## **Online supplemental material**

Table S1. Genomic organization of the siderophore biosynthetic genes *sidH*, *sidF*, *sidI*, *sidD*, *sidC* and *sidA* in various fungal species. Genes that are colocalized in the genome, i.e. organized in gene clusters, are marked in grey or black, respectively. Gey and black represent two different gene clusters. The gene accession numbers encoding orthologs to SidI, SidH and SidF correspond to the proteins listed in Table 1 and Table S2. Abbreviations: E, *Eurotiomycetes*, L; *Leotiomycetes*; S, *Sordariomycetes*; D, *Dothideomycetes*; B, *Basidiomycota*.

| sidH           | sidF           | sidD           | sidl           | sidC           | sidA           |                          |   |
|----------------|----------------|----------------|----------------|----------------|----------------|--------------------------|---|
| AFUA_3G03410   | AFUA_3G03400   | AFUA_3G03420   | AFUA_1G17190   | AFUA_1G17200   | AFUA_2G07680   | Aspergillus fumigatus    | E |
| NFIA_005580    | NFIA_005570    | NFIA_005590    | NFIA_008180    | NFIA_008170    | NFIA_083410    | Neosartorya fischeri     |   |
| AO090103000168 | AO090103000169 | AO090103000167 | AO090023000529 | AO090023000528 | AO090011000926 | Aspergillus oryzae       |   |
| AN6235         | AN6234         | AN6236         | AN0609         | AN0607         | AN5823         | Aspergillus nidulans     |   |
| An03g03550     | An03g03540     | An03g03520     | An06g01320     | An06g01300     | An05g00220     | Aspergillus niger        |   |
| ACLA_061010    | ACLA_061020    | ACLA_061000    | ACLA_018340    | ACLA_079690    | ACLA_079680    | Aspergillus clavatus     |   |
| TSTA_100270    | TSTA_100280    | TSTA_100300    | TSTA_041590    | TSTA_090280    | TSTA_090270    | Talaromyces stipitatus   |   |
| Pc22g20370     | Pc22g20380     | Pc22g20400     | Pc21g23730     | Pc13g05250     | Pc13g05260     | Penicillium chrysogenum  |   |
| HCBG_04177     | HCAG_08322     | HCBG_09033     | HCAG_08321     | HCBG_04660     | HCAG_08320     | Ajellomyces capsulatus   |   |
| BC1G_10565     | BC1G_10564     | BC1G_10567     | BC1G_14541*    | BC1G_03511     | BC1G_03506     | Botryotinia fuckeliana   | L |
| SS1G_04249     | SS1G_04248     | SS1G_04250     | SS1G_13961     | SS1G_06185     | SS1G_03696     | Sclerotinia sclerotiorum |   |
| FG03746        | FG03745        | FG03747        | FG04333        | FG11026        | FG05872        | Gibberella zeae          | s |
| CHGG_09472     | CHGG_09473     | CHGG_09475     | CHGG_10903     | CHGG_02251     | CHGG_09542     | Chaetomium globosum      |   |
| PODANS72p146   | PODANSg2355    | PODANSg524     | PODANSg2356    | PODANSg3444    | PODANSg3445    | Podospora anserina       |   |
| NCU06960       | NCU06062       | NCU08441       | NCU06063       | NCU07119       | NCU07117       | Neurospora crassa        |   |
| MGG_14970      | MGG_08289      | MGG02351       | MGG_08288      | MGG_12175      | MGG_04212      | Magnaporthe oryzae       |   |
| SNOG_00297     | SNOG_14362     | SNOG_14368     | SNOG_14361     | SNOG_14834     | SNOG_14364     | Phaeosphaeria nodorum    | D |
| UM01433        | UM01432        | UM01434        | UM04803        | UM05165        | UM10188        | Ustilago maydis          | В |

