously considered model of 
stochastic expression from an unregulated promoter, considered here as a model for expression 
from our Tat-null system, which was analyzed in earlier work (2). To describe the positive 
feedback that characterizes the transactivation circuit, we considered a Michaelis-Menten form 
for f P[ ]( ) , which specifies a linear rate enhancement with saturation: 

f P[ ]( ) = P[ ]
P[ ] + !

 

Such a form for the Tat-dependence of gene activation and transcription in our system could 
arise as described below. 

Consider an expansion of our 2-gene-state model to include both Tat-bound and Tat-
unbound forms of the active and inactive gene state (i.e. a 4-state gene model). Let the transition 
rate from the inactive to active state be ! a,Tat  if Tat is bound and ! a0  if Tat is not bound, and let 
the transition rate back to the inactive state (! i ) be unaffected by Tat binding. Let the rate of 
transcription from the Tat-bound active state of the promoter be ! +

t ,Tat , and let the transcription 
rate be ! +

t0  otherwise. Let Tat binding and unbinding occur also with linear kinetics, proportional 
to Tat concentration. Now, assume that the rate of binding and unbinding is much faster than the 
gene activation and inactivation rate (in particular, binding and unbinding is much faster than the 
transcriptional burst duration), such that the state of the gene effectively reaches equilibrium with 
respect to Tat binding between gene-state transitions, with equilibrium constant 1 / ! . The above 
form for the Tat-dependent gene activation and active-state transcription rates then results, and 
describes the effects of feedback in that transactivation circuit. The gene activation rate at full 
transactivation is given as ! a,Tat =! a0 1+"a( )  and the active-sate transcription rate at full 
transactivation is given as ! +

t ,Tat =! t0
+ 1+" t( ) .  

Based on the discussion above, the parameters that describe Tat feedback in our model of 
the transactivation circuit are as follows. 1) The fold-amplification of the gene activation rate at 
full transactivation, specified by 1+!a( ) , which is also the fold-amplification of the 
transcripional burst frequency at full transactivation over the basal frequency in the bursting 
regime of the model. 2) The fold-amplification of the active-sate transcription rate at full 
transactivation, specified by 1+! t( ) , which is also the fold-amplification of the transcriptional 
burst size at full transactivation over the basal bust size in the bursting regime of the model. 3)! , 
which species the Tat concentration at which Tat is bound to the promoter half the time and the 
feedback begins to saturate. We note that the Tat-dependence for each type of feedback effect 
considered in our model (feedback to gene activation and to transcription) likely occur through 
different mechanisms, and could each saturate at a different Tat concentration. For simplicity, we 



have only considered a single Tat dependence for the gene-activation and transcription rates, and 
assumed that the Tat dependence saturates at the same Tat concentration for both feedbacks. 

 
IV. Model parameters 
 

We analyzed the behaviors of our model at different levels of its biochemical parameters 
by generating a series of phase diagrams, as described in the main text and discussed further 
below. In this way, the model parameters that specify basal transcriptional dynamics were 
systematically varied over the range observed experimentally, as discussed in our earlier work 
(2), while feedback parameters, which are not well-characterized experimentally, were sampled 
discretely over a range of values. Feedback parameters used for the phase diagrams in the main 
text were selected to approximately match model predicted WT Switching fractions and Bright 
fractions (discussed further below), and to illustrate their variation.  

The 3 model parameters characterizing Tat feedback (discussed above) were 
systematically sampled to generate a series of phase diagrams. Considered values for the fold-
amplification for the transcription rate 1+! t( ) , which amplifies the transcriptional burst size, 
were 10, 15, 20, 22, 25, 30, 40; the WT value used in Figure 7A (main text) was 30, and the 
value used to demonstrate decreased amplification in Figure 7A was 20. Considered values for 
the fold-amplification for the gene-activation rate 1+!a( ) , which amplifies the transcriptional 
burst frequency, were 1, 4, 7, 10; the value used for all phase diagrams in the main text was 7. 
These amplification factors combine approximately multiplicatively in their effect on mean 
expression, so that the fold amplification of mean expression at saturating Tat, relative to no Tat 
(basal), ranged from 40 to 400 over the series of phase diagrams that was analyzed. Actual 
amplification factors for mean expression were typically smaller than these values in practice 
because for basal expression patterns low levels of Tat expression still drove expression levels 
slightly above the level expected if the feedback were disabled (the Tat-null system), and 
because transactivated expression does not fully saturate Tat binding. We also considered values 
of the feedback saturation parameter corresponding to the low end and high end of the mid-
fluorescence range of our bulk-population histograms; the lower value was used for the phase 
diagrams in the main text, corresponding to a protein number of 60! p

+ /! p
" .  

