

**Supplementary Figure S1.** Analytical ultracentrifugation analysis of parkin RING2 C449S. (a) Overlay scans from sedimentation velocity experiments at 25 °C at a rotor speed of 60,000 rpm with scans collected at 10 min intervals. The data was fit to a singular species (s20,w of 1.20 S). (b) Representative sedimentation equilibrium experiment collected at 25 °C at 43,000 rpm. Data were fit to an ideal single species model and gave a calculated mass of 7.73 ± 0.06 kDa ( $MM_{calc}$  with 2 Zn<sup>2+</sup> ions = 7.77 kDa; R<sup>2</sup> = 0.99). The residuals from the fitting are shown as an inset.



**Supplementary Figure S2.** Raw ESI-MS spectra for native and denatured (A) parkin RING2 C449S and (B) HHARI RING2 C357S.



**Supplementary Figure S3.** Assigned 600 MHz <sup>1</sup>H-<sup>15</sup>N HSQC spectrum of <sup>13</sup>C<sup>15</sup>N-labeled HHARI RING2 C357S (300  $\mu$ M in 20 mM Tris-HCl, 120 mM NaCl, 5 mM DTT, pH 6.50) showing that the protein is well folded. The spectrum is labeled using the one-letter amino acid code and residue number according to the human HHARI sequence. Tryptophan Nɛ1 amides are indicated (\*).



**Supplementary Figure S4**. Isothermal calorimetry and NMR spectroscopy shows that parkin IBR and RING2 domains are not E2 recruiting domains. ITC curves showing the lack of interaction of parkin (a) IBR, (b) RING2 and (c) IBR-RING2 domains with UbcH7 and UbcH8 E2 proteins. Each panel shows a titration experiment completed at 18°C for UbcH7 (left) and UbcH8 (right). In panel (d) the NMR spectrum of <sup>15</sup>N-labeled IBR-RING2 is shown alone (black contours) and with the addition of two equivalents of UbcH7 (red contours). Spectra were acquired in 20 mM Tris-HCl, 120 mM NaCl, 1 mM DTT, pH 7.5 at 25°C.



**Supplementary Figure S5.** Expression and solubility tests for GST-fusion wild-type parkin RING2 and ARJP substitutions assessed by SDS-PAGE.



**Supplementary Figure S6.** <sup>1</sup>H-<sup>15</sup>N HSQC spectra of parkin RING2 and ARJP substitutions. Spectral overlays for wild-type parkin RING2 with ARJP substituted protein (magenta) for (**a**) T433N, (**b**) G447E, (**c**) G448D, (**d**) C449F, (**e**) M476L, and (**f**) C449S. Amides that demonstrated the largest chemical shift pertubation are labeled and mapped on to the parkin RING2 structure (insets).



**Supplementary Figure S7.** Titration of unlabeled fly parkin RING2<sup>417-482</sup> into <sup>15</sup>N-labeled fly parkin IBR<sup>342-402</sup>. The data shows the 600 MHz <sup>1</sup>H-<sup>15</sup>N HSQC spectrum of <sup>15</sup>N-labelled IBR (black contours) and upon the addition of two equivalents of RING2 (magenta). Spectra were acquired in 25 mM Tris-HCl, 150 mM NaCl, 1 mM DTT, pH 7.5 at 25°C.



**Supplementary Figure S8**. MS-MS data showing the identity of a ubiquitinated site at position K349 of human parkin. The site of ubiquitination was confirmed following trypsin digest of  $\Delta$ Ubl parkin following an ubiquitination reaction. Peaks in the spectrum denoting y and b ions are labeled for the sequence K349-R366 (shown above). The (y<sub>a</sub>)<sup>2+</sup> confirms the identity of the GG isopeptide linkage on the sequence.



**Supplementary Figure S9**. Original Western blot data for autoubiquitination assays for parkin. Red boxes denote the regions of the original data presented in the corresponding figures.

