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Supplementary Figure S1| Phononic dispersion and elastic wave displacements produced 

by two different BAM-waveguide devices. (a,b) a and b show the phononic dispersion and 

displacement fields respectively of the BAM waveguide studied in experiments. (c,d) c and d 

show the phononic dispersion and displacement fields respectively of an idealized BAM-

waveguide possessing vertical symmetry.  

  



Supplementary Note 1 

Classification of Brillouin-Active Guided Phonons.  

The numerically computed Brillouin-active guided phonon modes within the fabricated BAM-

waveguide (        ) are shown in Supplementary Figure S1 for comparison with a similar 

idealized BAM-waveguide possessing vertical symmetry. Through finite element models, 

symmetric boundary conditions were applied to the left-most domain boundary of the bisected 

BAM-waveguide segments seen in Supplementary Figure S1b and S1d, limiting the computed 

modes to those possessing even symmetry about to the silicon waveguide core. Periodic 

boundary conditions are applied to the  -normal faces of this simulation domain to compute the 

displacement fields of the phase matched phonon modes in Supplementary Figure S1b and S1d. 

The phonon dispersion curves in Supplementary Figure S1a and S1c were computed by varying 

the longitudinal wave-vector ( ) associated with the periodic boundary condition. Note that the 

Brillouin coupling is limited to phonons with symmetric displacement fields about the 

waveguide core since the TE-like mode considered here produces optical force distributions are 

symmetric with respect to the centre of the silicon waveguide core.   Supplementary Figure S1a 

and 1c show the dispersion of the extensional (  -like), flexural (  -like) and shear waves of the 

system. Here,    represents the fundamental symmetric Lamb-wave, which is compressive in 

character, and    is the asymmetric fundamental Lamb-wave.  

The Brillouin-active phonon modes under study, (i.e., those exhibiting good overlap with 

the optical force) are shown as solid red curves in Supplementary Figure S1a and 1c, alongside 

the computed elastic displacement fields. While the displacement fields of Supplementary Figure 

S1b exhibit some flexural character, the modes of Supplementary Figure S1d show only 

longitudinal compressive motion, consistent with symmetric Lamb-waves (  ). Despite this 

flexural character induced by the vertical asymmetry, a comparison of the dispersion curves of 

Supplementary Figure S1a and S1c clearly reveal that the phonon modes examined in our 

experimental system are symmetric Lamb-waves.  Owing to their low phononic nonlinearities, 



low signal distortion, and their linear phononic dispersion, symmetric Lamb-waves are routinely 

used for signal transduction in MEMS.   

 

Supplementary Note 2 

Brillouin resonance with Kerr nonlinearities. 

Next, we develop the coupled wave equations which describe the nonlinear wave-mixing 

processes within our Brillouin waveguides, and derive functional form of the asymmetric line-

shapes observed through heterodyne pump-probe experiments. Using the analytically derived 

line-shapes, quantitative analyses of the experimental signatures are performed to determine the 

magnitude of the Brillouin nonlinear coefficient.  

Through experimental arrangement described in the body of this manuscript mutually 

incoherent pump and probe beams are coupled into the Brillouin waveguide. The pump beam is 

produced by intensity modulation of the monochromatic laser line. Modulation at frequency   

generates a pump beam consisting of two frequencies    and    with corresponding wave-

amplitudes    and   , where        .  The probe beam consists of a monochromatic wave 

of disparate wavelength, with wave amplitude    and frequency   .  Nonlinear wave-mixing 

processes involving       and    generate Stokes and anti-Stokes fields at frequencies    

     , and         , with wave amplitudes    and   , respectively. These    and    

wave-amplitudes are measured through heterodyne detection to produce the line-shapes 

discussed in the body of this manuscript. For simplicity, we assume that both pump and probe 

waves are coupled to TE-like waveguide mode with wave powers defined as    |  |
 . Since 

the Stokes and anti-Stokes waves have zero amplitude at the waveguide entrance, the coupled 

wave equations for Stokes and anti-Stokes wave growth can, to first order, be expressed as
61,62,63
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Here,     (|  |
  |  |

  |  |
 ) , and  

   