For each of these combinations of transactivation parameters, the parameters describing 
basal transcription in our model (transcriptional burst size and burst frequency) were 
systematically varied over the range observed in our analysis of Tat-null clonal distributions 
(Figure 6, main text). In addition, adjustments were made in our sampling of basal transcriptional 
burst sizes to ensure that for each basal burst frequency considered in each phase diagram, basal 
burst sizes covering the range of values leading from Dim to Bright phenotypes were sampled. 
To generate a single phase diagram, at least 8 basal burst frequencies we sampled, and for each, 
at least 20 basal burst sizes were sampled, with parameter sampling becoming finer near 
phenotypic boundaries. Remaining model parameters we fixed at previously calibrated values, 
with ! i = 20! t

"  ensuring that transcriptional bursts are relatively short, as described (2).  

Transcriptional dynamics in the bursting regime ( ! i !! t
" ,! t

+ /! i  of order 1 or greater) 
were always found to give the best account for Tat-null distributions (discussed further below), 



and we assumed for our transactivation model that a bursting dynamic is maintained in the 
presence of Tat. In particular, the fact that ! i = 20! t

"  is independent of Tat binding in the model, 
and that transcription rates only increase with Tat binding, ensures that transcription always 
occurs in bursts at any concentration of Tat in the model. Thus, transcript production in our 
model always occurs in bursts, with the transcriptional burst size and frequency increasing in the 
presence of Tat.  
 

V. Model solution 
 

The Kolmogorov system of equations, known as the chemical master equation for 
chemically reacting systems such as our model, specifies the evolution of the probability 
distribution for our model, as follows: 

d! a,m,n( )
dt

= " # i + kt0
+ 1+$ t f n /%( )( ) + mkt" + mkp+ + nkp"( )! a,m,n( ) + ka0 1+$a f n /%( )( )! i,m,n( )

+kt
+ 1+$ t f n /%( )( )! a,m "1,n( ) + m +1( )kt"! a,m +1,n( ) + mkp+! a,m,n "1( ) + n +1( )kp"! a,m,n +1( )

 
d! i,m,n( )

dt
= " ka0 1+#a f n /$( )( ) + mkt" + mkp+ + nkp"( )! i,m,n( ) +% i! a,m,n( )

+ m +1( )kt"! i,m +1,n( ) + mkp+! i,m,n "1( ) + n +1( )kp"! i,m,n +1( )
 

 This model does not admit an analytic solution, nor is it even possible to analytically 
calculate distributions moments – distribution moments of all orders are analytically calculable 
for the model in the absence of feedback, but here each distribution moment is coupled to higher 
moments and the system of equations can only be closed by methods of moment completion that 
approximate higher moments. Stochastic simulation could be used to sample model trajectories 
and approximate probability distributions for finding the system in any combination of gene 
state, transcript number, and protein number (and should make use of approximations for the 
large numbers of protein molecules that would be present in a typical cell (7)). However, we 
preferred to solve the master equation numerically, as a more efficient and accurate approach, 
given the small numbers of reacting species, following our approach in earlier work (2). Briefly: 
the system was truncated at sufficiently large protein and transcript numbers, which are 
effectively ‘almost never’ sampled by the system; states with large transcript and protein 
numbers were grouped with neighboring states in a coarse-graining approach; and transition rates 
between these grouped states were approximated by interpolation. The resulting system of linear 
ODEs effectively interpolate between a numerical approximation to the Fokker-Plank equation 
for the system at large protein and transcript numbers, and the exact master equation at smaller 
molecular numbers.  