# Supplementary Table S1. Structural Statistics for 20 lowest energy structures of parkin RING2

#### NMR distance and dihedral constraints

| Distance constraints                                |                   |
|-----------------------------------------------------|-------------------|
| Total NOE                                           | 575               |
| Intra-residue                                       | 165               |
| Inter-residue                                       |                   |
| Sequential $( i - j  = 1)$                          | 151               |
| Medium-range $( i-j  < 4)$                          | 72                |
| Long-range $( i-j  > 5)$                            | 187               |
| Intermolecular                                      |                   |
| Hydrogen bonds                                      | 0                 |
| Zinc restraints                                     | 24                |
| Total dihedral angle restraints <sup>1</sup>        |                   |
| phi                                                 | 11                |
| psi                                                 | 11                |
| Structure statistics                                |                   |
| Violations (mean and s.d.)                          |                   |
| Distance constraints (Å)                            | $0.042 \pm 0.003$ |
| Dihedral angle constraints (°)                      | $0.340 \pm 0.259$ |
| Max. dihedral angle violation (°)                   | 4.2               |
| Max. distance constraint violation $(\text{\AA})^2$ | 0.57              |
| Deviations from idealized geometry <sup>3</sup>     |                   |
| Bond lengths (Å)                                    | $0.006 \pm 0.000$ |
| Bond angles (°)                                     | $0.606 \pm 0.027$ |
| Impropers (°)                                       | $0.814 \pm 0.062$ |
| Average pairwise r.m.s.d. (Å) <sup>4</sup>          |                   |
| Heavy                                               | $1.231 \pm 0.197$ |
| Backbone                                            | $0.818 \pm 0.173$ |

<sup>1</sup>Psi/Psi dihedral restraints determined using TALOS+
<sup>2</sup>One NOE violation > 0.5 Å over all 20 models
<sup>3</sup>As reported by Xplor-NIH
<sup>4</sup>Pairwise r.m.s.d. was calculated among 20 refined structures (residues T433-E444, H451-C464, C475-H479)

**Supplementary Table S2.** Cysteines involved in  $Zn^{2+}$ -coordination in parkin RING2 and HHARI RING2 domains determined using C $\alpha$  and C $\beta$  chemical shifts.

|                                                                                           | Cys Chemical Shifts (ppm) <sup>a</sup>          |                                     |                                              |                                     |                                     |                                      |                                      |                                      |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------|----------------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--|--|
| Cα<br>Cβ                                                                                  | <u>C436 (I)<sup>b</sup></u><br>56.940<br>31.690 | <u>C439 (I)</u><br>59.333<br>31.555 | <u>C449 (<i>cat</i>)</u><br>59.260<br>28.133 | <u>C454 (I)</u><br>61.623<br>31.826 | <u>C459 (1)</u><br>60.490<br>30.002 | <u>C464 (II)</u><br>58.091<br>32.693 | <u>C467 (II)</u><br>57.134<br>31.658 | <u>C475 (II)</u><br>64.610<br>29.092 |  |  |  |  |  |  |  |
| <b>Probabilities</b> <sup>c</sup><br>Oxidized<br>Reduced<br>Zn <sup>2+</sup> -coordinated | 0.0%<br>13.9%<br><b>86.1%</b>                   | 0.0%<br>2.5%<br><b>97.5%</b>        | 0.0%<br><b>99.2%</b><br>0.8%                 | 0.0%<br>0.4%<br><b>99.6%</b>        | 0.0%<br>9.8%<br><b>90.2%</b>        | 0.0%<br>5.5%<br><b>94.5%</b>         | 0.0%<br>12.4%<br><b>87.6%</b>        | 0.0%<br>4.6%<br><b>95.4%</b>         |  |  |  |  |  |  |  |