| gene | gene locus <sup>ª</sup> | <i>A. nidulans</i> ortholog <sup>ª</sup><br>(gene locus) | % identity<br>(similarity) <sup>b</sup> | length <sup>ª</sup> | proposed function                                                    |
|------|-------------------------|----------------------------------------------------------|-----------------------------------------|---------------------|----------------------------------------------------------------------|
| sidA | AFUA_2G07680            | AN5823.4                                                 | 77 (86)                                 | 498                 | N⁵-ornithine-monooxygenase (Eisendle et al., 2003)                   |
| sidl | AFUA_1G17190            | AN0609.4                                                 | 70 (77)                                 | 590                 | TAFC biosynthetic acyl-CoA ligase,<br>PTS2 (Yasmin et al., 2011)     |
| sidH | AFUA_3G03410            | AN6235.4                                                 | 84 (90)                                 | 270                 | TAFC biosynthetic enoyl-CoA hydratase,<br>PTS1 (Yasmin et al., 2011) |
| sidF | AFUA_3G03400            | AN6234.4                                                 | 79 (89)                                 | 462                 | TAFC biosynthetic transacylase PTS1 (Schrettl et al., 2007)          |
| sidD | AFUA_3G03420            | AN6236.4                                                 | 64 (78)                                 | 2086                | fusarinine C NRPS (Schrettl et al., 2007)                            |
| sidG | AFUA_3G03650            | AN8539.4                                                 | 57 (72)                                 | 202                 | TAFC biosynthetic transacetylase<br>(Schrettl et al., 2007)          |
| sidL | AFUA_1G04450            | AN10080.4                                                | 62 (75)                                 | 503                 | FC biosynthetic transacetylase (Blatzer et al., 2011)                |
| sidC | AFUA1G17200             | AN0607.4                                                 | 55 (71)                                 | 4763                | Ferricrocin NRPS (Schrettl et al., 2007)                             |

Table S2. Comparison of siderophore biosynthetic genes of A. fumigatus and A. nidulans.

<sup>a</sup> predicted gene and length of protein based on gene annotations (http://www.broad.mit.edu/annotation/ genome/aspergillus\_group/MultiHome.html) <sup>b</sup> BlastP (Altschul *et al.*, 1990) of *A. fumigatus* protein against predicted *A. nidulans* sequence

#### Table S3. Comparison of peroxins of A. fumigatus and A. nidulans.

| Gene | gene locus <sup>ª</sup> | deletion<br>strain | A. fumigatus<br>ortholog <sup>ª</sup> | % identity<br>(similarity) <sup>b</sup> | length <sup>a</sup> | proposed function              |
|------|-------------------------|--------------------|---------------------------------------|-----------------------------------------|---------------------|--------------------------------|
| pexC | AN2281.4                | pexC::bar          | AFUA_5G06300                          | 70 (82)                                 | 530                 | peroxisome membrane biogenesis |
| pexE | AN10215.4               | ∆pexE              | AFUA_8G05240                          | 71 (76)                                 | 655                 | PTS1 protein import receptor   |
| pexF | AN2925.4                | pexF23             | AFUA_3G08000                          | 78 (87)                                 | 1476                | AAA ATPase, Pex5 recycling     |
| pexG | AN0880.4                | pexG14             | AFUA_1G15400                          | 85 (92)                                 | 355                 | PTS2 protein import receptor   |
| pexK | AN1921.4                | ∆pexK              | AFUA_6G07740                          | 87 (96)                                 | 235                 | peroxisome proliferation       |
| antA | AN0257.4                | antA15             | AFUA_1G03440                          | 83 (91)                                 | 336                 | peroxisomal ATP carrier        |

<sup>a</sup> predicted gene and length of protein based on gene annotations (http://www.broad.mit.edu/annotation/ genome/aspergillus\_group/MultiHome.html) <sup>b</sup> BlastP (Altschul et al., 1990) of *A. fumigatus* protein against predicted *A. nidulans* sequence