The system was numerically integrated semi-implicitly to ensure stability (8), until the 
distribution was approximately stationary (see Skupsky et al. (2) for further discussion). 
Additional care was taken to ensure that steady state was reached for our transactivation model, 
because bimodal distributions exist for some combinations of model parameters, with delayed 
switching between Dim and Bright expression states (i.e. these are the Switching distributions 
that are the focus of our present study). For this reason, to obtain steady-state distributions of the 
transactivation model, each simulation was initialized first in a Dim state (the steady-state 



probability distribution obtained for the smallest combination of basal transcriptional burst size 
and frequency considered in each phase diagram was used for this initialization), and evolved 
until the protein distribution became stationary. The system was then initialized in a Bright 
transactivated state (the system steady-state probability distribution obtained for the largest 
combination of basal transcriptional burst size and frequency considered in each phase diagram 
was used for this initialization) and evolved again until the protein distribution became 
stationary. The system was evolved for sufficient time, such that the stationary distributions for 
the two initializations matched to a pre-specified accuracy.  

 
VI. Time scales in the model 
 

 In earlier work (2), we had estimated a protein dilution time of approximately 20h 
(1 /! p

" ) and a transcript decay time of approximately 5h (1 /! t
" ) for our system. Typical basal 

transcriptional burst frequencies were found on the order of one per transcript decay time for the 
Tat-null model (Figure 6, main text), and burst frequencies increase with Tat concentration for 
the transactivation model. Thus, because the protein decay time is the longest time scale in our 
model, we expect this time scale to approximately determine the time scale of distribution 
equilibration for single-peaked expression phenotypes in our model. This means that, because 
typical burst frequencies are of the same order as the transcript decay rate, mono-modal 
expression phenotypes equilibrate on the time scale of several basal transcriptional bursts. On the 
other hand, for combinations of model parameters that lead to highly variegated phenotypes, 
where steady-state distributions include both cells demonstrating basal expression levels and 
cells demonstrating highly transactivated expression, the longer time-scale of transitions between 
these two expression regimes will determine distribution equilibration times. These transitions 
will depend on the infrequent occurrence of multiple larger and more frequent transcriptional 
bursts for activation, and multiple smaller and less frequent transcriptional bursts for 
deactivation. Thus, we find that the parameter regimes that specify Switching phenotypes in our 
model demonstrate significant delays in equilibration and approach to steady state. These time 
scales ranged from days to weeks in our simulations, as discussed further below. 
 We quantified delayed activation in our model as follows. The model was initialized in a 
basal expression state, corresponding to the lowest combination of basal burst size and frequency 
sampled in each phase diagram. The distribution of first-passage times was then calculated for 
cells crossing a threshold fluorescence value by imposing an absorbing boundary at this protein 
number in our simulations (the value of protein number that was used as a threshold corresponds 
to the cytometer fluorescence specifying the boundary of the Dim expression range for our 
feature-based clustering of clonal distributions). The time at which half of the cells had crossed 
this threshold was recorded as the Switching time in our model analysis. If this condition did not 
occur after a simulation time corresponding to approximately 400 hours of real time, it was 
considered that the distribution remained Dim and never transactivated.  

Using the above quantification of equilibration time, parameter combinations specifying 
Bright phenotypes resulted in Switching times of order one or a few days, corresponding to 
several protein decay times, as expected. On the other hand, parameter combinations that 
specified Switching distributions by our feature-based criteria demonstrated equilibration times 
of order many days to weeks, as discussed in Figure 2C (main text).  



Our quantification of equilibration time, and its relevance to the expression phenotypes in 
our system, is further motivated as follows. For the Switching phenotype to serve as a model for 
latency, we require an expression phenotype that will not transactivate during the active time of a 
T-cell (a primary source of latent infections), before it has transitioned to a memory state. On the 
other hand, if a latently infected cell is to spread the infection when it reactivates, it must do so 
within the lifetime of the T-cell after it reactivates from the memory state. If we make the 
simplifying assumption that these two times are the same and that the state of the reactivated cell 
is comparable to the initially infected cell, then the probability of significant viral expression in a 
cell before it transitions to the memory state is the same as for the reactivated T-cell, over the 
same time interval. If this probability is denoted p , then the probability that a cell does not 
significantly express viral proteins during the time before transition to the memory state (this is 
thought to be a requirement for the transition to occur), but does express the virus during the 
lifetime of the reactivated T-cell (otherwise the integrated virus is harmless) is p 1! p( ) . This 
probability is maximized at p = 1 / 2 . Thus, the equilibration time that we have recorded from 
our simulations specifies the memory-state transition time and reactivated host-cell lifetime for 
which a given viral integration is optimized to produce a latent infection that is capable of 
reactivation and viral spread. In particular, we note that equilibration times from days to weeks 
are predicted by the mode for Switching phenotypes, and thus viral integrations that optimally 
produce latent-but-reactivatable infections exist for any memory-state transition time and 
reactivated host-cell life time in this range.  