# Parkin RING2 (residues 417-482)

# HHARI RING2 (residues 325-396)

|                                  |                 |                 |                 | Cys Ch            | emical Shif     | ts (ppm) <sup>a</sup> |                  |                  |                  |
|----------------------------------|-----------------|-----------------|-----------------|-------------------|-----------------|-----------------------|------------------|------------------|------------------|
|                                  | <u>C327 (N)</u> | <u>C344 (I)</u> | <u>C347 (I)</u> | <u>C357 (cat)</u> | <u>C362 (I)</u> | <u>C367 (I)</u>       | <u>C372 (II)</u> | <u>C375 (II)</u> | <u>C389 (II)</u> |
| Са                               | 58.528          | 56.386          | 59.186          | $ND^{a}$          | 61.820          | 60.891                | 56.771           | 58.459           | 60.418           |
| Cβ                               | 28.230          | 31.739          | 31.533          | ND                | 31.457          | 32.564                | 33.703           | 32.140           | 29.791           |
| <u>Probabilities<sup>c</sup></u> |                 |                 |                 |                   |                 |                       |                  |                  |                  |
| Oxidized                         | 0.0%            | 0.0%            | 0.0%            | ND                | 0.0%            | 0.0%                  | 0.0%             | 0.0%             | 0.0%             |
| Reduced                          | <b>99.3%</b>    | 19.7%           | 2.9%            | ND                | 0.4%            | 0.6%                  | 29.4%            | 3.9%             | 16.0%            |
| Zn <sup>2+</sup> -coordinated    | 0.7%            | 80.3%           | 97.1%           | ND                | 99.6%           | 99.4%                 | 70.6%            | 96.1%            | 84.0%            |

<sup>a</sup> determined using 3D CBCA(CO)NH and HNCACB experiments

<sup>b</sup> identifiers to describe where the Cys residue is located in the RING2 protein – (I) involved in  $Zn^{2+}$ -coordination Site I; (II) - involve

<sup>c</sup> probability calculation based upon Kornhaber *et al.*, 2006. The most probable condition for each cysteine is highlighted in bold

 $^{d}$  Ca and C $\beta$  chemical shifts for HHARI C357 not determined, data collected on HHARI RING2 C357S

Supplementary Table S3. Structural Statistics for 20 lowest energy structures of parkin IBR-RING2

### NMR distance and dihedral constraints

| Distance constraints <sup>1</sup>                   |                                           |
|-----------------------------------------------------|-------------------------------------------|
| Total NOE                                           | 611 / 447 / 1156                          |
| Intra-residue                                       | 156 / 143 / 360                           |
| Inter-residue                                       |                                           |
| Sequential $( i-j =1)$                              | 201 / 117 / 353                           |
| Medium-range $( i-j  < 4)$                          | 65 / 48 / 115                             |
| Long-range $( i-j  > 5)$                            | 189 / 139 / 328                           |
| Intermolecular                                      | - / - / 0                                 |
| Hydrogen bonds                                      | 0 / 0 / 0                                 |
| Zinc restraints                                     | 24 / 24 / 48                              |
| Total dihedral angle restraints <sup>2</sup>        |                                           |
| phi                                                 | 22 / 25 / 47                              |
| psi                                                 | 22 / 25 / 47                              |
| Structure statistics                                |                                           |
| Violations (mean and s.d.)                          |                                           |
| Distance constraints (Å)                            | $0.040 \pm 0.002$                         |
| Dihedral angle constraints (°)                      | $0.467 \pm 0.080$                         |
| Max. dihedral angle violation (°)                   | 7.5                                       |
| Max. distance constraint violation $(\text{\AA})^3$ | 0.7                                       |
| Deviations from idealized geometry <sup>4</sup>     |                                           |
| Bond lengths (Å)                                    | $0.006 \pm 0.000$                         |
| Bond angles (°)                                     | $0.550 \pm 0.022$                         |
| Impropers (°)                                       | $0.758 \pm 0.056$                         |
| Average pairwise r.m.s.d. $(\text{\AA})^5$          |                                           |
| Heavy                                               | $2.268 \pm 0.304 \: / \: 2.316 \pm 0.306$ |
| Backbone                                            | $1.208 \pm 0.258 \ / \ 1.393 \pm 0.245$   |