## Table S4. Strains used in this study

|                        | genotype                                                | reference                   |
|------------------------|---------------------------------------------------------|-----------------------------|
| Aspergillus fumigatu   | s                                                       |                             |
| ATTCC46645             | wild type (wt)                                          | American type culture       |
| ∆sidH                  | wt, sidH::hph/tk                                        | (Yasmin et al., 2011)       |
| ∆sidF                  | wt; sidF::hph                                           | (Schrettl et al., 2007)     |
| ∆sidI                  | wt; sidl::hph/tk                                        | (Yasmin et al., 2011)       |
| sidlgfp                | wt; sidl::sidl-gfp, ptrA                                | this study                  |
| gfp-sidH               | $\Delta$ sidH, gfp-sidH(p), ptrA(p)                     | this study                  |
| gfp-sidF               | $\Delta$ sidF, gfp-sidF(p), ptrA(p)                     | this study                  |
| gfp-sidH∆PTS1          | $\triangle$ sidH, gfp-sidH $\triangle$ PTS1(p), ptrA(p) | this study                  |
| gfp-sidH/rfp-pts1      | <i>gfp-sidH,</i> rfp-pts1(p), <i>phleo(p)</i>           | this study                  |
| Aspergillus nidulans   |                                                         |                             |
| WGTRAN, wt             | argB2::pTran, argB; bgA0; biA1                          | (Brakhage & Turner, 1992)   |
| pexC::bar              | biA1 niiA4 pyroA4 pexC::bar                             | (Hynes et al., 2008),       |
| ∆pexE                  | yA1, su-ad ad E20, pyroA4, areA102, riboB2,             | (Hynes et al., 2008),       |
| pexF23                 | yA1, pabaAl, PexF(6)23                                  | (Hynes et al., 2008), BU223 |
| pexG14                 | yA1, pabaAl, PexG(7)14                                  | (Hynes et al., 2008), BU414 |
| ∆pexK                  | yA1, su-ad ad E20, pyroA4, riboB2, areA102              | (Hynes et al., 2008),       |
| pexK-gfp               | nkuA∆ pyroA4, pexK∷gfp(PyroA+)                          | (Hynes et al., 2008),       |
| pexCc                  | pexC::bar, pl4(pyroA+) pexC                             | Hynes unpublished,          |
| pexEc                  | ∆pexE, pI4(pyroA+) pexE                                 | Hynes unpublished,          |
| ∆pexE/pexF23           | yA1, pabaAI, pyroA4 , PexG14, pexE(5)∆(ribo+)           | Hynes unpublished,          |
| wt gfp-sidH            | wt, gfp-sidH(Af)(p); ptrA(p)                            | this study                  |
| $\Delta pexE$ gfp-sidH | ∆pexE gfp-sidH(Af)(p), ptrA(p)                          | this study                  |
| pexG14 gfp-sidH        | pexG14 gfp-sidH(Af)(p), ptrA(p)                         | this study                  |
| wt gfp-sidI(Nc)        | wt, gfp-sidl(Nc)(p), ptrA(p)                            | this study                  |
| ∆pexE gfp-sidI(Nc)     | ∆pexE gfp-sidI(Nc)(p), ptrA(p)                          | this study                  |
| ∆pexE/pexF23           | yA1, pabaAl, pyroA4 , PexG14, pexE(5)∆(ribo+)           | Hynes unpublished,          |
| antA15                 | yA1, pabaAl, antA15                                     | (Hynes et al., 2008),       |
| wt sidl-gfp            | wt, sidl-gfp(Af)(p); phleo(p)                           | this study                  |
| pexG14 sidl-gfp        | pexG14 sidl-gfp(Af)(p), phleo(p)                        | this study                  |
| Neurospora crassa      |                                                         |                             |
| 74-OR23-1A(FGSC        | wild type (A)                                           | American type culture       |