( ) ( )  and  
 

( )
 are the third order nonlinear 

coefficients for Brillouin scattering (SBS) and non-degenerate four-wave mixing (FWM), 

respectively. For simplicity, we have also neglected two-photon absorption (TPA) induced 

attenuation of    and   , since in this small signal limit, these terms are much smaller than the 

source terms of Eq. (S1a) and Eq. (S1b). We assume that the Brillouin nonlinearity,  
   

( ) ( ), is 

described by a single oscillator, yielding a Lorentzian line-shape of the form
61

, 

Above,    is the resonant frequency of the     mode,   indicates the quality factor of the 

phonon resonator, and    | 
   

( ) (  )| is the Brillouin gain.  In addition,    
( )( ) is the fifth 

order nonlinear coefficient which results from two-photon absorption (TPA) induced the free 

carrier absorption and refractive index changes imparted by waves       and   . Solving for 

time-harmonically modulated TPA-induced free carrier generation rate
63

, and using the carrier 

rate equation to solve for    
( )( ), one finds, 

Here   and   are constants with positive value, and   is the free carrier lifetime. Note that  
 

( )
 

is, to an excellent degree, described as a frequency independent constant which is computed from 

the waveguide geometry and the nonlinear coefficient of silicon following Refs [54,55]. Thus, 

Kerr nonlinearities are non-dispersive, while Brillouin and the free carrier induced nonlinear 

couplings have frequency dependent responses in our frequency sweeping range. To remain 

consistent with our experimental arrangement, we note that the FWM and free-carrier effect 

occur through the waveguide entire waveguide length (4.9 mm), while the Brillouin-active 

interaction length is shorter than the total waveguide length (2.6 mm).  In this case, the optical 

power of the Stokes field obtained by solving equation (S1a) is given by, 
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where   is a constant,    indicates the optical power of kth field, and      and      are the 

interaction lengths of SBS and the rest nonlinear responses, respectively. Equation (S4) consists 

of two terms, one for Brillouin scattering and another which includes both non-degenerate four-

wave mixing and free carrier effects. We refer to the background signal produced by FWM and 

free carrier effect as the reference signal, as these are present within the reference silicon 

waveguides. In the absence of the Brillouin nonlinearities (e.g. for large detuning from a 

Brillouin resonance) the free carrier and FWM contributions to the Stokes sideband can be 

described as,  

Since the free carrier effects has slowly varying envelope in frequency,    
( )( ) can be treated as 

a constant in the vicinity of a single Brillouin resonance (e.g. for frequency spans of less than 

100 MHz). The functional form of    
( )( ) , seen from Eq. (S3), reveals that     

( )(  )  

   
( )( ). Hence,    

( )
 , or nonlinear background, takes on a different value at Stokes and anti-

Stokes frequencies. 

By fitting equation (S4) to the experimentally obtained Stokes and anti-Stokes Brillouin 

scattering signals as shown in Fig. 5a-b, we can estimate the Brillouin gain    | 
   

( ) (  )|. 

The normalized fitting function        is derived from Eq. (S4) and (S5) as, 

where         (     |   
( )
  

  

( )(  )  |)⁄  is the relative strength of the Brillouin 

scattering effect relative to the reference nonlinear responses. Because     
( ) ( ) and    

( )( ) are 

complex functions, the relative phase between the Brillouin scattering signal and background 

(FWM and FC) nonlinear responses is defined as    in equation (S6). The proportionality to   , 

  , and    as well as the constant   in equations (S4) and (S5) are normalized out of equation 

(S6).  
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Note that because of the frequency dependent free-carrier effect, different resonant modes 

are normalized by different nonlinear background. In experiments, we observed that at high 

frequency (>15 GHz) the amplitude of the reference signal converges to |  
 

( )
| , indicating 

|  
 

( )
|  | 

  

( )(  )  | . Hence, we can experimentally measure the reference signal spectrum 

and obtain the ratio   |  
 

( )
  

  

( )(  )  | |   
( )
|⁄ . Then using established methods to 

compute |  
 

( )
|  based on established values for the Kerr nonlinearities of crystalline silicon 

[54,55], we can then estimate the Brillouin gain   using the following equation, 

Note that we have neglect propagation losses in (S1a) and (S1b), as losses do not alter the final 

functional form of the derived line-shape in the small signal limit. 

