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S1 Semi-Markov Random Walk scores

To measure the global correspondence score between any two nodes u; € G; and v; € Ga, we
compute the the long-run proportion of time that the random walker stays at the node pair
x = (u;,v;) in Gy. We model the semi-Markov random walk on Gy such that p(x), the expected
amount of time that the random walker spends at a node pair = = (u;,v;), is proportional to
the node similarity h(u;,v;). As a result, both higher interaction similarity as well as higher
node similarity between nodes would lead to higher global similarity between them. Thus, as
discussed shown in [1, 2], this global correspondence score can be computed as follows:
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where 7wy is the steady state distribution of the Markov random walk on Gy, which using the
decoupling property of the product graph [3], can be computed as Ty = m; ® 7, where m; and
7o are the steady state distributions of the random walks on G; and G, respectively. We can
compute these distributions by finding the eigenvectors (with unit eigenvalue) of the transition
matrices of each network. We can conveniently rewrite (1) as:
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where S, H, and Q are [U| x |V|-dimensional matrices such that S[i, j| = s(u;,v;), H[i,j] =
h(u;,v;), and Q[i, j| = m1(u;)ma(v;), and o denotes the Hadamard (or element-wise) product.
We compute such correspondence score matrix for all pairs of the given networks.

s(u;,v;) =
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An important advantage of the SMRW model is its high scalability in terms of network size.
A similar random-walk-with-restart approach was originally proposed in [4] to compute func-
tional similarity scores between nodes. As discussed in [2], a practical limitation of the scheme
used in [4] is its high computational complexity of O(my-ms) for two networks respectively with
my and my edges, while the SMRW scheme reduces the computational cost to O(mq + mgq + 2)
through decoupling the networks, where z is the number of non-zero elements in H. The matrix
H is typically sparse, rendering the complexity of the SMRW scheme significantly smaller than
that in [4], especially for large networks.
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Figure S1: Total CPU time for aligning real networks. The trend of change in compu-
tation time as the number of networks in the alignment increases.