## Table S5. Plasmids used in this study

| Name                 | purpose                                                                               | reference                          |
|----------------------|---------------------------------------------------------------------------------------|------------------------------------|
| psidD-COS            | cosmid carrying sidD and adjacent sidH and sidF                                       | (Schrettl et al., 2007)            |
| pPhleo               | the phleomycin resistance marker gene <i>ble</i> in<br>bluescript                     | (Punt <i>et al.</i> , 1987)        |
| pUCGH                | carrying EGFP-encoding gene                                                           | (Langfelder et al.,<br>2001)       |
| pCAME703-AoHapX-full | expression vector for N-terminal GFP tagging                                          | (Goda <i>et al.</i> , 2005)        |
| pSK275               | pyrithiamine resistance gene ptrA                                                     | (Kubodera <i>et al.</i> ,<br>2000) |
| pGfp                 | EGFP-encoding gene in pGEM-5zf(+)                                                     | this study                         |
| pSidl-Gfp            | C-terminal EGFP tagged A. fumigatus SidI<br>truncation in pGEM-5zf(+)                 | this study                         |
| pSPGfp               | C-terminal EGFP tagged <i>A. fumigatus</i> Sidl truncation and resistance gene ptrA   | this study                         |
| psidH <sup>c</sup>   | functional sidH copy for complementation                                              | this study                         |
| pGFP-SidH            | expression plasmid encoding N-terminal GFP-tagged A. fumigatus SidH                   | this study                         |
| pGFP-SidH∆PTS1       | expression plasmid encoding N-terminal<br>GFP-tagged A. fumigatus SidH lacking PTS1   | this study                         |
| pGFP-SidF            | expression plasmid encoding N-terminal<br>GFP-tagged A. fumigatus SidF                | this study                         |
| ·<br>pGFP-NcSidI     | expression plasmid encoding N-terminal GFP-tagged <i>N. crassa</i> Sidl               | this study                         |
| pSidI-Gfp2           | Expression plasmid encoding C-terminal GFP-<br>tagged A. fumigatus SidI (full length) | this study                         |
| pSK379-RFP-PTS1      | Expression plasmid encoding RFP-PTS1                                                  | (Beck & Ebel, 2013)                |

# Table S6. Oligonucleotides used in this study.

| primer       | sequence 5' to 3'                                                                                          |
|--------------|------------------------------------------------------------------------------------------------------------|
| oAf538RAC1-f | CAC TGT GGC TTT CGC TTC                                                                                    |
| oGFP1        | GAC CAC ATG AAG CAG CAC                                                                                    |
| ogfp4        | AAC CAC TAC CTG AGC AAC                                                                                    |
| osidHqfp1    | ACA <u>AGA TCT</u> TCA ACA GAA GCA CAT CCA AC                                                              |
| osidHqfp2    | CAC $\underline{\text{GCG}}$ $\underline{\text{GCC}}$ $\underline{\text{GC}}$ T CAC CTC CAC TGT GGC TTT CG |
| osidHafp3    | CTG <u>GCG GCC GC</u> T TCA CAA CTT AGA CGG CC                                                             |
| oafpsidF2    | ATA <u>GCG GCC GC</u> T TAC AGC TTT GCA TCC CAC                                                            |
| oafpsidF3    | ATA <u>GGA TCC</u> GCG ACT CAA AGC AGC ACC                                                                 |
| oAf₅₃₀AT1-r  | AGT TTT GAG CGA GAG GGG                                                                                    |
| oAfsidI-1    | CAG T <u>GG ATC C</u> TT TTT CCT TTA TTG CTG CC                                                            |
| oAfsidI-2    | CTA CGG ATG TCT GCA ACC                                                                                    |
| oNcSidI-1    | AAT AAT <u>AGA TCT</u> TCA CCG GCG TTG GTA                                                                 |
| oNcSidI-2    | TTA <u>GCG GCC GC</u> T CCA TCT TCT TCC CTC AG                                                             |
| oAfsidlafn1  | ATA <u>GAT ATC</u> AGC CGG ACA AGA AAC AAG                                                                 |
| oAfsidlafp2  | TAT <u>ATC GAT</u> GTT TGT GGT TTC CGT TGG                                                                 |
| oAisiuiyipz  |                                                                                                            |

Introduced restriction sites are underlined.