While the simplifying assumptions considered here may not hold for in vivo infections, a 
similar analysis could be carried out to determine the optimal reactivation time for an in-vivo 
viral integration to specify a latent-but-reactivatable infection, based on a more detailed model. 
Thus, the discussion here is meant to give an intuitive interpretation to model-based equilibration 
times that we have calculated and to demonstrate its relevance to a model of stochastically 
generated latent infection. The model-based equilibration times that we have calculated provide 
an important link between the steady-state expression phenotypes that we have measured in our 
experiments, and the dynamics of switching between expression states, which are the hallmarks 
of a Switching phenotype. For this reason, we consider the Switching phenotype to be a model 
for stochastically generated latent viral infection, for which we designed our experimental screen 
to select.  

 
VII. Fitting Tat-null distributions 
 

 The Tat-null model fixes !a = ! t = 0 , and is the same model that was fit to protein 
expression distributions from a similar model viral system in earlier work (2). We followed a 
slight modification of the procedure in that study. Here, rather than fitting the full fluorescence 
histogram for each distributions, we fit the first 8 central moments of each clonal fluorescence 
distribution, which were estimated from each fluorescence histogram after autofluorescence 
correction. Fit parameters were: the gene activation and inactivation rate, and the active-state 
transcription rate (for steady state distributions, the transcript decay rate can be effectively scaled 
to 1, so that the remaining model parameters are all measured relative to the transcript decay 
rate). However, it was always found that the best model fits were in the transcriptional bursting 
regime. In this regime, the gene inactivation rate is set sufficiently high, it does not affect 



distribution fits (we chose ! i = 20! t
" , following our earlier work), and the model could be 

effectively parameterized by basal transcriptional burst size (b =! t0
+ /! i ) and frequency (! a0 ). 

For each combination of model parameters, the first 8 central moments of the protein distribution 
were calculated analytically (2), and scaled to linearly convert from protein number to cytometer 
RFU for comparison to the experimental data. An initial-guess transcriptional burst size and 
burst frequency was calculated analytically, based on the mean and variance of each 
experimental fluorescence distribution. Then, a non-linear minimization routine was used to find 
the best-fit transcriptional burst size and burst frequency that minimized the sum of squared 
relative deviation between the first 8 central moments of the experimental and model 
fluorescence distributions. The best-fit values were generally close to the initial guess values. 

 To confirm that the best-fit model parameters for each clonal distribution were indeed in 
the transcriptional bursting regime for each of our experimental Tat-null vectors, we again 
followed the approach of Skupsky et al (2). For each clone, we scanned through fixed values of 
the gene inactivation rate, ! i . Consistent with this earlier work, we always found the optimal fits 
were at the largest values of ! i , corresponding to the shortest active-state durations (! = 1 /" i ). 
Thus, the best model fits for the Tat-null distributions were always in the transcriptional bursting 
regime.    
 

VIII. Estimating experimental sampling densities of basal transcription parameters 
 

 Our model phase diagrams tell us, for each combination of transactivation parameters, 
which combinations of basal transcriptional burst sizes and burst frequencies lead to each type of 
expression phenotype at steady state. In order to use our model to estimate the fraction of viral 
integrations that specify a Switching phenotype, we therefore required an estimate from our 
experiments of the probability density with which the virus samples basal transcriptional burst 
sizes and burst frequencies through its sampling of genomic environments, as dictated by random 
integration upon infection, for each viral vector that we analyzed. We obtained these estimates 
by combining information from our model fits of Tat-null clonal distributions and the 
corresponding bulk-integration distributions (Figure 6, main text), as described below.  

Our model fits of the sampled Tat-null clonal distributions provide best-fit basal 
transcriptional burst sizes and frequencies. To quantify the variation of transcriptional burst size 
and frequency over integration positions for each vector, these quantities were regressed against 
clonal expression means in a log-log plot (Figure 6C-D, main text). These regressions provide an 
estimate of the experimental viral sampling densities of transcriptional burst size and frequency 
over integration positions for each vector, at fixed values of expression mean (that is, conditional 
distributions on expression mean). However, these regressions do not provide any information 
about the sampling of expression means over viral integration positions, because expression 
mean was used to select the single-integration clones that were analyzed. Specifically, cells were 
selected for clonal expansion in our Tat-null system from the approximately the brightest 20% of 
the Tat-null bulk-integration population for each vector to ensure sufficient expression for auto-
fluorescence deconvolution and model fitting. Thus, the distribution of clonal expression means 
in our sample of single-integration Tat-null clones does not provide an estimate of the 
distribution of expression means over the full set of Tat-null genomic integrations.  