 The magnitude of  
 

( )
 produced by the silicon waveguide was computed using the 

accepted Kerr coefficient of           
         in silicon

63
.  Employing the full-vectorial 

method for computing  
 

( )
 described in Ref. [54], | 

 

( )
| was computed to be            for 

TOPROW waveguides with nitride membrane widths of   [           ]      As the nitride 

width was reduced to         , the close proximity of the lateral nitride boundary increases 

the modal confinement, yielding  | 
 

( )
| of            . 

Supplementary Note 3 

Analysis of the power-dependent Brillouin gain. 

For simplicity, we begin by developing an analytical description of the Brillouin gain spectrum 

obtained through experiments in the absence of free-carrier and four-wave mixing induced 

nonlinearities.  In this case, the coupled wave equations for Stokes and anti-Stokes wave growth 

in the gain spectrum method can be expressed as in Ref. [56],  
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and the power of Stokes wave varies as, 

where     and     are the Stokes and anti-Stokes signal power with pump power of Pp at 

frequency      ⁄    or       ⁄   .   is the SBS gain factor forming a Lorentzian line shape, 

and   is the Brillouin gain. The solutions of these equations are given by 

where      (     (   ))    is the effective propagation length of the waveguide. 

Experimentally, we measure the transmitted Stokes and anti-Stokes waves for different pump 

powers (  ), and normalize the signal with one for the lowest pump power (         ). 

Therefore the fitting functions for Stokes and anti-Stokes gain are given by, 

The estimated effective SBS propagation length of the waveguide under test is about 2.1 mm. As 

shown in Fig. 7c, a 10% differential-gain is produced at the Stokes wavelength for a change of 

pump power from        with       at resonant frequency (    ). Hence, evaluation of 

the Brillouin gain using these numbers and Eq. (S12a), gives gain a value of approximately 

           .  Free carrier effects can be included in this analysis in a straightforward manner 

to develop the analogous expressions for line-shape and Brillouin gain.  However, one can show 

that the inclusion of free carrier effects yields a small correction to the estimated Brillouin gain. 
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Supplementary Discussion 

Brillouin nonlinearities were modeled within the TOPROW waveguides described in the body of 

the manuscript following the methods described in Refs. [41] and [50], using COMSOL finite 

element software. Electrostrictive forces were implemented based upon the measured 

photoelastic tensor coefficients of bulk crystalline silicon
64

 with photoelastic constants of  

[           ]  [                    ]. Simulations assume crystallographic alignment of 

the waveguide axis with the [100] direction for both the tensor elastic and photoelastic properties 

of the system, which is consistent with the crystal orientation of the fabricated devices. No free 

parameters were used in the simulation results; all input parameters of the model (including 

dielectric constants, elastic constants, photoelastic constants, phononic Q-factor, and geometric 

properties) are derived directly from experimental measurement. 

 It should also be noted that thermoelastic coupling produces negligible contribution to the 

overall Brillouin coupling over all frequencies of interest. Transient thermal models reveal that 

the poor thermal conductivity of the nitride membrane (within which the silicon waveguide is 

embedded) produce a slow thermal response (        ), limiting the bandwidth of 

thermoelastic coupling to    MHz.  Moreover, as compared to  cavity optomechanical systems 

(having interaction lengths of 5-10 micron), the optically-induced temperature changes are much 

smaller within this waveguide.  This is because heat absorption is distributed along the entire 

length of a 4.9 mm long waveguide. As a consequence, models of the thermoelastic coupling 

reveal that the thermoelastic driving forces are ~1000 times weaker than those of radiation 

pressure and electrostriction, yielding negligible contribution at these GHz frequencies in our 

waveguide device. 
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