<sup>1</sup> For IBR (E342-L396) / RING2 (K430-G482) / IBR-RING2 (E342-G482)
<sup>2</sup> Psi/Psi dihedral restraints determined using TALOS+
<sup>3</sup> Total of 4 NOE violations > 0.5 Å over all 20 models
<sup>4</sup> As reported by Xplor-NIH
<sup>5</sup> Pairwise r.m.s.d. was calculated among 20 refined structures (IBR, residues V351-I392; RING2, residues K430-W400) W480)

**Supplementary Table S4.** Cysteines involved in Zn<sup>2+</sup>-coordination in *Drosophila* and human parkin IBR-RING2 domains determined using  $C\alpha$  and  $C\beta$  chemical shifts.

# Drosophila Parkin IBR-RING2 (residues 342-482)

|                                         | Cys Chemical Shifts (ppm) <sup>a</sup>                    |                                |                                        |                                       |                       |                        |                        |                                        |                                        |                                |                       |                                         |                                       |                       |                                        |                        |                        |
|-----------------------------------------|-----------------------------------------------------------|--------------------------------|----------------------------------------|---------------------------------------|-----------------------|------------------------|------------------------|----------------------------------------|----------------------------------------|--------------------------------|-----------------------|-----------------------------------------|---------------------------------------|-----------------------|----------------------------------------|------------------------|------------------------|
| Cα                                      | <b>C353</b><br>( <i>I</i> ) <sup><i>b</i></sup><br>57.731 | C358<br>( <i>I</i> )<br>60.268 | <b>C368</b><br>( <i>NC</i> )<br>58.581 | <b>C373</b><br>( <i>I</i> )<br>58.504 | C377<br>(I)<br>59.988 | C382<br>(II)<br>57.691 | C385<br>(II)<br>58.112 | <b>C394</b><br>( <i>II</i> )<br>59.835 | <b>C407</b><br>( <i>NC</i> )<br>58.713 | C436<br>( <i>I</i> )<br>57.016 | C439<br>(I)<br>59.348 | <b>C449</b><br>( <i>cat</i> )<br>59.291 | <b>C454</b><br>( <i>I</i> )<br>61.571 | C459<br>(I)<br>60.499 | <b>C464</b><br>( <i>II</i> )<br>57.776 | C467<br>(II)<br>56.999 | C475<br>(II)<br>64.533 |
| Cβ                                      | 31.865                                                    | 29.375                         | 28.450                                 | 28.311                                | 32.365                | 32.475                 | 32.359                 | 30.761                                 | 28.102                                 | 31.698                         | 31.196                | 28.000                                  | 32.045                                | 30.174                | 32.930                                 | 31.870                 | 29.092                 |
| <b>Probabilities</b> <sup>c</sup>       |                                                           |                                |                                        |                                       |                       |                        |                        |                                        |                                        |                                |                       |                                         |                                       |                       |                                        |                        |                        |
| Oxidized                                | 0.0%                                                      | 0.0%                           | 0.0%                                   | 0.0%                                  | 0.0%                  | 0.0%                   | 0.0%                   | 0.0%                                   | 0.0%                                   | 0.0%                           | 0.0%                  | 0.0%                                    | 0.0%                                  | 0.0%                  | 0.0%                                   | 0.0%                   | 0.0%                   |
| Reduced<br>Zn <sup>2+</sup> coordinated | 7.3%<br><b>92.7%</b>                                      | 39.8%<br>60.2%                 | <b>98.3%</b><br>1.7%                   | <b>99.1%</b><br>0.9%                  | 1.2%<br><b>98.8%</b>  | 7.0%<br><b>93.0%</b>   | 5.0%<br><b>95.0%</b>   | 4.1%<br><b>95.9%</b>                   | <b>99.5%</b><br>0.5%                   | 13.2%<br><b>86.8%</b>          | 3.5%<br><b>96.5%</b>  | <b>99.5%</b><br>0.5%                    | 0.3%<br><b>99.7%</b>                  | 6.8%<br><b>93.2%</b>  | 7.8%<br><b>92.2%</b>                   | 12.3%<br><b>87.7%</b>  | 4.9%<br><b>95.1%</b>   |