To obtain an estimate of the sampling density of basal expression means over viral 
integrations, we used the bulk-integration histograms for our Tat-null vectors (Figure 6A, main 
text), after smoothing and autofluorescence deconvolution. By combining the information in our 
Tat-null bulk-integration histograms with our regression of log best-fit transcriptional burst 
frequency against log expression mean from our sampled Tat-null integration clones, we 
obtained an estimate the sampling density of basal transcriptional burst size and burst frequency 
over the full set of genomic integrations sampled in our experiments, as discussed below.   

We have the following identity for the joint probability of obtaining a viral integration 
leading to a mean protein expression within a range dµ  about a value µ , and a transcriptional 
burst frequency within a range d! a  about a value ! a : 

P ! a ,µ( )dµd! a = P µ( )P ! a µ( )dµd! a  

The corresponding probability densities can be written as: 

 f ! a ,µ( ) = g µ( )h ! a µ( )  
Based on our regression analysis, we can approximate the density of transcriptional burst 
frequency, conditional on expression mean, as 

  h ! a µ( ) = hl log ! a( ) µ( ) d log ! a( )( )
d! a

=
N "0 + "1 log µ( ),S( )

! a

 

Here, hl log ! a( ) µ( )  is the conditional density for log transcriptional burst frequency, which is 

related to h ! a µ( )  via the above change-of-variable formula for probability densities; N a,b( )  is 
the normal probability density with mean a and standard deviation b; !0  and !1  are regression 
coefficients for the log-log regression of clonal transcriptional burst frequency against clonal 
expression mean, and S  is the standard estimate of the standard deviation of the random 
component of the normal regression model, calculated based on the residuals of our regression.  

 Next, we estimated the density g µ( )  by deconvolving from our bulk fluorescence 
distribution a ‘typical’ clonal fluorescence distribution of our Tat-null system, which was 
specified as follows. Earlier work (2), as well as our current analysis, indicated that clonal Tat-
null distributions in our system demonstrate a characteristic shape variation over integration 
positions, with the distribution variance proportional to the mean raised to a power slightly less 
than 2. To a good approximation, these distributions maintain a characteristic scale on a log 
fluorescence scale that is approximately normal (i.e. on a linear scale, these distributions are 
approximately log-normal). In particular, by scaling the fluorescence of each of our Tat-null 
distributions such that each distribution was shifted to a common mean for each experimental 
vector, we found that the distributions super-impose nicely. We averaged these shifted densities 
to obtain a ‘typical’ Tat-null clonal distribution, which approximates the distribution about any 
mean log fluorescence value for a given Tat-null clone. We denote this ‘typical’ distribution by 
! xl " µl( ) , where xl = log x( )  is the log cellular fluorescence and µl  is the mean log 
fluorescence of the distribution. Then our bulk log fluorescence distribution, which we denote by 
B xl( ) , can be considered as a convolution of the distribution of clonal mean log-fluorescences 



over integration positions, which we denote as gl µl( ) , and the ‘typical’ distribution log-
fluorescence distribution ! xl " µl( ) . We thus estimated gl µl( )  by first smoothing our 
experimental log-binned bulk fluorescence histograms to obtain B xl( ) , and then performing the 
deconvolution by standard methods (in Fourier space, using a Weiner filter). Because the log-
binned bulk distributions in our study are much wider than the ‘typical’ clonal distribution for 
each experimental vector, the shape of gl µl( )  was very similar to B xl( ) , and in particular was 
insensitive to modifications in the shape of the ‘typical’ Tat-null clonal distribution that was used 
in the deconvolution.  

Next, the sampling density of clonal expression mean fluorescence, g µ( ) , was obtained 
from the estimated sampling density of mean log fluorescence gl µl( )  via a simple change of 
variables as g µ( ) = gl µl µ( )( ) dµl / dµ( ) , and we assumed that µl  is related to mean 

fluorescence by µx = e
ul +!