Table S7. Homologs of *Basidiomycetes* to *A. fumigatus* SidF identified by a BlastP search (http://www.ncbi.nlm.nih.gov/sutils/genom\_table.cgi?organism=fungi).

| Protein        |                                    | Score<br>(Bits) | E<br>Value |
|----------------|------------------------------------|-----------------|------------|
|                |                                    | · · ·           |            |
| XP_001731607.1 | [Malassezia globosa]               | 205             | 3e-59      |
| XP_757579.1    | [Ustilago maydis]                  | 182             | 1e-50      |
| EG003326.1     | [Serpula lacrymans var. lacrymans] | 173             | 9e-48      |
| XP_003035019.1 | [Schizophyllum commune]            | 171             | 4e-47      |
| XP_003322498.1 | [Puccinia graminis f. sp. tritici] | 163             | 1e-44      |
| EGG01975.1     | [Melampsora larici-populina]       | 158             | 1e-43      |
| XP_002910369.1 | [Coprinopsis cinerea okayama]      | 155             | 1e-40      |
| XP_756191.1    | [Ustilago maydis]                  | 147             | 4e-38      |

**Figure S1. Similarity of** *A. fumigatus* **Sidl with proven and putative Acyl-CoA synthases from** *A. nidulans* **(Reiser et al., 2010).** FaaB, FatA, FatB, FatC and FatD have been shown to, while PcsA is predicted to, localize to peroxisomes (A) BlastP search results (http://www.ncbi.nlm.nih.gov/blast/) using *A. fumigatus* **Sidl as bait;** functionally proven acyl-CoA synthases are in bold; (B) Phylogenetic tree (http://www.genome.jp/tools-bin/clustalw); (C) Alignment of *A. fumigatus* **Sidl and the peroxisomal** *A. nidulans* **acyl-CoA synthase FatD**.

## Α

В



## С

Identities = 147/523 (28%), Positives = 236/523 (45%), Gaps = 55/523 (11%)

| AfSidI | 66  | TYTDLKDEADRVARGLLAMGIQKGDRIGIMAGNCEQYISVFFAAARVGAILVVLNNTYTP<br>TY I. I. $+G+G + + N ++T + AA+ AT I.N Y$           | 125 |
|--------|-----|--------------------------------------------------------------------------------------------------------------------|-----|
| AnFatD | 28  | TYAQLHSHISAFQEKLAKLGVGHGAAVNLALINSYEFIVGFLAASWQRAIAAPLNPAYKQ                                                       | 87  |
| AfSidI | 126 | SELYYALGHTDCRLLFLTPRIGRHSLEEVLAKLGPRPKEQGTSSALEEIIILRGQYSGFS<br>E + + L+ L PR E A+ GP + + I ++G                    | 185 |
| AnFatD | 88  | DEFEFYIDDLSSTLV-LIPRESYAQNGPAVLAGRKYQAAIAECYWNGTE                                                                  | 135 |
| AfSidI | 186 | TYEHVIQRGLPLPSHALQDREAELHSTDVCNLQFTSGSTGNPKAAMLTHHNLVNNSRFIG<br>V + G + + A+ D+ + TSG+TG PKA LTH NL R I            | 245 |
| AnFatD | 136 | VVLDVKELGKLKGKGDIGVQTAQPDDIALVLHTSGTTGRPKAVPLTHKNLTTTMRNIQ                                                         | 193 |
| AfSidI | 246 | DRMNLTSFDILCCPPPLFHCFGLVLGMLAVVTHGSKIIFPSETFDPTAVLHAISDEKCTA<br>LT D PLFH GL+ LA + G +I P++ F + K                  | 305 |
| AnFatD | 194 | ATYKLTPQDRTYLVMPLFHVHGLLAAFLAPLASGGSVIVPTK-FSAHQFWSDFIEYKANW                                                       | 252 |
| AfSidI | 306 | LHGVPTMFEAILSLPKP-PNFDCSNLRTGIIAGAPVPRPLMKRLLEELNMTEYTSSY<br>VPT+ + +L P P P +R+ PL + ++L T +Y                     | 361 |
| AnFatD | 253 | YSAVPTIHQILLKSPLPNPIPQIRFIRSCSSPLSPKTFQDLEKTLNAPVLEAY                                                              | 305 |
| AfSidI | 362 | GLTEASPTCFNALTTDSIERRLTTVGKVMPHAKAKIIDTQGHIVPIGQRGELCIAGY<br>+TEA+ + +T++ + +R+ +VG + + KI+D G+ VP G E+C+ G        | 418 |
| AnFatD | 306 | AMTEAAHQMTSNPLPPAKRQPGSVG-IGQGVEIKILDQSGNEVPQGHEAEICVRGE                                                           | 360 |
| AfSidI | 419 | QLTKGYWNNPEKTAEALITDSDGVTWLKTGDEAIFDEEGYCSITGRFKDIIIRGGENIYP<br>+TKGY NNP + D + +TGD+ D +GY ITGR K++I +GGE I P     | 478 |
| AnFatD | 361 | NVTKGYLNNPAANKSSFTKDGFFRTGDQGKKDPDGYVIITGRIKELINKGGEKISP                                                           | 416 |
| AfSidI | 479 | LEIEERLAAHPAIEVASVIGIPDQ-KYGEVVGAFLALAADVSARPSDEELRAWTRETLGR<br>+E++ L +P + A IPD YGE +GA + L + +A +++EL++W +E L + | 537 |
| AnFatD | 417 | IELDNTLLQNPNVGEAVCFAIPDPGHYGEDIGAAVVLKSGQNATEDELKSWVQEKLAK                                                         | 474 |
| AfSidI | 538 | HKAPQYFFVFGEEGVDRTIPVTGSGKVRKVDLRKIAASVLERR 580<br>K P+ + IP T +GK+++ RK+A ++L+ +                                  |     |
| AnFatD | 475 | FKTPKQQIPKTATGKIQRRKVAEAMLKPK 503                                                                                  |     |