## Human Parkin IBR-RING2 (residues 321-465)

|                                                                                          | Cys Chemical Shifts (ppm) <sup>a</sup>        |                                                 |                                          |                                          |                                                 |                                                  |                                  |                                                  |                                                 |                                          |                                            |                                          |                                                 |                                                  |                                   |                                   |                                   |
|------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------------|--------------------------------------------------|----------------------------------|--------------------------------------------------|-------------------------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------|-------------------------------------------------|--------------------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Cα<br>Cβ                                                                                 | C323<br>( <i>N</i> )<br>ND <sup>d</sup><br>ND | <b>C332</b><br>( <i>I</i> )<br>57.694<br>32.329 | C337<br>( <i>I</i> )<br>60.528<br>29.637 | C352<br>( <i>I</i> )<br>59.851<br>29.495 | <b>C360</b><br>( <i>I</i> )<br>59.537<br>32.329 | <b>C365</b><br>( <i>II</i> )<br>58.119<br>31.904 | C368<br>(II)<br>58.828<br>32.187 | <b>C377</b><br>( <i>II</i> )<br>60.387<br>30.770 | <b>C418</b><br>( <i>I</i> )<br>56.136<br>32.754 | C421<br>( <i>I</i> )<br>59.678<br>31.904 | C431<br>( <i>cat</i> )<br>59.111<br>28.361 | C436<br>( <i>I</i> )<br>60.914<br>32.187 | <b>C441</b><br>( <i>I</i> )<br>62.229<br>32.754 | <b>C446</b><br>( <i>II</i> )<br>58.147<br>32.471 | C449<br>( <i>II</i> )<br>ND<br>ND | C451<br>( <i>NC</i> )<br>ND<br>ND | C457<br>( <i>II</i> )<br>ND<br>ND |
| <b>Probabilities</b> <sup>c</sup><br>Oxidized<br>Reduced<br>Zn <sup>2+</sup> coordinated | ND<br>ND<br>ND                                | 0.0%<br>68.7%<br><b>93.1%</b>                   | 0.0%<br>20.6%<br>7 <b>9.4%</b>           | 0.0%<br>39.6%<br><b>60.4%</b>            | 0.0%<br>1.7%<br><b>98.3%</b>                    | 0.0%<br>5.4%<br><b>94.6%</b>                     | 0.0%<br>2.9%<br>97.1%            | 0.0%<br>2.6%<br>97.4%                            | 0.0%<br>22.2%<br>77 <b>.8%</b>                  | 0.0%<br>1.6%<br><b>98.4%</b>             | 0.0%<br>98.2%<br>1.8%                      | 0.0%<br>0.6%<br><b>99.4%</b>             | 0.0%<br>0.2%<br><b>99.8%</b>                    | 0.0%<br>5.0%<br><b>95.0%</b>                     | ND<br>ND<br>ND                    | ND<br>ND<br>ND                    | ND<br>ND<br>ND                    |

<sup>*a*</sup> determined using 3D CBCA(CO)NH and HNCACB experiments <sup>*b*</sup> identifiers to describe where the Cys residue is located in the IBR or RING2 protein – (*I*) involved in  $Zn^{2+}$ -coordination Site I; (*II*) - involved in

 $Zn^{2+}$ -coordination Site II; (*cat*) - conserved catalytic cysteine; (*N*) – located in the unstructured N-terminus; (*NC*) - non  $Zn^{2+}$  coordinating residue

<sup>c</sup> probability calculation based upon Kornhaber *et al.*, 2006. The most probable condition for each cysteine is in bold.

 $d^{d}$  C $\alpha$  and C $\beta$  chemical shifts not determined