2
l /2 , as for a log-normal distribution. Here, ! 2

l  is the variance of our 
estimated ‘typical’ clonal log-fluorescence distribution.  Lastly, the estimated density of 
fluorescence means was converted to a density in transcript mean according to µ = Cµx  where C 
is a constant that had been calibrated following our approach in Skupsky et al. (2), and the 
relationship is expected to be linear for the Tat-null system.  

Finally, the mean transcript number can be written in terms of transcriptional burst size 
and burst frequency in the bursting regime, according to µ =! ab . Thus, we estimated the density 
f ! a ,µ( ) = g µ( )h ! a µ( )  using the above estimates of h ! a µ( )  and g µ( ) , and used this to 

estimate a sampling density in terms of transcriptional burst size and frequency via one more 
final change of variables, according to  

!f ! a ,b( ) = f ! a ,! ab( )"µ / "b =! a f ! a ,! ab( ) . This 
estimated basal parameter sampling density was then used, in turn, to estimate model-predicted 
Switching fractions at fixed values of model feedback parameters, based on calculated phase 
diagrams, as outlined below.  
 

IX. Phase diagrams-based calculation of Switching fractions 
 

 To generate model-predicted Switching fractions, we generated estimated basal 
parameter sampling densities for the WT and SP1 mutant experimental vectors that were 
analyzed in the main text, as described above. Then for each analyzed combination of 
transactivation parameters, a model-predicted Switching fraction was estimated for each vector 
by summing the estimated basal parameter distribution weight in the Switching region on the 
phase diagram. Similarly, Bright fractions could be calculated by summing the basal parameter 
distribution weights in the Bright region of each phase diagram. Phenotypic boundaries in all 
phase diagrams were similarly shaped for all analyzed sets of transactivation parameters that 
generated robust Switching phenotypes, though their positions and separation varied.  This 
shifting of phenotypic boundaries with model feedback parameters could account for changes in 
phenotypic fractions, as described in the main text.  

The transactivation parameters used in the main text were selected to specify a Switching 
fraction of approximately 10% and a Bright fraction of approximately 45% for our WT vector, 



qualitatively matching our experimental data (Figure 7, main text). For these parameter values, 
the basal parameter sampling density estimated for the Sp1 mutant led to a predicted Switching 
fraction of approximately 20% and a Bright fraction of approximately 30% (Figure 7, main text). 
Though this enrichment is well below the experimentally observed value of nearly 6-fold 
enrichment, it does begin to approach the lower bound of the estimated 95% CI for our 
experiments. More importantly, it indicates that small effects on the basal parameter sampling 
density over a set of viral integrations can still significantly affect the Switching fraction that 
results in the presence of feedback. In addition, further effects on the basal parameter sampling 
density at low basal transcriptional burst sizes and frequencies, which were not well resolved in 
our analysis, could further contribute. 

 
X. A model extension to include transcriptional reinitiation. 

A natural extension of the two-state model of gene expression that we considered adds a 
third gene state to explicitly model the process of transcriptional reinitiation. In this extended 
model, the gene can be 1) in an inactive state that produces no transcript (I); activation (with rate 
ka ) then makes the gene accessible to RNA polymerase and transcription-complex binding, and 
transcription proceeds from 2) this transcriptionally active state (A) at rate k+t  as in the two-state 
model. Following each transcript-production event, the gene is left in 3) a refractory state (R), 
which produces no transcript; return to the active state (reinitiation) occurs at rate kr ; return to 
the inactive (inaccessible) state only occurs from the active state, with rate ki  as in the two-state 
model). The elementary reactions describing these gene-state transitions in the extended model, 
are as follows:  

1) I ka0 1+!a f P[ ]( )( )" #"""" A  (gene activation, including Tat-dependence) 

2) A ki! "! I  (gene inactivation)  

3) A kt 0
+ 1+!t f P[ ]( )( )" #"""" R + T  (transcript production, including Tat dependence, and the 

gene-state becomes refractory). 

3.5) R kr! "! A  (transcriptional reinitiation)  

The remaining processes of transcript degradation, and protein production and degradation, 
proceed as in the 2-state model. The transcriptional behavior of such a cyclic three-state gene 
model has been analyzed by Tang et al. in the absence of feedback (9).  

Our expanded model could be solved and analyzed by similar methods as those used here 
to solve our two-state model of the transactivation circuit. However, for the purposes of 
investigating whether such a model modification could account for the Switching-fraction 
enhancement seen in our experiments, we considered a simplification that maps the three-state 
model onto our two-state model through a redefinition of model parameters, based on the 
following argument.  