Figure S2. Alignment of *A. fumigatus* SidH and the mitochondrial localized enoyl-CoA hydratase EchA from *A. nidulans* that is involved in β-oxidation (Maggio-Hall & Keller, 2004). Homologs with PTS1 motifs have been postulated to be involved in peroxisomal β-oxidation (Maggio-Hall & Keller, 2004).

```
BlastP: Score = 228, E-value = 2e-73
Identities = 123/279(44%), Positives = 167/279(59%), Gaps = 15/279(5%)
             MSTEAHPTVQGCLVSFPTPHI-----LLLTLNRPEKRNCISLATSAEIQRLWTWFDTQ
Af SidH 1
                                                                       53
             + + A P+ + L S P P +
                                      +++TLNRP+ N +S
                                                         E+
                                                               + +D
            LYSSAAPSYEHILTSTPKPGVGLNTDFTVIVTLNRPKALNALSSPLFKEVNDALSKYDES
An EchA 23
                                                                       82
Af SidH 54
            PALYVAIITGTGESFCAGADLKEWNDLN-ARGITNEMTAP--GLAGLPRRRGSKPIIAAV
                                                                       110
                  IITG+ ++F AGAD+KE L A +N AP LA
                                                        R
                                                              KP+IAAV
              +
An EchA 83
            KDIGAIIITGSEKAFAAGADIKEMAPLTFASAYSNNFIAPWSHLANSIR----KPVIAAV
                                                                       138
Af Sidh 111 NGYCLGGGFEMVANCDIVVASENATFGLPEVQRGIAAVAGSLPRLVRVLGKQRAAEIALS
                                                                       170
             +G+ LGGG E+ CDI+ + +ATFG PE++ G+ AG RL +GK +A E+ L+
An EchA 139 SGFALGGGCELALMCDIIYCTASATFGQPEIKLGVIPGAGGSQRLTAAVGKSKAMELILT
                                                                       198
Af Sidh 171 GLSFSASQLERWGLVNRVVE--HDQLLATAVEIATAISRNSPDSVRVTMEGLHYGWEMAS
                                                                       228
             G +FS + WG+ +VV+ ++LL AV+ A I+ S + E ++ ++
An EchA 199 GKNFSGKEAGEWGVAAKVVDGGKEELLEEAVKTAETIAGYSRVATVAAKEVVNKSQDLGV
                                                                      258
Af SidH 229
            VE--EASSALV-----DQWYAKLMA----GENFHEGVRAFVEKRKPQW
                                                                265
             E E L
                            DQ + ++
                                           G + +G+ AF EK+KPQW
An EchA 259 REGVEYERRLFHGLFGSQDQKIGRFLSLYHYSKNGTDGEKGMTAFAEKKKPQW 311
```