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Figure S1. Equilibrium mean phenotype and mode of adaptive landscape. Solid lines display the equilibrium mean phenotype, obtained by
solving eq. (2) in the main text, as a function of the skew of the phenotype distribution. The skewed Gaussian fitness surface (eq. (5) in the
main text) is assumed. Therefore, the mode of the individual fitness surface is at 0. Dashed lines show the mode of the adaptive landscape.
In Figure (a) the variance is fixed at S = 0.25, and the skew y of the individual fitness surface is varied as follows: y = 0.5 (red), y = 1.5
(blue), and y = 10 (orange). In Figure (b), y = 1.5 is fixed and the variance is varied: S = 0.01 (red), S = 0.1 (blue), S = 0.25 (orange). If 
X > 0, the mean is on the flatter shoulder of the individual fitness surface; if X < 0, it is on the steeper shoulder. The latter occurs only for
sufficiently strong skew.

Supplementary Methods
Throughout, x indicates the trait value of an individual, X , S, and C3 its mean, variance, and third cumulant (equal to the third central 
moment) in the population.

A complete account of the theory with all derivations is contained in the supplementary Mathematica notebook (Supplementary Data 1).. 

Mode of adaptive landscape for asymmetric fitness surfaces
We investigate the influence of the shape of the individual fitness surface near its optimum on the displacement of the mode of the adaptive 
landscape from the optimum of the  individual fitness surface. On each side of the optimum (assumed to be at 0 with value 1), we approxi-
mate the individual fitness surface w(x) by a cubic polynomial as in eq. (3) in the main text. Because we require that w(0) = 1 is the 
maximum, we must have a1 § 0 and b1 ¥ 0. If a1 = b1 = 0 (so that w(x) is differentiable at x=0), we require a2 < 0 and b2 < 0.

To calculate mean fitness (or the adaptive landscape),  defined by w X  w x p x x , we assume a Gaussian trait distribution 

p(x) with mean X and variance S. Then straightforward calculations yield the following expression for the mean fitness:
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To derive the condition for the mode of w X being positive, we first calculate the derivative of w X. It is given by 
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The mode of the adaptive landscape (mean fitness) is positive if X w 0  0 .  Because
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it follows that the position of the optimum of the adaptive landscape is at a positive value if eq. (4) in the main text holds.

For the fitness surface of the predator-prey example (eq. (7) in the main text), which has mode at 1/2 if we set amax = g 2 (as in Figure 4), 
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It follows that  the mode of the adaptive landscape is > 1/2, i.e., shifted to the right, if
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It is easy to show that this is satisfied whenever rsimp    4, which is the condition ensuring that the right shoulder of the individual
fitness surface is flatter.

The skewed Gaussian landscape
We assume the individual fitness surface w(x), as given in eq. (5) in the main text.To calculate mean fitness (or the adaptive landscape),  
we again assume a Gaussian trait distribution p(x) with mean X and variance S. Then integration yields the following expression for mean 
fitness: 
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which is used to generate Figure 2B.

The linear and quadratic selection gradients are defined by

L1  X ln w X, S 
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For the derivatives X w X, S and S w X, S we obtain:
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The mode of mean fitness is obtained by solving X w X, S = 0 for X. This is a complicated transcendental  equation. It is solved 
numerically to obtain Figure 2C. However, by series expansion the following simple approximation can be derived:

Xmodeapp 
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. S10

This is an excellent approximation to the true mode if S is not too large, i.e., if approximately S < 0.1 (results not shown).

To calculate the equilibrium mean phenotype,  we apply the theory described in Bürger (2000, Chap.5; in particular p. 194). According to 
this theory, equilibrium distributions are (approximate) solutions of  S L1 + C3 L2 + M = 0, i.e., of eq. (2) in the main text. The mutation 
term M is needed  here because  the mutation model used in our simulations changes the mean.We have equal forward and backward 
mutation between the + and the - allele at each locus. The total mutation rate per locus is u and there are n loci. Hence, 
p ' = p1 - u 2 + 1 - p u 2  or, equivalently, Dp = p ' - p = 1 - 2 p u 2. Because the loci contribute additively to the trait, the mean 

trait value is X= d 
i=1

n pi - 1 2, where the allelic effects are +d and -d. A simple calculation yields that the change of the mean caused by 

mutation is M=DX=-u X. We define skew = C3/S32and rewrite S L1 + C3 L2 + M = 0 in the form  L1 + skew S  L2 - u X/S = 0. For given 
y, u, S, and skew, this can be solved numerically to obtain the equilibrium mean phenotype  X. To generate the theoretical predictions in 
Figure 3, the values of S and skew were taken from the simulations with the corresponding  parameters y and u.

Skewed phenotype distribution effects on selection gradients
We show that for smooth (individual) fitness functions, to leading order, the linear and quadratic selection gradients  L1 and L2, as defined 
in (S6) and (S7), are independent of the skew of the phenotype  distribution provided the variance of the phenotype  distribution is small.

To this end, we assume  that the mean X of the phenotype distribution p(x) is close to 0 and its variance S is sufficiently small, such that 
individual fitness w (x) can be approximated by w(x) = 1 + a2x2 + a3x3. This will be a good approximation if selection is weak.

We assume a2 < 0 (stabilizing selection) and Abs(a3) is small enough such that w(x) has its maximum at x = 0.
Then mean fitness is

w X, S   w x p x x  1  a2 S  X  a3 C3  3 X S  X3. S11
Therefore,

X w X, S  a2  3 a3 S  X2, S12
which  is independent of C3. As a consequence,  the mode of mean fitness, obtained by solving X w X, S  0 for X, is independent  of 
C3. Similarly,

S w X, S  a2  3 a3 X, S13
which is also independent of C3.

The landscape of the predator-prey example
We assume the individual fitness surface given in eq. (7) of the main text.We set amax = g/2, so that the maximum is at x = 1/2.

It is straightforward to show that the skew of this fitness surface is positive if and only if g P > a rs, where rs = c r1 + 1 - c

2
-

N

K
 r and 

a º 6.8285. In addition, it decreases faster from its maximum for x<1/2 than for x>1/2 if and only if  g P > 2.

Assuming  that the trait distribution p(x) is Gaussian with mean X and variance S, integration yields, up to the multiplicative constant,  the 
following expression for mean fitness:

w X, S  rs

S

2 


 1

2


1

rs
X2

2 S 

1

2
1  rs

1

2
 X Erf

1

2
 X

2 S
  Erf

1

2


1

rs
 X

2 S
  

1

2
 P 12 XS  P 1  rs

1

2
 X  S  P

1  Erf


1

2
 X  S  P

2 S
 . S14

The linear and quadratic selection gradients L1 and L2, defined in (S6) and (S7) are obtained from the following expressions:
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The equilibrium mean phenotype is then obtained in the same way as for the skewed Gaussian fitness surface. The only difference here is
that the mutation term is of the form M=DX=-u (X-1/2). The reason for this difference is that, here, the optimum of the individual fitness
surface is at 1/2, and not at 0.
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