The three-sate model remains Markovian. Therefore the time for each gene-state 
transition is still exponentially distributed. During a transcriptional burst (that is, during the time 
from a gene-activation event until the next inactivation event), the mean time between transcript 
production events is given as ! t = 1 /"

+
t +1 /" r  (the sum of the average transcript production 



time and the average reinitiation time). The time between transcript-production events will no 
longer be exponentially distributed (its distribution will be a convolution of the exponential 
distribution with rate ! +

t  that describes the time till the next transcription event when the gene is 
in the active state and the exponential distribution with rate ! r  that describes the time until a 
reinitiation event when the gene is in the refractory state, leading to a gamma distribution when 
the two rates are equal). However, in the bursting regime, when a significant number of 
transcripts are produced during each transcriptional burst, burst-size variability occurs primarily 
due to variability in the length of each transcriptional burst (this time is also exponentially 
distributed, with rate ! i ), rather than due to variability in the time between each transcript-
production event within a transcriptional burst. In other words, the distribution of times between 
transcript production events, which is the only feature of transcriptional dynamics that is affected 
by the addition of a reinitiation step to our model, will primarily affect the distribution of 
numbers of transcripts and proteins in the cell through its effect of the mean time between 
transcript production events, rather than through effects on variability in this time.  

Thus, rather than explicitly modeling the three-state model, we considered the two-state 
model with a rescaled transcript production rate: ! *

t = 1 / " t =! r!
+
t / !

+
t +! r( ) . If we use the same 

form for the transcription rate in the presence of Tat that was used for our two-state model of the 

transactivation circuit, ! +
t =!

+
t0 1+" t f P[ ]( )( )  with f P[ ]( ) = P[ ]

P[ ] + !
, then the transcription rate 

for the three-state-gene model of the transactivation circuit, which effectively includes 
reinitiation via the above-argued separation of time scales, can be written as: 

! *
t =!

*
t0 1+"

*
t f

* P[ ]( )( )  

The rescaled parameters defined here are related to those of the three-state model under the 
above assumption of separation of time scales, according to: 

! *
t0 =!

+
t0

! r

! +
t0 +! r

 (rescaled basal transcription rate) 

! *
t = ! t

" r

" +
t0 +! t"

+
t0 +" r

 (rescaled amplification factor for transactivated transcription rate) 

f * P[ ]( ) = P[ ]
P[ ] + ! *

 (rescaled Tat-dependence for transactivated transcription) 

! * = !
" +
t0 +" r

" +
t0 +#"

+
t0 +" r

 (rescaled feedback saturation parameter) 

In other words, the model and its parametric dependencies has the same form as the two-sate 
model with the above parametric rescaling. 

For fast reinitiation ( ! r !!
+
t ), the rescaled model parameters take their two-state-model 

values. On the other hand, for moderate values of the reinitiation rate ( !
+
t ~! r !!

+
t0 ), including 

transcriptional reinitiation in the model has little effect on the basal transcription rate, but decreases 
the maximal fold-increase of transactivated expression over basal, causing the affect of Tat 



feedback on its transcription rate to saturate earlier. In combination, these two effects specify a 
perturbation the decreases mean Bright expression but has little effect on initial transactivation 
dynamics from a Dim expression state. As a result, bright expression peaks are shifted towards 
lower fluorescence, but remain phenotypically Bright, and phenotypic boundaries are minimally 
affected, as illustrated in Figure 7A (main text). The phenotypic boundaries calculated for 
unimpaired reinitiation in the main text use ! r = 500! i , which means that the reinitiation rate is 
equivalent to the transcript production rate that would generate transcriptional bursts of average size 
500 transcripts if reinitiation were infinitely fast. Qualitative behaviors in our phase diagrams were 
preserved in our simulations as the reinitiation rate was decreased, until a value of approximately 
! r = 20! i . At these higher levels of reinitiation impairment, transactivated expression is 
sufficiently weakened, such that the variegated distributions that result do not demonstrate 
sufficient width to be labeled as Switching by our experimental criteria, and the Switching region is 
lost from the phase diagram. a value of ! r = 100! i  was chosen to demonstrate the effects of 
moderate impairment in the main text, which shifts Bright expression peaks (Figure 7C, main text) 
but still approximately preserves the Switching region of the phase diagram (Figure 7A, main text). 
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